Gestational diabetes mellitus (GDM) is one of the most common metabolic disorders known to develop during pregnancy. Besides obesity and sedentary lifestyles being the main predisposing factors, dietary measures play an important role in its progression too. Hence, managing GDM has become a great challenge for healthcare professionals globally. It is pertinent to establish and manage the predisposing factors for GDM. Many studies have investigated the potential dietary risk factors linked to GDM, especially dietary patterns and diet quality. While certain healthful dietary patterns incorporating wholegrain cereals, high in fruits and vegetables, low meat and saturated fats have been protective against GDM, deficiencies of micronutrients such as potassium, magnesium, and possibly zinc and chromium may predispose one to carbohydrate intolerance. The alterations in iron and zinc body stores could also affect GDM. Dietary iron, vitamin C and D are amongst the micronutrients associated with the development and prevention of diabetes in pregnant women. However, evidences on the effects of vitamins, minerals other indices of maternal diet quality on GDM are inconclusive. This review provides an overview of the emerging evidences on the role of maternal dietary patterns, diet quality and micronutrients, which may contribute in the prevention of GDM across the different economies in the world. The results will empower the healthcare professionals to prevent and manage GDM effectively.
Citation: Snigdha Misra, Yang Wai Yew, Tan Seok Shin. Maternal dietary patterns, diet quality and micronutrient status in gestational diabetes mellitus across different economies: A review[J]. AIMS Medical Science, 2019, 6(1): 76-114. doi: 10.3934/medsci.2019.1.76
[1] | Liping Wang, Runqi Liu, Yangyang Shi . Dynamical analysis of a nonlocal delays spatial malaria model with Wolbachia-infected male mosquitoes release. Electronic Research Archive, 2025, 33(5): 3177-3200. doi: 10.3934/era.2025139 |
[2] | Songbai Guo, Xin Yang, Zuohuan Zheng . Global dynamics of a time-delayed malaria model with asymptomatic infections and standard incidence rate. Electronic Research Archive, 2023, 31(6): 3534-3551. doi: 10.3934/era.2023179 |
[3] | Gaohui Fan, Ning Li . Application and analysis of a model with environmental transmission in a periodic environment. Electronic Research Archive, 2023, 31(9): 5815-5844. doi: 10.3934/era.2023296 |
[4] | Wenxuan Li, Suli Liu . Dynamic analysis of a stochastic epidemic model incorporating the double epidemic hypothesis and Crowley-Martin incidence term. Electronic Research Archive, 2023, 31(10): 6134-6159. doi: 10.3934/era.2023312 |
[5] | Xueyong Zhou, Xiangyun Shi . Stability analysis and backward bifurcation on an SEIQR epidemic model with nonlinear innate immunity. Electronic Research Archive, 2022, 30(9): 3481-3508. doi: 10.3934/era.2022178 |
[6] | Tao Zhang, Mengjuan Wu, Chunjie Gao, Yingdan Wang, Lei Wang . Probability of disease extinction and outbreak in a stochastic tuberculosis model with fast-slow progression and relapse. Electronic Research Archive, 2023, 31(11): 7104-7124. doi: 10.3934/era.2023360 |
[7] | Yike Lv, Xinzhu Meng . Evolution of infectious diseases induced by epidemic prevention publicity and interaction between heterogeneous strains. Electronic Research Archive, 2024, 32(8): 4858-4886. doi: 10.3934/era.2024223 |
[8] | Ting Kang, Qimin Zhang, Qingyun Wang . Nonlinear adaptive control of avian influenza model with slaughter, educational campaigns and treatment. Electronic Research Archive, 2023, 31(8): 4346-4361. doi: 10.3934/era.2023222 |
[9] | Jia Chen, Yuming Chen, Qimin Zhang . Ergodic stationary distribution and extinction of stochastic pertussis model with immune and Markov switching. Electronic Research Archive, 2025, 33(5): 2736-2761. doi: 10.3934/era.2025121 |
[10] | Wenhui Niu, Xinhong Zhang, Daqing Jiang . Dynamics and numerical simulations of a generalized mosquito-borne epidemic model using the Ornstein-Uhlenbeck process: Stability, stationary distribution, and probability density function. Electronic Research Archive, 2024, 32(6): 3777-3818. doi: 10.3934/era.2024172 |
Gestational diabetes mellitus (GDM) is one of the most common metabolic disorders known to develop during pregnancy. Besides obesity and sedentary lifestyles being the main predisposing factors, dietary measures play an important role in its progression too. Hence, managing GDM has become a great challenge for healthcare professionals globally. It is pertinent to establish and manage the predisposing factors for GDM. Many studies have investigated the potential dietary risk factors linked to GDM, especially dietary patterns and diet quality. While certain healthful dietary patterns incorporating wholegrain cereals, high in fruits and vegetables, low meat and saturated fats have been protective against GDM, deficiencies of micronutrients such as potassium, magnesium, and possibly zinc and chromium may predispose one to carbohydrate intolerance. The alterations in iron and zinc body stores could also affect GDM. Dietary iron, vitamin C and D are amongst the micronutrients associated with the development and prevention of diabetes in pregnant women. However, evidences on the effects of vitamins, minerals other indices of maternal diet quality on GDM are inconclusive. This review provides an overview of the emerging evidences on the role of maternal dietary patterns, diet quality and micronutrients, which may contribute in the prevention of GDM across the different economies in the world. The results will empower the healthcare professionals to prevent and manage GDM effectively.
In the eco-environment, there are a large number of pests or annoying animals such as rodents and mosquitoes that can spread diseases or destroy crops or livestock. They are called vermin. In addition, vermin have the strong reproductive abilities, which makes it necessary to control them [1]. Usually, chemical drugs are used to poison the vermin, which will pollute the environment and destroy the ecological system. In addition, long-term use of chemical drugs will make the vermin resistant to drugs, which makes it impossible to control the vermin effectively for a long time. Ecological research shows that reducing the reproduction rate is an effective way to manage the over-abundance of species. Currently, female sterilant is used to reduce the size of vermin [2,3]. This is because, compared with chemical drugs, sterilants not only have the advantage of not polluting the environment, but also have the dual effects of causing sterility and death of vermin.
Since the reproductive ability of vermin is related to the age of individuals [4], we can use first-order partial differential equations coupled with integral equations to simulate the dynamics of vermin [5,6]. Along this line, many studies have appeared on population models. To name a few, see [7,8,9,10] for age-dependent models, and [11,12,13,14,15] for size-structured models. Aniţa and Aniţa [7] considered two optimal harvesting problems related to age-structured population dynamics with logistic term and time-periodic control and vital rates. The control variable is the harvest effort, which only depends on time and only appears in the principal equation. Li et al. [9] studied the optimal control of an age-structured model describing mosquito plasticity. He et al. [10] investigated the optimal birth control problem for a nonlinear age-structured population model. The control variable is the birth rate and only appears in the boundary condition. He and Liu [11] and Liu and Liu [12] discussed optimal birth control problems for population models with size structures. Li et al. [13] investigated the optimal harvesting problem for a size-stage-structured population model and the control variable is the harvest effort for the adult population.
However, only a small amount of work is directly aimed at the contraception control problems for vermin with individual structure [16,17], and no work has yet considered the reproduction law of vermin in modeling. In this paper, we will formulate a nonlinear hierarchical age-structured model to discuss the optimal contraception management problem for vermin. The so-called hierarchical structure of the population is to rank individuals according to their age, body size, or any other structural variables that may affect their life rate [18]. Moreover, Gurney and Nisbet [18] pointed out that the hierarchy of ranks in a population is one of the important factors to maintain species' persistence and ecological stability. Most studies on the hierarchical population models mainly discuss the existence, uniqueness, and numerical approximation of solutions [19,20], and the asymptotic behavior of solutions [18,21]. However, studies on optimal control problems of hierarchical population models are rather rare. He and his collaborators have investigated optimal harvesting problems in hierarchical species [22,23]. The control variables are the harvest effort and only appear in the principal equation.
Compared with known closely related ones, our model has the following features. Firstly, the control function is the amount of sterilant ingested by an individual, which depends on the individual's age. Secondly, the control variable appears not only in the principal equation (distributed control) but also in the boundary condition (boundary control). Thirdly, the reproduction rate of vermin depends not only on the age of individuals but also on the mechanism of encounters between males and females and an "internal environment". Fourthly, the mortality of vermin depends not only on the intrinsic and weighted total size of vermin but also on the influence of ingested sterilant. The model obtained in this paper is a nonlinear integro-partial differential equation with a global feedback boundary condition. Based on this model, this paper will investigate how to apply the female sterilant to minimize the final size of vermin when the control cost is the lowest.
In this paper, firstly, the existence of a unique non-negative solution is established based on Theorem 4.1 of [14]. More importantly, by transforming the model into a system of two subsystems, we show that the solution has a separable form. Then, the existence of an optimal policy is discussed with compactness and minimization sequences. To show the compactness, we use the Fréchet-Kolmogorov Theorem and its generalization. Next, the Euler-Lagrange optimality conditions are derived by employing adjoint systems and normal cones techniques. The high nonlinearity of the model makes it difficult to construct the adjoint system. For this reason, we give a new continuous result, that is, the continuity of the solution of an integro-partial differential equation with respect to its boundary distribution and inhomogeneous term.
Let us make some comments on the difference between our methods and results from those of closely related works. Aniţa and Aniţa [7] only gave the first order necessary optimality conditions by using an adjoint system and normal cones techniques. Li et al. [13] only discussed the existence of the optimal solution for a harvest problem via a maximizing sequence. Hritonenko et al. [15] only gave the maximum principle for a size-structured model of forest and carbon sequestration management via adjoint system. Kato [14] only discussed the existence of the optimal solution for a nonlinear size-structured harvest model by means of a maximizing sequence.
In this section, taking the reproduction law of vermin into consideration, we will formulate a hierarchical age-structured model to discuss the optimal contraception management problem for vermin. Ecological studies show that the reproduction of vermin follows the following laws [4]:
($ 1^{\circ} $) The reproductive ability of vermin is related to the age of individuals;
($ 2^{\circ} $) Most vermin are polygamous hybridization;
($ 3^{\circ} $) A large proportion of females increases the reproductive intensity of vermin;
($ 4^{\circ} $) The average number of offspring from middle-aged and elderly individuals is more than that of individuals who first participate in reproduction.
To build our model, let $ p(a, t) $ denote the density of vermin with age $ a $ at time $ t $, and $ a_{\dagger} $ be the maximum age of survival of vermin.
Firstly, we simulate the reproduction process. Note that most vermin are polygamous hybridization. As in [24], we should consider the mechanism of encounters between males and females when describing the birth process. Here we assume that the sex ratio is determined by fixed environmental or social factors, and $ \omega(a) $ $ (0 < \omega(a) < 1) $ is the proportion of females with age $ a $. Then the number of males at time $ t $ is
$ S(t)=∫a†0[1−ω(a)]p(a,t)da. $ |
Further, we introduce the function $ B(a, S(t)) $ to represent the number of males encountered by a female with age $ a $ per unit time.
From ($ 3^{\circ} $) and ($ 4^{\circ} $), we see that middle-aged and elderly females play a dominant role in reproduction of vermin. Thus, there exist dominant ranks of individuals in vermin [22]. As in [19], one can assume that the fertility of vermin is related to its "internal environment" $ E(p)(a, t) $, which is given by
$ E(p)(a,t)=α∫a0ω(r)p(r,t)dr+∫a†aω(r)p(r,t)dr,0≤α<1. $ |
The parameter $ \alpha $ is the hierarchical coefficient, which is the weight of the lower ranks (i.e., age smaller than $ a $). From [21], $ \alpha = 0 $ (i.e., "contest competition") implies an absolute hierarchical structure, whereas $ \alpha $ tending to $ 1 $ means that the effect of higher ranks is similar to that of lower ranks. Moreover, the limiting case $ \alpha = 1 $ (i.e., "scramble competition") means that there is no hierarchy. Hence, the fertility of vermin can be defined as $ \tilde{\beta}(a, t, E(p)(a, t)) $, which denotes the average number of offspring produced per an encounter of a male with a female with age $ a $ at time $ t $.
Next, we simulate the sterile process and death process. In order to inhibit the excessive reproduction of vermin, humans put female sterilant into their living environment of vermin. For the convenience of modeling, we assume that the sterilant used at any time will be completely eaten by vermin (including males), and individuals of the same age will eat the same amount of sterilant at the same time [16]. Liu et al. pointed out that sterilant can not only cause sterility of vermin but also kill them [25]. Thus, when the amount of sterilant ingested by an individual with age $ a $ at time $ t $ is $ u(a, t) $, we can use $ \delta_{1}u(a, t) $ and $ \delta_{2}u(a, t) $, respectively, to describe the mortality and infertility rates caused by ingestion of sterilant. Hence, the density of fertile females with age $ a $ at time $ t $ can be written as $ [1-\delta_{2}u(a, t)]\omega(a)p(a, t) $, and the total number of newborns that are produced at time $ t $ is given by
$ ∫a†0˜β(a,t,E(p)(a,t))B(a,S(t))[1−δ2u(a,t)]ω(a)p(a,t)da. $ |
Next we denote $ \beta(a, t, E(p)(a, t), S(t))\triangleq\tilde{\beta}(a, t, E(p))B(a, S(t))\omega(a) $. In addition, the restriction of living space or habitat can lead to an increase of mortality. Thus, in addition to natural mortality $ \mu(a, t) $ and external mortality $ \delta_{1}u(a, t) $, we assume that the vermin also has a mortality $ \Phi(I(t)) $, which depends on the total size $ I(t) $ weighted by $ m(a) $. That is,
$ I(t)=∫a†0m(a)p(a,t)da. $ |
Finally, we build our model. Motivated by the above discussions, in this paper, we propose the following hierarchical age-structured model to describe the contraception control problem of vermin
$ {∂p(a,t)∂t+∂p(a,t)∂a=f(a,t)−[μ(a,t)+δ1u(a,t)+Φ(I(t))]p(a,t),(a,t)∈D,p(0,t)=∫a†0β(a,t,E(p)(a,t),S(t))[1−δ2u(a,t)]p(a,t)da,t∈[0,T],p(a,0)=p0(a),a∈[0,a†),I(t)=∫a†0m(a)p(a,t)da,S(t)=∫a†0[1−ω(a)]p(a,t)da,t∈[0,T],E(p)(a,t)=α∫a0ω(r)p(r,t)dr+∫a†aω(r)p(r,t)dr,(a,t)∈D, $ | (2.1) |
where $ D = (0, a_{\dagger})\times(0, T) $ and $ T\in(0, +\infty) $ is the control horizon. $ f(a, t) $ is the rate of immigration. The control variable $ u\in\mathcal{U} = \big\{u\in L^{\infty}(D):\, 0\leq u(a, t)\leq L, \; {\rm a.e.}\; (a, t)\in D\big\} $, where $ L > 0 $ is a constant. Biologically, we have $ \delta_{2}L < 1 $. Let $ p^{u}(a, t) $ be the solution of (2.1) with $ u\in\mathcal{U} $. The optimization problem discussed in this paper is
$ minu∈U J(u), $ | (2.2) |
where
$ J(u)=∫a†0pu(a,T)da+∫T0[r(t)∫a†0u(a,t)pu(a,t)da]dt. $ |
Here the first integral represents the total number of vermin at time $ T $, while $ r(t)\int_{0}^{a_{\dagger}}u(a, t)p^{u}(a, t)\, {\rm d}a $ is the cost of infertility control at time $ t $. The purpose of this paper is to investigate how to apply female sterilant to minimize the final size of vermin when the control cost is the lowest.
After rewriting our model (see Section 3), we see it is a special case of (4.1) in [14]. Note this model contains some exiting ones. Assume that $ \beta\big(a, t, E(p)(a, t), S(t)\big) = \beta(a, t) $ and $ \Phi(I(t)) = 0 $. If $ \delta_{1} = \delta_{2} = 0 $, then our model reduces to model (2.1.1) in [6]; if $ \delta_{1} = 1 $ and $ \delta_{2} = 0 $, then model (2.1) becomes the harvest control model (3.1.1) in [6]. Assume that $ f(a, t) = 0 $, $ m(a) = 1 $, and $ \beta\big(a, t, E(p)(a, t), S(t)\big) = \beta(a, t) $. Then we get model (2.2.15) in [6] by letting $ \delta_{1} = \delta_{2} = 0 $ and the harvest control model (3.2.1) in [6] by letting $ \delta_{1} = 1 $ and $ \delta_{2} = 0 $. Moreover, if we take $ f(a, t) = 0 $, $ m(a) = 1 $, $ \delta_{1} = \delta_{2} = 0 $ and $ \beta\big(a, t, E(p)(a, t), S(t)\big) = \beta(a, t)\omega(a, t) $, then model (2.1) improves the age-structured birth control model in [10].
Let $ R_{+}\triangleq[0, +\infty) $, $ L_{+}^{1}\triangleq L^{1}(0, a_{\dagger}; R_{+}) $ and $ L_{+}^{\infty}\triangleq L^{\infty}(0, a_{\dagger}; R_{+}) $. In this paper, we assume that:
$ ({\bf{A}} _1) $ For each $ t\in[0, T] $, $ \mu(\cdot, t)\in L^{1}_{loc}[0, a_{\dagger}) $ and $ \int_{0}^{a_{\dagger}}\mu(a, t)\, {\rm d}a = +\infty $.
$ ({\bf{A}} _2) $ $ \Phi:R_{+}\rightarrow R_{+} $ is bounded, that is, there is a constant $ \bar{\Phi} > 0 $ such that $ \Phi(s)\leq\bar{\Phi} $ for all $ s\in R_{+} $. Moreover, there is an increasing function $ C_{\Phi}:R_{+}\rightarrow R_{+} $ such that
$ |Φ(s1)−Φ(s2)|≤CΦ(r)|s1−s2|,0≤s1,s2≤r. $ |
$ ({\bf{A}} _3) $ $ \beta:D\times R_{+}\times R_{+}\to R_{+} $ is measurable and $ 0\leq\beta(a, t, s, q)\leq\bar{\beta} $ for some $ \bar{\beta} > 0 $. Moreover, there exists an increasing function $ C_{\beta}:R_{+}\rightarrow R_{+} $ such that for $ a\in[0, a_{\dagger}) $ and $ t\in[0, T] $
$ |β(a,t,s1,q1)−β(a,t,s2,q2)|≤Cβ(r)(|s1−s2|+|q1−q2|),0≤s1,s2,q1,q2≤r. $ |
$ ({\bf{A}} _4) $ $ f\in L^{\infty}(0, T; L_{+}^{1}) $, $ p_{0}\in L_{+}^{1} $, $ \omega\in L_{+}^{\infty} $, $ m\in L_{+}^{\infty} $ and $ 0\leq \omega(a)\leq \bar{\omega} < 1 $, $ 0\leq m(a)\leq \bar{m} $ for any $ a\in[0, a_{\dagger}) $. Here $ \bar{\omega} $ and $ \bar{m} $ are positive constants.
In this section, we show that (2.1) admits solutions in a separable form. First, we show (2.1) is well posed. For any $ u\in\mathcal{U} $ and $ \phi\in L^{1} $, let
$ G(t,ϕ)(a)=f(a,t)−[μ(a,t)+δ1u(a,t)+Φ(Iϕ)]ϕ(a),a∈[0,a†), $ | (3.1) |
$ F(t,ϕ)=∫a†0β(a,t,E(ϕ)(a),Sϕ)[1−δ2u(a,t)]ϕ(a)da, $ | (3.2) |
where $ I\phi = \int_{0}^{a_{\dagger}}m(a)\phi(a)\, \mbox{d}a $, $ E(\phi)(a) = \alpha\int_{0}^{a}\omega(r)\phi(r)\, {\rm d}r+\int_{a}^{a_{\dagger}}\omega(r)\phi(r)\, {\rm d}r $ $ a\in[0, a_{\dagger}) $, and $ S\phi = \int_{0}^{a_{\dagger}}[1-\omega(a)]\phi(a)\, \mbox{d}a $. Then (2.1) can be written in the following general form
$ {∂p(a,t)∂t+∂p(a,t)∂a=G(t,p(⋅,t))(a),(a,t)∈[0,a†)×[0,T],p(0,t)=F(t,p(⋅,t)),t∈[0,T],p(a,0)=p0(a),x∈[0,a†). $ |
This is a special case of (4.1) in [14] with $ V(x, t) = 1 $. Obviously, under $ {\bf(A_1)} $–$ {\bf(A_4)} $, $ G $ satisfies $ (G0) $ and $ (G1) $ in [14]. Now, we show $ F $ satisfies $ (F0) $ and $ (F1) $ in [14]. For any $ \phi_{i}\in L^{1} $ with $ \|\phi_{i}\|_{L^{1}}\leq r $ $ (i = 1, 2) $, we have
$ |E(ϕi)(a)|=|α∫a0ω(r)ϕi(r)dr+∫a†aω(r)ϕi(r)dr|≤ˉω∫a†0|ϕi(r)|dr≤‖ϕi‖L1≤r,|Sϕi|=|∫a†0[1−ω(a)]ϕi(a)da|≤∫a†0|ϕi(r)|dr=‖ϕi‖L1≤r. $ |
Then, by $ {\bf(A_3)} $, we get
$ |β(a,t,E(ϕ1)(a),Sϕ1)−β(a,t,E(ϕ2)(a),Sϕ2)|≤Cβ(r)|α∫a0ω(r)[ϕ1(r)−ϕ2(r)]dr+∫a†aω(r)[ϕ1(r)−ϕ2(r)]dr|+Cβ(r)|∫a†0[1−ω(a)][ϕ1(a)−ϕ2(a)]da|≤Cβ(r){α∫a0|ω(r)||ϕ1(r)−ϕ2(r)|dr+∫a†a|ω(r)||ϕ1(r)−ϕ2(r)|dr}+Cβ(r)∫a†0[1−ω(a)]|ϕ1(a)−ϕ2(a)|da≤(ˉω+1)Cβ(r)∫a†0|ϕ1(r)−ϕ2(r)|dr=(ˉω+1)Cβ(r)‖ϕ1−ϕ2‖L1. $ |
Hence,
$ |F(t,ϕ1)−F(t,ϕ2)|≤∫a†0|β(a,t,E(ϕ1)(a),Sϕ1)−β(a,t,E(ϕ2)(a),Sϕ2)|⋅|ϕ1(a)|da+∫a†0|β(a,t,E(ϕ2)(a),Sϕ2)|⋅|ϕ1(a)−ϕ2(a)|da≤(ˉω+1)Cβ(r)‖ϕ1−ϕ2‖L1∫a†0|ϕ1(a)|da+ˉβ∫a†0|ϕ1(a)−ϕ2(a)|da≤[(ˉω+1)Cβ(r)r+ˉβ]‖ϕ1−ϕ2‖L1. $ |
Let $ C_{F}(r) = (\bar{\omega}+1)C_{\beta}(r)r+\bar{\beta} $. By $ {\bf(A_3)} $, we know that $ C_{F} $ is an increasing function. Thus, $ (F0) $ in [14] holds. Clearly, $ F $ satisfies $ (F1) $ in [14]. In addition, take $ \omega_{1}(t) = \|f(\cdot, t)\|_{L^{1}} $ and $ \omega_{2}(t) = \bar{\beta} $. Then all conditions of [14] are satisfied. Similar to the proof of [14], we have the following result.
Theorem 3.1. For each $ u\in\mathcal{U} $, model (2.1) has a unique global solution $ p\in C([0, T]; L_{+}^{1}) $, which satisfies
$ ‖p(⋅,t)‖L1≤eˉβt‖p0‖L1+∫t0eˉβ(t−s)‖f(⋅,s)‖L1ds. $ | (3.3) |
Next we consider the solution of model (2.1) in the following form
$ p(a,t)=y(t)ˉp(a,t). $ | (3.4) |
From (2.1) and (3.4), we get two subsystems about $ \bar{p}(a, t) $ and $ y(t) $ as follows
$ {∂ˉp(a,t)∂t+∂ˉp(a,t)∂a=f(a,t)y(t)−[μ(a,t)+δ1u(a,t)]ˉp(a,t),(a,t)∈D,ˉp(0,t)=∫a†0β(a,t,y(t)E(ˉp)(a,t),y(t)ˉS(t))[1−δ2u(a,t)]ˉp(a,t)da,t∈[0,T],ˉS(t)=∫a†0[1−ω(a)]ˉp(a,t)da,t∈[0,T],E(ˉp)(t)=α∫a0ω(r)ˉp(r,t)dr+∫a†aω(r)ˉp(r,t)dr,t∈[0,T],ˉp(a,0)=p0(a),a∈[0,a†), $ | (3.5) |
$ {y′(t)+Φ(y(t)ˉI(t))y(t)=0,t∈[0,T],ˉI(t)=∫a†0m(a)ˉp(a,t)da,t∈[0,T],y(0)=1. $ | (3.6) |
Definition 1. A pair of functions $ (\bar{p}(a, t), y(t)) $ with $ \bar{p}\in C([0, T]; L_{+}^{1}) $ and $ y\in C([0, T]; R_{+}) $ is said to be a solution of (3.5)–(3.6) if it satisfies
$ ˉp(a,t)={Fy(τ,ˉp(⋅,τ))+∫tτGy(s,ˉp(⋅,s))(s−t+a)ds,a≤t,p0(a−t)+∫t0Gy(s,ˉp(⋅,s))(s−t+a)ds,a>t, $ | (3.7) |
$ y(t)=exp{−∫t0Φ(y(s)ˉI(s))ds}, $ | (3.8) |
where $ \tau = t-a $, $ \bar{I}(s) = \int_{0}^{a_{\dagger}}m(a)\bar{p}(a, s)\, {\rm d}a $, and
$ Fy(t,ϕ)=∫a†0β(a,t,y(t)E(ϕ)(a),y(t)Sϕ)[1−δ2u(a,t)]ϕ(a)da,Gy(t,ϕ)(a)=−μ(a,t)ϕ(a)−δ1u(a,t)ϕ(a)+f(a,t)y(t),a∈[0,a†) $ |
for $ t\in[0, T] $ and $ \phi\in L^{1} $. Here $ E(\phi)(a) = \alpha\int_{0}^{a}\omega(r)\phi(r)\, {\rm d}r+\int_{a}^{a_{\dagger}}\omega(r)\phi(r)\, {\rm d}r $ and $ S\phi = \int_{0}^{a_{\dagger}}[1-\omega(a)]\phi(a)\, \mbox{d}a $.
Denote $ \theta\triangleq\exp\{-\bar{\Phi}T\} > 0 $ and define $ \mathcal{S} = \big\{h\in C[0, T]:\theta\leq h(t)\leq 1, \; t\in[0, T]\big\} $. In addition, define an equivalent norm in $ C[0, T] $ by
$ ‖h‖λ=supt∈[0,T]e−λt|h(t)|forh∈C[0,T] $ | (3.9) |
for some $ \lambda > 0 $. Clearly, $ (S, \|\cdot\|_{\lambda}) $ is a Banach space.
For any $ y\in\mathcal{S} $, by Theorem 3.1, system (3.5) has a unique non-negative solution $ \bar{p}^{y}\in C([0, T]; L_{+}^{1}) $ satisfying
$ ‖ˉpy(⋅,t)‖L1≤eˉβt‖p0‖L1+∫t0eˉβ(t−s)‖f(⋅,s)y(s)‖L1ds≤eˉβt‖p0‖L1+∫t0eˉβ(t−s)‖f(⋅,s)‖L1y(s)ds≤eˉβT(‖p0‖L1+‖f(⋅,⋅)‖L1(D)θ)≜ $ | (3.10) |
Lemma 3.2. There is a positive constant $ M $ such that
$ \begin{align} \left\|\bar{p}^{y_{1}}(\cdot, t)-\bar{p}^{y_{2}}(\cdot, t)\right\|_{L^{1}} \leq& M\int_{0}^{t}\left| y_{1}(s)-y_{2}(s)\right|\, {\rm d}s, \end{align} $ | (3.11) |
$ \begin{align} e^{-\lambda t}\left\|\bar{p}^{y_{1}}(\cdot, t)-\bar{p}^{y_{2}}(\cdot, t)\right\|_{L^{1}} \leq& \frac{M}{\lambda}\| y_{1}-y_{2}\|_{\lambda} \end{align} $ | (3.12) |
for all $ t\in [0, T] $ and $ y_{1} $, $ y_{2}\in\mathcal{S} $.
Proof. Since (3.12) can be obtained directly from (3.11), we only need to prove (3.11). For any $ y\in\mathcal{S} $, from (3.10) and $ 0 < \omega(a)\leq\bar{\omega} < 1 $, it follows that
$ \begin{align} |E(\bar{p}^{y})(a, t)| = & \bigg|\alpha\int_{0}^{a}\omega(a)\bar{p}^{y}(a, t)\, {\rm d}a+\int_{a}^{a_{\dagger}}\omega(a)\bar{p}^{y}(a, t)\, {\rm d}a\bigg| \leq \bar{\omega}\int_{0}^{a_{\dagger}}|\bar{p}^{y}(a, t)|\, {\rm d}a \leq r_{0}, \end{align} $ | (3.13) |
$ \begin{align} |\bar{S}^{y}(t)| = & \bigg|\int_{0}^{a_{\dagger}}[1-\omega(a)]\bar{p}^{y}(a, t)\, {\rm d}a\bigg| \leq \int_{0}^{a_{\dagger}}|\bar{p}^{y}(a, t)|\, {\rm d}a \leq r_{0}, \end{align} $ | (3.14) |
and
$ \begin{align} |E(\bar{p}^{y_{1}})-E(\bar{p}^{y_{2}})|(a, t) = & \bigg|\alpha\int_{0}^{a}\omega(r)[\bar{p}^{y_{1}}-\bar{p}^{y_{2}}](r, t)\, {\rm d}r+\int_{a}^{a_{\dagger}}\omega(r)[\bar{p}^{y_{1}}-\bar{p}^{y_{2}}](r, t)\, {\rm d}r\bigg| \\ \leq& \alpha\int_{0}^{a}|\omega(r)||\bar{p}^{y_{1}}-\bar{p}^{y_{2}}|(r, t)\, {\rm d}r+\int_{a}^{a_{\dagger}}|\omega(r)||\bar{u}^{y_{1}}-\bar{u}^{y_{2}}|(r, t)\, {\rm d}r \\ \leq& \bar{\omega}\int_{0}^{a_{\dagger}}|\bar{p}^{y_{1}}-\bar{p}^{y_{2}}|(a, t)\, {\rm d}a \leq \|\bar{p}^{y_{1}}(\cdot, t)-\bar{p}^{y_{2}}(\cdot, t)\|_{L^{1}}, \end{align} $ | (3.15) |
$ \begin{align} |\bar{S}^{y_{1}}(t)-\bar{S}^{y_{2}}(t)| = & \bigg|\int_{0}^{a_{\dagger}}[1-\omega(a)]\bar{p}^{y_{1}}(a, t)\, {\rm d}a-\int_{0}^{a_{\dagger}}[1-\omega(a)]\bar{p}^{y_{2}}(a, t)\, {\rm d}a\bigg| \\ \leq& \int_{0}^{a_{\dagger}}|\bar{p}^{y_{1}}(a, t)-\bar{p}^{y_{2}}(a, t)|\, {\rm d}a = \|\bar{p}^{y_{1}}(\cdot, t)-\bar{p}^{y_{2}}(\cdot, t)\|_{L^{1}}. \end{align} $ | (3.16) |
Moreover, using (3.7), we have
$ \begin{align} \|\bar{p}^{y_{1}}(\cdot, t)-\bar{p}^{y_{2}}(\cdot, t)\|_{L^{1}} = & \int_{0}^{t}|\bar{p}^{y_{1}}(a, t)-\bar{p}^{y_{2}}(a, t)|\, {\rm d}a+\int_{t}^{a_{\dagger}}|\bar{p}^{y_{1}}(a, t)-\bar{p}^{y_{2}}(a, t)|\, {\rm d}a \\ \leq& \int_{0}^{t}|F_{y_{1}}(\tau, \bar{p}^{y_{1}}(\cdot, \tau))-F_{y_{2}}(\tau, \bar{p}^{y_{2}}(\cdot, \tau))|\, {\rm d}a \\ +& \int_{0}^{t}\int_{\tau}^{t}|G_{y_{1}}(s, \bar{p}^{y_{1}}(\cdot, s))-G_{y_{2}}(s, \bar{p}^{y_{2}}(\cdot, s))|(s-t+a)\, {\rm d}s\, {\rm d}a \\ +& \int_{t}^{a_{\dagger}}\int_{0}^{t}|G_{y_{1}}(s, \bar{p}^{y_{1}}(\cdot, s))-G_{y_{2}}(s, \bar{p}^{y_{2}}(\cdot, s))|(s-t+a)\, {\rm d}s\, {\rm d}a \\ \triangleq& I_{1}+I_{2}+I_{3}. \end{align} $ | (3.17) |
It follows from Fubini's Theorem that
$ \begin{align*} I_{2}+I_{3} = & \int_{0}^{t}\int_{t-s}^{t}|G_{y_{1}}(s, \bar{p}^{y_{1}}(\cdot, s))-G_{y_{2}}(s, \bar{p}^{y_{2}}(\cdot, s))|(s-t+a)\, {\rm d}a\, {\rm d}s \\ +& \int_{0}^{t}\int_{t}^{a_{\dagger}}|G_{y_{1}}(s, \bar{p}^{y_{1}}(\cdot, s))-G_{y_{2}}(s, \bar{p}^{y_{2}}(\cdot, s))|(s-t+a)\, {\rm d}a\, {\rm d}s \\ = & \int_{0}^{t}\int_{t-s}^{a_{\dagger}}|G_{y_{1}}(s, \bar{p}^{y_{1}}(\cdot, s))-G_{y_{2}}(s, \bar{p}^{y_{2}}(\cdot, s))|(s-t+a)\, {\rm d}a\, {\rm d}s. \end{align*} $ |
Using the transformation $ s = t-a $, we have $ s = t $ when $ a = 0 $ while $ s = 0 $ when $ a = t $, and $ {\rm d}s = -{\rm d}a $. Thus, by (3.13)–(3.16), we obtain
$ \begin{align} I_{1} = & \int_{0}^{t} \bigg| \int_{0}^{a_{\dagger}}\beta\big(a, s, y_{1}(s)E(\bar{p}^{y_{1}})(a, s), y_{1}(s)\bar{S}^{y_{1}}(s)\big)\big[1-\delta_{2}u(a, s)]\bar{p}^{y_{1}}(a, s)\, {\rm d}a \\ -& \int_{0}^{a_{\dagger}}\beta\big(a, s, y_{2}(s)E(\bar{p}^{y_{2}})(a, s), y_{2}(s)\bar{S}^{y_{2}}(s)\big)\big[1-\delta_{2}u(a, s)]\bar{p}^{y_{2}}(a, s)\, {\rm d}a \bigg|\, {\rm d}s \\ \leq& \bar{\beta}\int_{0}^{t}\int_{0}^{a_{\dagger}}|\bar{p}^{y_{1}}(a, s)-\bar{p}^{y_{2}}(a, s)|\, {\rm d}a\, {\rm d}s \\ +& C_{\beta}(r_{0})\int_{0}^{t}\int_{0}^{a_{\dagger}} \Big[|E(\bar{p}^{y_{1}})-E(\bar{p}^{y_{2}})|(a, s)+|\bar{S}^{y_{1}}(s)-\bar{S}^{y_{2}}(s)|\Big]\cdot|\bar{p}^{y_{2}}(a, s)|\, {\rm d}a\, {\rm d}s \\ +& C_{\beta}(r_{0})\int_{0}^{t}\int_{0}^{a_{\dagger}} \Big[E(\bar{p}^{y_{2}})(a, s)+\bar{S}^{y_{2}}(s)\Big]\cdot|y_{1}(s)-y_{2}(s)|\cdot|\bar{p}^{y_{2}}(a, s)|\, {\rm d}a\, {\rm d}s \\ \leq& \bar{\beta}\int_{0}^{t}\|\bar{p}^{y_{1}}(\cdot, s)-\bar{p}^{y_{2}}(\cdot, s)\|_{L^{1}}\, {\rm d}s + 2C_{\beta}(r_{0})r_{0}\int_{0}^{t}|y_{1}(s)-y_{2}(s)|\int_{0}^{a_{\dagger}}|\bar{p}^{y_{2}}(a, s)|\, {\rm d}a\, {\rm d}s \\ +& 2C_{\beta}(r_{0})\int_{0}^{t}\|\bar{p}^{y_{1}}(\cdot, s)-\bar{p}^{y_{2}}(\cdot, s)\|_{L^{1}}\int_{0}^{a_{\dagger}} |\bar{p}^{y_{2}}(a, s)|\, {\rm d}a\, {\rm d}s \\ \leq& (\bar{\beta}+2C_{\beta}(r_{0})r_{0})\int_{0}^{t}\|\bar{p}^{y_{1}}(\cdot, s)-\bar{p}^{y_{2}}(\cdot, s)\|_{L^{1}}\, {\rm d}s + 2C_{\beta}(r_{0})r_{0}^{2}\int_{0}^{t}|y_{1}(s)-y_{2}(s)|\, {\rm d}s. \end{align} $ | (3.18) |
Using the transformation $ \eta = s-t+a $, we have $ \eta = 0 $ when $ a = t-s $ while $ \eta = s-t+a_{\dagger}\leq a_{\dagger} $ ($ t-s\geq0 $) when $ a = a_{\dagger} $, and $ {\rm d}\eta = {\rm d}a $. Thus, we obtain
$ \begin{align} I_{2}+I_{3} \leq& \int_{0}^{t}\int_{0}^{a_{\dagger}}|G_{y_{1}}(s, \bar{p}^{y_{1}}(\cdot, s))-G_{y_{2}}(s, \bar{p}^{y_{2}}(\cdot, s))|(\eta)\, {\rm d}\eta\, {\rm d}s \\ \leq& \int_{0}^{t}\int_{0}^{a_{\dagger}}\bigg|-(\mu(\eta, s)+\delta_{1}u(\eta, s))\big(\bar{p}^{y_{1}}(\eta, s)-\bar{p}^{y_{2}}(\eta, s)\big) + \bigg(\frac{f(\eta, s)}{y_{1}(s)}-\frac{f(\eta, s)}{y_{2}(s)}\bigg)\bigg|\, {\rm d}\eta\, {\rm d}s \\ \leq& (\bar{\mu}+\delta_{1}L)\int_{0}^{t}\int_{0}^{a_{\dagger}}\big|\bar{p}^{y_{1}}(\eta, s)-\bar{p}^{y_{2}}(\eta, s)\big|\, {\rm d}\eta\, {\rm d}s + \int_{0}^{t}\int_{0}^{a_{\dagger}}\bigg|\frac{f(\eta, s)}{y_{1}(s)}-\frac{f(\eta, s)}{y_{2}(s)}\bigg|\, {\rm d}\eta\, {\rm d}s \\ = & (\bar{\mu}+\delta_{1}L)\int_{0}^{t}\int_{0}^{a_{\dagger}}\big|\bar{p}^{y_{1}}(\eta, s)-\bar{p}^{y_{2}}(\eta, s)\big|\, {\rm d}\eta\, {\rm d}s + \int_{0}^{t}\bigg|\frac{1}{y_{1}(s)}-\frac{1}{y_{2}(s)}\bigg|\|f(\cdot, s)\|_{L^{1}}\, {\rm d}s \\ \leq& (\bar{\mu}+\delta_{1}L)\int_{0}^{t}\|\bar{p}^{y_{1}}(\cdot, s)-\bar{p}^{y_{2}}(\cdot, s)\|_{L^{1}}\, {\rm d}s + \frac{\|f\|_{L^{\infty}(0, T;L^{1})}}{\theta^{2}}\int_{0}^{t}|y_{1}(s)-y_{2}(s)|\, {\rm d}s. \end{align} $ | (3.19) |
Here $ \bar{\mu} $ is the upper bound of $ \mu(a, t) $. From (3.17)–(3.19), we have
$ \begin{align} \|\bar{p}^{y_{1}}(\cdot, t)-\bar{p}^{y_{2}}(\cdot, t)\|_{L^{1}} \leq& (\bar{\beta}+2C_{\beta}(r_{0})r_{0}+\bar{\mu}+\delta_{1}L)\int_{0}^{t}\|\bar{p}^{y_{1}}(\cdot, s)-\bar{p}^{y_{2}}(\cdot, s)\|\, {\rm d}s \\ &+ \bigg(2C_{\beta}(r_{0})r_{0}^{2}+\frac{\|f\|_{L^{\infty}(0, T;L^{1})}}{\theta^{2}}\bigg)\int_{0}^{t}|y_{1}(s)-y_{2}(s)|\, {\rm d}s. \end{align} $ | (3.20) |
Then (3.11) follows from Gronwall's inequality.
Theorem 3.3. For any $ p_{0}\in L_{+}^{1} $ and $ u\in\mathcal{U} $, (3.5)–(3.6) has a unique solution $ (\bar{p}^{y}, y)\in C([0, T]; L_{+}^{1}) \times C([0, T]; R_{+}) $. In addition, $ p(a, t) = \bar{p}^{y}(a, t)y(t) $ is the unique solution of (2.1).
Proof. First, we show that for any $ y\in\mathcal{S} $ there is a unique $ \bar{y}\in\mathcal{S} $ such that
$ \begin{align} \bar{y}(t) = \exp\bigg\{-\int_{0}^{t}\Phi(\bar{I}^{y}(s)\bar{y}(s))\, {\rm d}s\bigg\}. \end{align} $ | (3.21) |
Here $ \bar{I}^{y}(t) = \int_{0}^{a_{\dagger}}m(a)\bar{p}^{y}(a, t)\, {\rm d}a $. From (3.10), it is easy to show
$ \begin{align} |\bar{I}^{y}(t)| = \bigg|\int_{0}^{a_{\dagger}}m(a)\bar{p}^{y}(a, t)\, {\rm d}a\bigg| \leq \bar{m}\int_{0}^{a_{\dagger}}|\bar{p}^{y}(a, t)|\, \mbox{d}a \leq \bar{m}r_{0} \triangleq r_{1}. \end{align} $ | (3.22) |
For fixed $ \bar{I}^{y} $, define the operator $ \mathcal{A}: \mathcal{S}\rightarrow C[0, T] $ by
$ \begin{align*} [\mathcal{A}h](t) = \exp\bigg\{-\int_{0}^{t}\Phi(\bar{I}^{y}(s)h(s))\, {\rm d}s\bigg\}\; \; {\rm for}\; h\in\mathcal{S}. \end{align*} $ |
Clearly, $ [\mathcal{A}h](t)\geq\theta $ for each $ h\in\mathcal{S} $. Thus, $ \mathcal{A} $ maps $ \mathcal{S} $ into itself. In addition, for any $ h_{1} $, $ h_{2}\in\mathcal{S} $, we have
$ \begin{align*} \|(\mathcal{A}h_{1})(t)-(\mathcal{A}h_{2})(t)\|_{\lambda} & = \sup\limits_{t\in[0, T]}\left\{e^{-\lambda t}\left| (\mathcal{A}h_{1})(t)-(\mathcal{A}h_{2})(t)\right|\right\} \\ &\leq \sup\limits_{t\in[0, T]}\bigg\{e^{-\lambda t}\int_{0}^{t}\left|\Phi(\bar{I}^{y}(s)h_{1}(s))-\Phi(\bar{I}^{y}(s)h_{2}(s))\right|\, {\rm d}s\bigg\} \\ &\leq \sup\limits_{t\in[0, T]}\bigg\{e^{-\lambda t}C_{\Phi}(r_{1})r_{1}\int_{0}^{t}e^{\lambda s}e^{-\lambda s}|h_{1}(s)-h_{2}(s)|\, {\rm d}s\bigg\} \\ &\leq \frac{C_{\Phi}(r_{1})r_{1}}{\lambda}\| h_{1}-h_{2}\|_{\lambda}. \nonumber \end{align*} $ |
Taking $ \lambda > 0 $ large enough such that $ \lambda > C_{\Phi}(r_{1})r_{1} $, we see that $ \mathcal{A} $ is a contraction on $ (\mathcal{S}, \|\cdot\|_{\lambda}) $. Fixed point theory shows that $ \mathcal{A} $ owns a unique fixed point $ \bar{y} $ in $ \mathcal{S} $, and $ \bar{y} $ satisfies (3.21).
Next, based on (3.21), we define another operator $ \mathcal{B}:\mathcal{S}\rightarrow \mathcal{S} $ by
$ \begin{align} \mathcal{B}y = \bar{y}\; \; {\rm for}\; y\in\mathcal{S}. \end{align} $ | (3.23) |
For any $ y_{1} $, $ y_{2}\in\mathcal{S} $, it is easy to show that
$ \begin{align*} |\bar{I}^{y_{1}}(s)-\bar{I}^{y_{2}}(s)| = \bigg|\int_{0}^{a_{\dagger}}m(a)\bar{p}^{y_{1}}(a, s)\, {\rm d}a-\int_{0}^{a_{\dagger}}m(a)\bar{p}^{y_{2}}(a, s)\, {\rm d}a\bigg| \leq \bar{m}\|\bar{p}^{y_{1}}(\cdot, s)-\bar{p}^{y_{2}}(\cdot, s)\|_{L^{1}}. \end{align*} $ |
Then, together with (3.12), one yields
$ \begin{align*} e^{-\lambda t}\int_{0}^{t}|\bar{I}^{y_{1}}(s)-\bar{I}^{y_{2}}(s)|\, {\rm d}s \leq \bar{m}e^{-\lambda t}\int_{0}^{t}\|\bar{p}^{y_{1}}(\cdot, s)-\bar{p}^{y_{2}}(\cdot, s)\|_{L^{1}}\, {\rm d}s \leq \frac{M\bar{m}}{\lambda^{2}}\|y_{1}-y_{2}\|_{\lambda}. \end{align*} $ |
Further, it follows from (3.21) and (3.22) that
$ \begin{align} e^{-\lambda t}&\big|\tilde{y}_{1}(t)-\tilde{y}_{2}(t)\big| \\ = & e^{-\lambda t}\big|(\mathcal{B}y_{1})(t)-(\mathcal{B}y_{2})(t)\big| \\ \leq& e^{-\lambda t}\bigg|\int_{0}^{t}\Phi(\bar{I}^{y_{1}}(s)\bar{y}_{1}(s))\, {\rm d}s-\int_{0}^{t}\Phi(\bar{I}^{y_{2}}(s)\bar{y}_{2}(s))\, {\rm d}s\bigg| \\ \leq& e^{-\lambda t}C_{\Phi}(r_{1})\int_{0}^{t}|\bar{I}^{y_{1}}(s)\bar{y}_{1}(s)-\bar{I}^{y_{2}}(s)\bar{y}_{2}(s)|\, {\rm d}s \\ \leq& \frac{C_{\Phi}(r_{1})M\bar{m}}{\lambda^{2}}\|y_{1}-y_{2}\|_{\lambda} + C_{\Phi}(r_{1})r_{1}\int_{0}^{t}e^{-\lambda s}|\bar{y}_{1}(s)-\bar{y}_{2}(s)|\, {\rm d}s. \end{align} $ | (3.24) |
The Gronwall's inequality implies
$ \begin{align*} e^{-\lambda t}|\bar{y}_{1}(t)-\bar{y}_{2}(t)| \leq \frac{C_{\Phi}(r_{1})M\bar{m}e^{C_{\Phi}(r_{1})r_{1}T}}{\lambda^{2}}\|y_{1}-y_{2}\|_{\lambda}. \end{align*} $ |
Thus, $ \mathcal{B} $ is a contraction on $ (\mathcal{S}, \|\cdot\|_{\lambda}) $ by choosing $ \lambda > 0 $ such that $ C_{\Phi}(r_{1})M\bar{m}e^{C_{\Phi}(r_{1})r_{1}T}/\lambda^{2} < 1 $. Let $ y $ be the unique fixed point of $ \mathcal{B} $ in $ \mathcal{S} $. Then $ (\bar{p}, y) = (\bar{p}^y, y) $ is the solution to (3.5)–(3.6), which is non-negative and bounded.
Finally, from Theorem 3.1, model (2.1) has a unique solution. In addition, it is easy to verify that $ p(a, t) = \bar{p}^{y}(a, t)y(t) $ satisfies (2.1). Thus, $ p(a, t) = \bar{p}^{y}(a, t)y(t) $ is the unique solution to (2.1). In summary, model (2.1) has a unique non-negative solution $ p(a, t) $, which is uniformly bounded.
Theorem 3.4. The solution $ p^{u} $ of model (2.1) is continuous in $ u\in\mathcal{U} $. That is, for any $ u_{1} $, $ u_{2}\in\mathcal{U} $, there are positive constants $ K_{1} $ and $ K_{2} $ such that
$ \begin{align*} &\|p_{1}-p_{2}\|_{L^{\infty}(0, T;L^{1}(0, a_{\dagger}))} \leq K_{1}T\|u_{1}-u_{2}\|_{L^{\infty}(0, T;L^{1}(0, a_{\dagger}))}, \\ &\|p_{1}-p_{2}\|_{L^{1}(D)} \leq K_{2}T\|u_{1}-u_{2}\|_{L^{1}(D)}, \end{align*} $ |
where $ p_{i} $ is the solution of (2.1) with respect to $ u_{i}\; (i = 1, 2) $.
Proof. By Theorem 3.3, one has $ p_{i}(a, t) = y_{i}(t)\bar{p}^{y_{i}}(a, t) $, $ i = 1, 2 $. Here $ (\bar{p}^{y_{i}}, y_{i}) $ is the solution of (3.5)–(3.6) with respect to $ u_{i}\in\mathcal{U} $. From (3.10), it follows that
$ \begin{align} \|p_{1}(\cdot, t)-p_{2}(\cdot, t)\|_{L^{1}} \leq& \|\bar{p}^{y_{1}}(\cdot, t)-\bar{p}^{y_{2}}(\cdot, t)\|_{L^{1}}+r_{0}|y_{1}(t)-y_{2}(t)|. \end{align} $ | (3.25) |
Recall that $ |\bar{I}(s)|\leq r_{1} $. Then, by $ y(t)\leq1 $, $ {\bf(A_2)} $, and (3.8), we obtain
$ \begin{align*} |y_{1}(t)-y_{2}(t)| \leq& \int_{0}^{t}|\Phi(y_{1}(s)\bar{I}^{y_{1}}(s))-\Phi(y_{2}(s)\bar{I}^{y_{2}}(s))|\, {\rm d}s \\ \leq& C_{\Phi}(r_{1})\int_{0}^{t}|y_{1}(s)\bar{I}^{y_{1}}(s)-y_{2}(s)\bar{I}^{y_{2}}(s)|\, {\rm d}s \\ \leq& C_{\Phi}(r_{1})r_{1}\int_{0}^{t}|y_{1}(s)-y_{2}(s)|\, {\rm d}s + C_{\Phi}(r_{1})\bar{m}\int_{0}^{t}\|\bar{p}^{y_{1}}(\cdot, s)-\bar{p}^{y_{2}}(\cdot, s)\|_{L^{1}}\, {\rm d}s. \end{align*} $ |
Applying the Gronwall's inequality produces
$ \begin{align} |y_{1}(t)-y_{2}(t)| \leq M_{1}\int_{0}^{t}\|\bar{u}^{y_{1}}(\cdot, s)-\bar{u}^{y_{2}}(\cdot, s)\|_{L^{1}}\, {\rm d}s, \end{align} $ | (3.26) |
where $ M_{1} = C^{2}_{\Phi}(r_{1})r_{1}\bar{m}Te^{C_{\Phi}(r_{1})r_{1}T}+C_{\Phi}(r_{1})\bar{m} $. Further, it can be seen from (3.7) that
$ \begin{align} \|\bar{p}^{y_{1}}(\cdot, t)-\bar{p}^{y_{2}}(\cdot, t)\|_{L^{1}} \leq& \int_{0}^{t}|F_{y_{1}}(\tau, \bar{p}^{y_{1}}(\cdot, \tau))-F_{y_{2}}(\tau, \bar{p}^{y_{2}}(\cdot, \tau))|\, {\rm d}a \\ +& \int_{0}^{t}\int_{\tau}^{t}|G_{y_{1}}(s, \bar{p}^{y_{1}}(\cdot, s))-G_{y_{2}}(s, \bar{p}^{y_{2}}(\cdot, s))|(s-t+a)\, {\rm d}s\, {\rm d}a \\ +& \int_{t}^{a_{\dagger}}\int_{0}^{t}|G_{y_{1}}(s, \bar{p}^{y_{1}}(\cdot, s))-G_{y_{2}}(s, \bar{p}^{y_{2}}(\cdot, s))|(s-t+a)\, {\rm d}s\, {\rm d}a \\ \triangleq& I_{4}+I_{5}+I_{6}. \end{align} $ | (3.27) |
Arguing similarly as for $ I_{1} $ and $ I_{2}+I_{3} $, respectively, we can show that
$ \begin{align} I_{4} \leq& \bar{\beta}\int_{0}^{t}\|\bar{p}^{y_{1}}(\cdot, s)-\bar{p}^{y_{2}}(\cdot, s)\|_{L^{1}}\, {\rm d}s + \delta_{2}\bar{\beta}\int_{0}^{t}\|\bar{p}^{y_{2}}(\cdot, s)\|_{L^{1}}\int_{0}^{a_{\dagger}}|u_{1}(a, s)-u_{2}(a, s)|\, {\rm d}a\, {\rm d}s \\ +& 2C_{\beta}(r_{0})\int_{0}^{t}\|\bar{p}^{y_{1}}(\cdot, s)-\bar{p}^{y_{2}}(\cdot, s)\|_{L^{1}}\int_{0}^{a_{\dagger}}|\bar{p}^{y_{2}}(a, s)|\, {\rm d}a\, {\rm d}s \\ +& 2C_{\beta}(r_{0})r_{0}\int_{0}^{t}|y_{1}(s)-y_{2}(s)|\int_{0}^{a_{\dagger}}|\bar{p}^{y_{2}}(a, s)|\, {\rm d}a\, {\rm d}s \\ \leq& (\bar{\beta}+2C_{\beta}(r_{0})r_{0})\int_{0}^{t}\|\bar{p}^{y_{1}}(\cdot, s)-\bar{p}^{y_{2}}(\cdot, s)\|_{L^{1}}\, {\rm d}s + 2C_{\beta}(r_{0})r_{0}^{2}\int_{0}^{t}|y_{1}(s)-y_{2}(s)|\, {\rm d}s \\ +& \delta_{2}\bar{\beta}r_{0}\int_{0}^{t}\|u_{1}(\cdot, s)-u_{2}(\cdot, s)\|_{L^{1}}\, {\rm d}s \end{align} $ | (3.28) |
and
$ \begin{align} I_{5}+I_{6} \leq& \int_{0}^{t}\int_{0}^{a_{\dagger}}\bigg| \bigg(\frac{f(\eta, s)}{y_{1}(s)}-\frac{f(\eta, s)}{y_{2}(s)}\bigg) - \mu(\eta, s)\big(\bar{u}^{y_{1}}(\eta, s)-\bar{u}^{y_{2}}(\eta, s)\big) \\ -& \delta_{1}\big(u_{1}(\eta, s)\bar{p}^{y_{1}}(\eta, s)-u_{2}(\eta, s)\bar{p}^{y_{2}}(\eta, s)\big) \bigg|\, {\rm d}\eta\, {\rm d}s \\ = & \int_{0}^{t}\int_{0}^{a_{\dagger}}\bigg| \bigg(\frac{f(\eta, s)}{y_{1}(s)}-\frac{f(\eta, s)}{y_{2}(s)}\bigg) - \mu(\eta, s)\big(\bar{u}^{y_{1}}(\eta, s)-\bar{u}^{y_{2}}(\eta, s)\big) \\ -& \delta_{1}u_{1}(\eta, s)\big(\bar{p}^{y_{1}}(\eta, s)-\bar{p}^{y_{2}}(\eta, s)\big) -\delta_{1}\big(u_{1}(\eta, s)-u_{2}(\eta, s)\big)\bar{p}^{y_{2}}(\eta, s) \bigg|\, {\rm d}\eta\, {\rm d}s \\ \leq& (\bar{\mu}+\delta_{1}L)\int_{0}^{t}\|\bar{p}^{y_{1}}(\cdot, s)-\bar{p}^{y_{2}}(\cdot, s)\|_{L^{1}}\, {\rm d}s + \delta_{1}r_{0}\int_{0}^{t}\|u(\cdot, s)-u(\cdot, s)\|_{L^{1}}\, {\rm d}s \\ +& \frac{\|f\|_{L^{\infty}(0, T;L^{1})}}{\theta^{2}}\int_{0}^{t}|y_{1}(s)-y_{2}(s)|\, {\rm d}s. \end{align} $ | (3.29) |
It follows from (3.27)–(3.29) that
$ \begin{align} \|\bar{p}^{y_{1}}(\cdot, t)-\bar{p}^{y_{2}}(\cdot, t)\|_{L^{1}} \leq& (\bar{\beta}+2C_{\beta}(r_{0})r_{0}+\bar{\mu}+\delta_{1}L)\int_{0}^{t}\|\bar{p}^{y_{1}}(\cdot, s)-\bar{p}^{y_{2}}(\cdot, s)\|_{L^{1}}\, {\rm d}s \\ +& \bigg(2C_{\beta}(r_{0})r_{0}^{2}+\frac{\|f\|_{L^{\infty}(0, T;L^{1})}}{\theta^{2}}\bigg)\int_{0}^{t}|y_{1}(s)-y_{2}(s)|\, {\rm d}s \\ +& (\delta_{1}r_{0}+\delta_{2}\bar{\beta}r_{0})\int_{0}^{t}\|u_{1}(\cdot, s)-u_{2}(\cdot, s)\|_{L^{1}}\, {\rm d}s. \end{align} $ | (3.30) |
This, together with (3.26), yields
$ \begin{align*} \|\bar{p}^{y_{1}}(\cdot, t)-\bar{p}^{y_{2}}(\cdot, t)\|_{L^{1}} \leq& M_{2}\int_{0}^{t}\|\bar{p}^{y_{1}}(\cdot, s)-\bar{p}^{y_{2}}(\cdot, s)\|_{L^{1}}\, {\rm d}s + (\delta_{1}r_{0}+\delta_{2}\bar{\beta}r_{0})\int_{0}^{t}\|u_{1}(\cdot, s)-u_{2}(\cdot, s)\|_{L^{1}}\, {\rm d}s, \end{align*} $ |
where $ M_{2} = (\bar{\beta}+2C_{\beta}(r_{0})r_{0}+\bar{\mu}+\delta_{1}L)+M_{1}T\big(2C_{\beta}(r_{0})r_{0}^{2}+\frac{\|f\|_{L^{\infty}(0, T; L^{1})}}{\theta^{2}}\big) $. By Gronwall's inequality, we have
$ \begin{align} \|\bar{p}^{y_{1}}(\cdot, t)-\bar{p}^{y_{2}}(\cdot, t)\|_{L^{1}} \leq& M_{3}\int_{0}^{t}\|u_{1}(\cdot, s)-u_{2}(\cdot, s)\|_{L^{1}}\, {\rm d}s, \end{align} $ | (3.31) |
where $ M_{3} = (\delta_{1}r_{0}+\delta_{2}\bar{\beta}r_{0})(1++M_{2}Te^{M_{2}T}) $. Substituting (3.26) and (3.31) into (3.25), one yields
$ \begin{align} \|p_{1}(\cdot, t)-p_{2}(\cdot, t)\|_{L^{1}} \leq& \|\bar{p}^{y_{1}}(\cdot, t)-\bar{p}^{y_{2}}(\cdot, t)\|_{L^{1}}+r_{0}M_{1}\int_{0}^{t}\|\bar{p}^{y_{1}}(\cdot, s)-\bar{p}^{y_{2}}(\cdot, s)\|_{L^{1}}\, {\rm d}s \\ \leq& M_{3}(1+r_{0}M_{1}T)\int_{0}^{t}\|u_{1}(\cdot, s)-u_{2}(\cdot, s)\|_{L^{1}}\, {\rm d}s. \end{align} $ |
The conclusion then follows immediately from the above analysis.
The purpose of this section is to prove the existence of optimal management policy. To this end, we first establish two lemmas on compactness.
Lemma 4.1. Let $ I^{u}(t) = \int_{0}^{a_{\dagger}}m(a)p^{u}(a, t)\, {\rm d}a $ and $ S^{u}(t) = \int_{0}^{a_{\dagger}}[1-\omega(a)]p^{u}(a, t)\, {\rm d}a $. Then $ \{I^{u}:u\in\mathcal{U}\} $ and $ \{S^{u}:u\in\mathcal{U}\} $ are relatively compact sets in $ L^{2}(0, T) $.
Proof. We only show that $ \{I^{u}:u\in\mathcal{U}\} $ is relatively compact in $ L^2(0, T) $ as $ \{S^{u}:u\in\mathcal{U}\} $ can be dealt with similarity. For given $ \varepsilon > 0 $ sufficiently small, define
$ \begin{align*} I^{u, \varepsilon}(t) = \int_{0}^{a_{\dagger}-\varepsilon}m(a)p^{u}(a, t)\, {\rm d}a. \end{align*} $ |
Since $ p^{u} $ is uniformly bounded in $ u $, there is a positive constant $ M_{T} $ such that
$ \begin{align*} |I^{u}(t)-I^{u, \varepsilon}(t)| = \int_{a_{\dagger}-\varepsilon}^{a_{\dagger}}m(a)p^{u}(a, t)\, {\rm d}a \leq \bar{m}M_{T}\varepsilon, \; \; \; \; \forall\; t\in[0, T], \; \; \; \forall\; u\in\mathcal{U}. \end{align*} $ |
Obviously, the relative compactness of $ \{I^{u, \varepsilon}:u\in\mathcal{U}\} $ in $ L^{2}(0, T) $ implies that the set $ \{I^{u}:u\in\mathcal{U}\} $ is also relatively compact in $ L^{2}(0, T) $.
Now, by using Fréchet-Kolmogorov Theorem [26], we show that $ \{I^{u, \varepsilon}:u\in\mathcal{U}\} $ is relatively compact in $ L^2(0, T) $. For convenience, we denote $ I^{u, \varepsilon}(t) = 0 $ if $ t < 0 $ or $ t > T $.
$ 1) $ For each $ u\in\mathcal{U} $, by Theorem 3.1, we have
$ \begin{align*} \sup\limits_{u\in\mathcal{U}}\|I^{u, \varepsilon}\| = & \sup\limits_{u\in\mathcal{U}}\bigg(\int_{R}[I^{u, \varepsilon}(t)]^{2}\, {\rm d}t\bigg)^{\frac{1}{2}} = \sup\limits_{u\in\mathcal{U}}\bigg(\int_{0}^{T}\left[\int_{0}^{a_{\dagger}-\varepsilon}m(a)p^{u}(a, t)\, {\rm d}a\right]^{2}\, {\rm d}t\bigg)^{\frac{1}{2}} \\ \leq& \sup\limits_{u\in\mathcal{U}}\bigg(\bar{m}\int_{0}^{T}\left[\|p^{u}(\cdot, t)\|_{L^{1}}\right]^{2}\, {\rm d}t\bigg)^{\frac{1}{2}} < +\infty. \end{align*} $ |
$ 2) $ It is easy to verify that
$ \begin{align*} \lim\limits_{x\rightarrow +\infty}\int_{|s| > x} [I^{u, \varepsilon}(s)]^{2}\, {\rm d}s = 0. \end{align*} $ |
$ 3) $ We need to show that $ \lim\limits_{t\rightarrow0}\int_{0}^{T}[I^{u, \varepsilon}(s+t)-I^{u, \varepsilon}(s)]^{2}\, {\rm d}s = 0 $ for any $ u\in\mathcal{U} $. Note that
$ \begin{align*} \int_{0}^{T}\left[I^{u, \varepsilon}(s+t)-I^{u}(s, \varepsilon)\right]^{2}\, {\rm d}s = & \int_{0}^{T}\bigg[\int_{s}^{s+t}\frac{\, {\rm d}I^{u, \varepsilon}(r)}{\, {\rm d}r}\, {\rm d}r\bigg]^{2}\, {\rm d}s \\ \leq& |t|T\int_{0}^{T}\left(\frac{\, {\rm d}I^{u, \varepsilon}(r)}{\, {\rm d}r}\right)^{2}\, {\rm d}r. \end{align*} $ |
It suffices to show that $ \frac{{\rm d}I^{u, \varepsilon}(t)}{{\rm d}t} $ is uniformly bounded about $ u $. Clearly,
$ \frac{{\rm d}I^{u, \varepsilon}(t)}{{\rm d}t} = \int_{0}^{a_{\dagger}-\varepsilon}m(a)\frac{\partial p^{u}(a, t)}{\partial t}\, {\rm d}a. $ |
Multiplying (2.1) by $ m(a) $ and integrating on $ (0, a_{\dagger}-\varepsilon) $, one yields
$ \begin{align*} \int_{0}^{a_{\dagger}-\varepsilon}m(a)\frac{\partial p^{u}(a, t)}{\partial t}{\rm d}a = & \int_{0}^{a_{\dagger}-\varepsilon}m(a)\Big\{f(a, t)-\big[\mu(a, t)+\delta_{1}u(a, t)+\Phi(I^{u}(t))\big]p^{u}(a, t)\Big\}\, {\rm d}a \\ -& \int_{0}^{a_{\dagger}-\varepsilon}m(a)\frac{\partial p^{u}(a, t)}{\partial a}\, {\rm d}a \\ \triangleq& I_{7}+I_{8}. \end{align*} $ |
By assumptions and Theorem 3.1, we know that $ I_{7} $ is uniformly bounded about $ u $. For $ I_{8} $, by the second equation of (2.1), we obtain
$ \begin{align*} I_{8} = & -m(a_{\dagger}-\varepsilon)p^{u}(a_{\dagger}-\varepsilon, t)+m(0)p^{u}(0, t)+\int_{0}^{a_{\dagger}-\varepsilon}m'(a)p^{u}(a, t)\, {\rm d}a \\ = & m(0)\int_{0}^{a_{\dagger}-\varepsilon}\beta\big(a, t, E(p^{u})(a, t), S^{\alpha}(t)\big)[1-\delta_{2}u(a, t)]p^{u}(a, t)\, \mbox{d}a \\ +& \int_{0}^{a_{\dagger}}m'(a)p^{u}(a, t)\, {\rm d}a-m(a_{\dagger}-\varepsilon)p^{u}(a_{\dagger}-\varepsilon, t). \end{align*} $ |
Similarly, $ I_{8} $ is also uniformly bounded about $ u $. In summary, we have proved that $ \frac{{\rm d}I^{u, \varepsilon}(t)}{{\rm d}t} $ is uniformly bounded about $ u $. Hence, we can obtain
$ \begin{align*} \lim\limits_{t\rightarrow0}\int_{0}^{T}[I^{u, \varepsilon}(s+t)-I^{u, \varepsilon}(s)]^{2}\, {\rm d}s = 0. \end{align*} $ |
Thus, by Fréchet-Kolmogorov Theorem, we know that $ \{I^{u, \varepsilon}:u\in\mathcal{U}\} $ is relatively compact in $ L^{2}(0, T) $. The proof is complete.
Lemma 4.2. Let $ E(p^{u})(a, t) = \alpha\int_{0}^{a}\omega(r)p^{u}(r, t)\, {\rm d}r+\int_{a}^{a_{\dagger}}\omega(r)p^{u}(r, t)\, {\rm d}r $. Then the set $ \{E(p^{u}):u\in\mathcal{U}\} $ is relatively compact in $ L^{2}(D) $.
Proof. For given $ \varepsilon > 0 $ sufficiently small, define
$ \begin{align*} E^{\varepsilon}(p^{u})(a, t) = \alpha\int_{0}^{a}\omega(r)p^{u}(r, t)\, {\rm d}r+\int_{a}^{a_{\dagger}-\varepsilon}\omega(r)p^{u}(r, t)\, {\rm d}r, \; \; \; (a, t)\in D. \end{align*} $ |
With a similar discussion as that in the proof of Lemma 4.1, we only need to show that $ \{E^{\varepsilon}(p^{u}):u\in\mathcal{U}\} $ is relatively compact in $ L^{2}(D) $. We shall use Fréchet-Kolmogorov Theorem (with $ S = R^{2} $) to prove this. For convenience, we extend $ E^{\varepsilon}(p^{u}) $ to $ R^{2} $ by defining $ E^{\varepsilon}(p^{u})(a, t) = 0 $ for $ (a, t) = R^{2}\setminus D $.
$ 1) $ For any $ u\in\mathcal{U} $, by Theorem 3.1, we have
$ \begin{align*} \sup\limits_{u\in\mathcal{U}}\|E^{\varepsilon}(p^{u})\| = & \sup\limits_{u\in\mathcal{U}}\bigg(\int_{R^{2}}[E^{\varepsilon}(p^{u})(a, t)]^{2}\, {\rm d}a\, {\rm d}t\bigg)^{\frac{1}{2}} \\ = & \sup\limits_{u\in\mathcal{U}}\bigg(\int_{0}^{T}\int_{0}^{a_{\dagger}}\left[\alpha\int_{0}^{a}\omega(r)p^{u}(r, t)\, {\rm d}r +\int_{a}^{a_{\dagger}-\varepsilon}\omega(r)p^{u}(r, t)\, {\rm d}r \right]^{2}\, {\rm d}a\, {\rm d}t\bigg)^{\frac{1}{2}} \\ \leq& \sup\limits_{u\in\mathcal{U}}\bigg(\bar{\omega}\int_{0}^{T}\int_{0}^{a_{\dagger}}\left[\|p^{u}(\cdot, t)\|_{L^{1}}\right]^{2}\, {\rm d}a\, {\rm d}t\bigg)^{\frac{1}{2}} < +\infty. \end{align*} $ |
$ 2) $ It is clear that
$ \begin{align*} \lim\limits_{x\rightarrow +\infty\atop y\rightarrow +\infty}\int_{|a| > x \atop |t| > y}[E^{\varepsilon}(p^{u})(a, t)]^{2}\, {\rm d}a\, {\rm d}t = 0. \end{align*} $ |
$ 3) $ It remains to show that
$ \begin{align} \lim\limits_{\Delta a\rightarrow0\atop \Delta t\rightarrow0}\int_{0}^{T}\int_{0}^{a_{\dagger}}[E^{\varepsilon}(p^{u})(a+\Delta a, t+\Delta t) -E^{\varepsilon}(p^{u})(a, t)]^{2}\, {\rm d}a\, {\rm d}t = 0\quad \mbox{for any}\; u\in\mathcal{U}. \end{align} $ | (4.1) |
Obviously, we have
$ \begin{align*} &\int_{0}^{T}\int_{0}^{a_{\dagger}}[E^{\varepsilon}(p^{u})(a+\Delta a, t+\Delta t)-E^{\varepsilon}(p^{u})(a, t)]^{2}\, {\rm d}a\, {\rm d}t \\ = & \int_{0}^{T}\int_{0}^{a_{\dagger}}\bigg[\frac{\partial E^{\varepsilon}(p^{u})(a+\theta_{1}\Delta a, t+\Delta t)}{\partial a}\Delta a +\frac{E^{\varepsilon}(p^{u})(a, t+\theta_{2}\Delta t)}{\partial t}\Delta t\bigg]^{2}\, {\rm d}a\, {\rm d}t, \end{align*} $ |
where $ \theta_{1} $, $ \theta_{2}\in[0, 1] $. To show (4.1), we should discuss the uniform boundedness of $ \frac{\partial E^{\varepsilon}(p^{u})(a, t)}{\partial a} $ and $ \frac{\partial E^{\varepsilon}(p^{u})(a, t)}{\partial t} $ with respect to $ u $. Multiplying the first equation in model (2.1) by $ \omega(a) $ and integrating on $ (0, a_{\dagger}-\varepsilon) $, we obtain
$ \begin{align*} \alpha\int_{0}^{a}&\omega(r)\bigg[\frac{\partial p^{u}(r, t)}{\partial t}+\frac{\partial p^{u}(r, t)}{\partial r}\bigg]\, {\rm d}r + \int_{a}^{a_{\dagger}-\varepsilon}\omega(r)\bigg[\frac{\partial p^{u}(r, t)}{\partial t}+\frac{\partial p^{u}(r, t)}{\partial r}\bigg]\, {\rm d}r \\ = & \alpha\int_{0}^{a}\omega(r)\Big[f(r, t)-[\mu(r, t)-\delta_{1}u(r, t)-\Phi(I^{u}(t))]p^{u}(r, t)\Big]\, {\rm d}r \\ +& \int_{a}^{a_{\dagger}-\varepsilon}\omega(r)\Big[f(r, t)-[\mu(r, t)-\delta_{1}u(r, t)-\Phi(I^{u}(t))]p^{u}(r, t)\Big]\, {\rm d}r. \end{align*} $ |
Thus,
$ \begin{align*} \frac{\partial E^{\varepsilon}(p^{u})(a, t)}{\partial t} = & \frac{\partial[\alpha\int_{0}^{a}\omega(r)p^{u}(r, t)\, {\rm d}r+\int_{a}^{a_{\dagger}-\varepsilon}\omega(r)p^{u}(r, t)\, {\rm d}r]}{\partial t} \\ = & \alpha\int_{0}^{a}\omega(r)\frac{\partial p^{u}(r, t)}{\partial t}\, {\rm d}r+\int_{a}^{a_{\dagger} - \varepsilon}\omega(r)\frac{\partial p^{u}(r, t)}{\partial t}\, {\rm d}r \\ = & \alpha\int_{0}^{a}\omega(r)\Big[f(r, t)-[\mu(r, t)-\delta_{1}u(r, t)-\Phi(I^{u}(t))]p^{u}(r, t)\Big]\, {\rm d}r \\ +& \int_{a}^{a_{\dagger}-\varepsilon}\omega(r)\Big[f(r, t)-[\mu(r, t)-\delta_{1}u(r, t)-\Phi(I^{u}(t))]p^{u}(r, t)\Big]\, {\rm d}r \\ -& \left[ \alpha\int_{0}^{a}\omega(r)\frac{\partial p^{u}(r, t)}{\partial r}\, {\rm d}r+\int_{a}^{a_{\dagger}-\varepsilon}\omega(r)\frac{\partial p^{u}(r, t)}{\partial r}\, {\rm d}r \right]. \end{align*} $ |
Denote $ I_{9}\triangleq- \big[\alpha\int_{0}^{a}\omega(r)\frac{\partial p^{u}(r, t)}{\partial r}\, {\rm d}r+\int_{a}^{a_{\dagger}-\varepsilon}\omega(r)\frac{\partial p^{u}(r, t)}{\partial r}\, {\rm d}r \big] $. Then, using the second equation in (2.1), we can obtain
$ \begin{align*} I_{9} = & -\bigg[\alpha\omega(a)p^{u}(a, t)-\alpha\omega(0)p^{u}(0, t)-\alpha\int_{0}^{a}\omega'(r)p^{u}(r, t)\, {\rm d}r + \omega(a_{\dagger}-\varepsilon)p^{u}(a_{\dagger}-\varepsilon, t) \\ -&\omega(a)p^{u}(a, t)-\int_{a}^{a_{\dagger}-\varepsilon}\omega'(r)p^{u}(r, t)\, {\rm d}r\bigg] \\ = & (1-\alpha)\omega(a)p^{u}(a, t)+\alpha\omega(0)\int_{0}^{a_{\dagger}}\beta\big(a, t, E(p^{u})(a, t), S^{\alpha}(t)\big)[1-\delta_{2}u(a, t)]p^{u}(a, t)\, \mbox{d}a \\ +& \alpha\int_{0}^{a}\omega'(r)p^{u}(r, t)\, {\rm d}r+\int_{a}^{a_{\dagger}-\varepsilon}\omega'(r)p^{u}(r, t)\, {\rm d}r - \omega(a_{\dagger}-\varepsilon)p^{u}(a_{\dagger}-\varepsilon, t). \end{align*} $ |
Hence,
$ \begin{align*} &\frac{\partial E^{\varepsilon}(p^{u})(a, t)}{\partial t} \\ &\, \, \, = \alpha\int_{0}^{a}\bigg\{\omega(r)\Big[f(r, t)-[\mu(r, t)-\delta_{1}u(r, t)-\Phi(I^{u}(t))]p^{u}(r, t)\Big]+\omega'(r)p^{u}(r, t)\bigg\}\, {\rm d}r \\ &\, \, \, + \int_{a}^{a_{\dagger}-\varepsilon}\bigg\{\omega(r)\Big[f(r, t)-[\mu(r, t)-\delta_{1}u(r, t)-\Phi(I^{u}(t))]p^{u}(r, t)\Big]+\omega'(r)p^{u}(r, t)\bigg\}\, {\rm d}r \\ &\, \, \, + (1-\alpha)\omega(a)p^{u}(a, t)+\alpha\omega(0)\int_{0}^{a_{\dagger}}\beta\big(a, t, E(p^{u})(a, t), S^{\alpha}(t)\big)[1-\delta_{2}u(a, t)]p^{u}(a, t)\, \mbox{d}a \\ &\, \, \, - \omega(a_{\dagger}-\varepsilon)p^{u}(a_{\dagger}-\varepsilon, t). \end{align*} $ |
By assumptions and Theorem 3.1, $ \frac{\partial E^{\varepsilon}(p^{u})(a, t)}{\partial t} $ is uniformly bounded about $ u $. On the other hand, we have
$ \begin{align*} \frac{\partial E^{\varepsilon}(p^{u})(a, t)}{\partial a} = & \alpha\omega(a)p^{u}(a, t)-\omega(a)p^{u}(a, t) = (\alpha-1)\omega(a)p^{u}(a, t). \end{align*} $ |
Similarly, $ \frac{\partial E(p^{u})(a, t)}{\partial a} $ is also uniformly bounded about $ u\in\mathcal{U} $. Hence, we have (4.1).
By now, we have verified all conditions of Fréchet-Kolmogorov Theorem (with $ S = R^{2} $) and hence $ \{E^{\varepsilon}(p^{u}):u\in\mathcal{U}\} $ is relatively compact in $ L^{2}(D) $. The proof is complete.
Theorem 4.3. There is at least one solution to the optimal management problem (2.1)–(2.2).
Proof. Let $ d = \inf\limits_{u\in\mathcal{U}}J(u) $. For any $ u\in\mathcal{U} $, by Theorem 3.1, we have
$ \begin{align*} 0 < J(u)\leq\|p^{u}(\cdot, T)\|_{L^{1}}+\bar{r}L\int_{0}^{T}\|p^{u}(\cdot, t)\|_{L^{1}}\, {\rm d}t < +\infty. \end{align*} $ |
Thus, $ d\in[0, +\infty) $. For any $ n\geq 1 $, according to the definition of $ d $, there exists $ u_{n}\in\mathcal{U} $ such that
$ \begin{align*} d\leq J(u_{n}) < d+\frac{1}{n}. \end{align*} $ |
The boundness of $ \{p^{u_{n}}:u_{n}\in\mathcal{U}\} $ implies that there is a subsequence of $ \{u_{n}\} $, still recorded as $ \{u_{n}\} $, such that
$ \begin{align} p^{u_{n}}\xrightarrow{\rm weakly} p^{*}\; \; \mbox{in}\; \; L^{2}(D)\; \; {\rm as}\; \; n\rightarrow +\infty. \end{align} $ | (4.2) |
By Lemmas 4.1 and 4.2, there exists a subsequence of $ \{u_{n}\} $, still recorded as $ \{u_{n}\} $, such that
$ \begin{align} I^{u_{n}}\rightarrow I^{*}, \; \; \; \; S^{u_{n}}\rightarrow & S^{*}, \; \; \; \; E(p^{u_{n}})\rightarrow E(p^{*}), \end{align} $ | (4.3) |
$ \begin{align} I^{u_{n}}(t)\rightarrow I^{*}(t), \; \; \; \; S^{u_{n}}(t)\rightarrow & S^{*}(t), \; \; \; \; E(p^{u_{n}})(a, t)\rightarrow E(p^{*})(a, t), \end{align} $ | (4.4) |
as $ n\rightarrow +\infty $. Here $ I^{*}, S^{*}\in L^{2}(0, T) $ and $ E(p^{*})\in L^{2}(D) $. Further, from (4.2)–(4.4), we can infer that
$ \begin{align*} &I^{*}(t) = \int_{0}^{a_{\dagger}}m(a)p^{*}(a, t)\, {\rm d}a, \; \; \; \; S^{*}(t) = \int_{0}^{a_{\dagger}}[1-\omega(a)]p^{*}(a, t)\, {\rm d}a, \; \; \; \; t\in[0, T]. \\ &E(p^{*})(a, t) = \alpha\int_{0}^{a}\omega(r)p^{*}(r, t)\, {\rm d}r+\int_{a}^{a_{\dagger}}\omega(r)p^{*}(r, t)\, {\rm d}r, \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; (a, t)\in D. \end{align*} $ |
Moreover, by Mazur Theorem, we can obtain the convex combination of $ \{p^{u_{n}}\} $ as follows
$ \begin{align} \tilde{p}_{n}(a, t) = \sum\limits_{i = n+1}^{k_{n}}\lambda_{i}^{n}p^{u_{i}}(a, t), \quad \lambda_{i}^{n}\geq 0, \quad \sum\limits_{i = n+1}^{k_{n}}\lambda_{i}^{n} = 1, \quad k_{n}\geq n+1, \end{align} $ | (4.5) |
such that
$ \begin{align} \tilde{p}_{n}\xrightarrow{\rm strongly} p^{*}\; \; \mbox{in}\; \; L^{2}(D)\; \; {\rm as}\; \; n\rightarrow +\infty. \end{align} $ | (4.6) |
Now, define a new control sequence $ \{\tilde{u}_{n}\} $ as follows
$ \begin{equation} \tilde{u}_{n}(a, t) = \left\{ \begin{array}{ll} \frac{\sum\limits_{i = n+1}^{k_{n}}\lambda_{i}^{n}p^{u_{i}}(a, t)u_{i}(a, t)}{\sum\limits_{i = n+1}^{k_{n}}\lambda_{i}^{n}p^{u_{i}}(a, t)} \quad & \mbox{if}\sum\limits_{i = n+1}^{k_{n}}\lambda_{i}^{n}p^{u_{i}}(a, t)\neq 0, \\ 0 & \mbox{if}\sum\limits_{i = n+1}^{k_{n}}\lambda_{i}^{n}p^{u_{i}}(a, t) = 0. \end{array} \right. \end{equation} $ | (4.7) |
It is easy to verify that $ \tilde{u}_n\in\mathcal{U} $. Since $ \{\tilde{u}_{n}\} $ is bounded, the weak compactness of bounded sequence implies that there is a subsequence of $ \{\tilde{u}_{n}\} $, still recorded as $ \{\tilde{u}_{n}\} $, such that
$ \begin{align*} \tilde{u}_{n}\xrightarrow{\rm weakly} u^{*}\; \; \mbox{in}\; \; L^{2}(D)\; \; {\rm as}\; \; n\rightarrow +\infty. \end{align*} $ |
From (2.1), (4.5) and (4.7), it follows that
$ \begin{align} \left\{ \begin{array}{ll} \frac{\partial\tilde{p}_{n}}{\partial t}+\frac{\partial\tilde{p}_{n}}{\partial a} = f(a, t)-[\mu(a, t)+\delta_{1}\tilde{u}_{n}(a, t)]\tilde{p}_{n}(a, t) - \sum\limits_{i = n+1}^{k_{n}}\lambda_{i}^{n}\Phi(I^{u_{i}}(t))p^{u_{i}}(a, t), \\ \tilde{p}_{n}(0, t) = \int_{0}^{a_{\dagger}}\sum\limits_{i = n+1}^{k_{n}}\lambda_{i}^{n} \beta\big(a, t, E(p^{u_{i}})(a, t), S^{u_{i}}(t)\big)[1-\delta_{2}u_{i}(a, t)]p^{u_{i}}(a, t)\, \mbox{d}a, \\ \tilde{p}_{n}(a, 0) = p_{0}(a), \end{array} \right. \end{align} $ | (4.8) |
where $ I^{u_{i}}(t) = \int_{0}^{a_{\dagger}}m(a)p^{u_{i}}(a, t)\, \mbox{d}a $, $ E(p^{u_{i}})(a, t) = \alpha\int_{0}^{a}\omega(r)p^{u_{i}}(r, t)\, {\rm d}r+\int_{a}^{a_{\dagger}}\omega(r)p^{u_{i}}(r, t)\, {\rm d}r $ and $ S^{u_{i}}(t) = \int_{0}^{a_{\dagger}}[1-\omega(a)]p^{u_{i}}(a, t)\, {\rm d}a $. From $ {\bf(A_2)} $–$ {\bf(A_3)} $ and the boundedness of $ p^{u} $, there is a positive constant $ M_{4} $ such that
$ \begin{align*} \bigg|\sum\limits_{i = n+1}^{k_{n}}&\lambda_{i}^{n}\beta\big(a, t, E(p^{u_{i}}), S^{u_{i}}\big)[1-\delta_{2}u_{i}]p^{u_{i}} - \beta\big(a, t, E(p^{*}), S^{\ast}\big)[1-\delta_{2}u^{\ast}]p^{\ast}\bigg| \\ \leq& \sum\limits_{i = n+1}^{k_{n}}\lambda_{i}^{n}\Big|\beta\big(a, t, E(p^{u_{i}}), S^{u_{i}}\big)-\beta\big(a, t, E(p^{*}), S^{\ast}\big)\Big|\cdot|p^{u_{i}}| \\ +& \bar{\beta}\delta_{2}\bigg|\sum\limits_{i = n+1}^{k_{n}}\lambda_{i}^{n}u_{i}p^{u_{i}} - u^{\ast}\sum\limits_{i = n+1}^{k_{n}}\lambda_{i}^{n}p^{u_{i}}\bigg| + \bar{\beta}\bigg|\sum\limits_{i = n+1}^{k_{n}}\lambda_{i}^{n}p^{u_{i}} - \sum\limits_{i = n+1}^{k_{n}}\lambda_{i}^{n}p^{\ast}\bigg| \\ \leq& M_{4}\sum\limits_{i = n+1}^{k_{n}}\lambda_{i}^{n}\Big[|E(p^{u_{i}})(a, t)-E(p^{*})(a, t)|+|S^{u_{i}}(t)-S^{\ast}(t)|\Big] \\ +& \bar{\beta}\delta_{2}|\tilde{u}_{n}(a, t)\tilde{p}_{n}(a, t)-u^{\ast}(a, t)\tilde{p}_{n}(a, t)| + \bar{\beta}|\tilde{p}_{n}(a, t)-p^{\ast}(a, t)|. \end{align*} $ |
By (4.4) and (4.6), we get
$ \begin{align*} \sum\limits_{i = n+1}^{k_{n}}\lambda_{i}^{n}\beta\big(a, t, E(p^{u_{i}})(a, t), S^{u_{i}}(t)\big)[1-\delta_{2}u_{i}(a, t)]p^{u_{i}} \rightarrow \beta\big(a, t, E(p^{*})(a, t), S^{\ast}(t)\big)[1-\delta_{2}u^{\ast}(a, t)]p^{\ast} \end{align*} $ |
as $ n\rightarrow +\infty $. Similarly, we also get
$ \begin{align*} \sum\limits_{i = n+1}^{k_{n}}\lambda_{i}^{n}\Phi(I^{u_{i}}(t))p^{u_{i}}(a, t) \rightarrow \Phi(I^{\ast}(t))p^{\ast}(a, t)\; \; {\rm as}\; \; n\rightarrow +\infty. \end{align*} $ |
Hence, in the sense of weak solutions, we have $ p^{*}(a, t) = p^{u^{*}}(a, t) $, $ I^{*}(t) = I^{u^{*}}(t) $, $ S^{*}(t) = S^{u^{*}}(t) $ and $ E(p^{*})(a, t) = E(p^{u^{*}})(a, t) $.
Finally, arguing similarly as in the proof of [16], we can show that $ u^{\ast}\in\mathcal{U} $ is an optimal policy for the management problem (2.2). This completes the proof.
In this section, we will establish the optimality conditions for the management problem (2.2). For any $ u\in\mathcal{U} $, let $ \mathcal{T}_{\mathcal{U}}(u) $ and $ \mathcal{N}_{\mathcal{U}}(u) $ be, respectively, the tangent cone and normal cone of $ \mathcal{U} $ at the element $ u $ [27]. To show the optimality conditions, we need the following two lemmas.
Lemma 5.1. Assume that $ \eta_{0}\in L_{+}^{1} $, $ \mu_{i} (i = 1, 2) $, $ \beta_{j}\in L^{\infty}(D) (j = 1, 2, 3) $, $ f_{n}\in L^{1}(D) $, $ b_{n}\in L^{1}[0, T] $, $ n\geq 1 $. Let $ \eta_{n} $ be the solution of
$ \begin{align} \left\{ \begin{array}{ll} \frac{\partial\eta}{\partial t} + \frac{\partial\eta}{\partial a} = f_{n}(a, t)-\mu_{1}(a, t)\eta(a, t)-\mu_{2}(a, t)I(t), & (a, t)\in D, \\ \eta(0, t) = \int_{0}^{a_{\dagger}}[\beta_{1}(a, t)\eta(a, t)+\beta_{2}(a, t)S(t)+\beta_{3}(a, t)E(\eta)(a, t)]\, {\rm d}a+b_{n}(t), & t\in[0, T], \\ \eta(a, 0) = \eta_{0}(a), & a\in[0, a_{\dagger}), \\ I(t) = \int_{0}^{a_{\dagger}}m(a)\eta(a, t)\, {\rm d}a, \; \; \; \; S(t) = \int_{0}^{a_{\dagger}}[1-\omega(a)]\eta(a, t)\, {\rm d}a, & t\in[0, T], \\ E(\eta)(a, t) = \alpha\int_{0}^{a}\omega(a)\eta(a, t)\, {\rm d}a+\int_{a}^{a_{\dagger}}\omega(a)\eta(a, t)\, {\rm d}a, & (a, t)\in D. \end{array} \right. \end{align} $ | (5.1) |
If $ (f_{n}, b_{n})\rightarrow (f, b) $ in $ L^{1}(D)\times L^{1}[0, T] $ as $ n\rightarrow +\infty $, then $ \eta_{n}\rightarrow \eta $ in $ L^{\infty}(0, T; L^{1}(0, a_{\dagger})) $ as $ n\rightarrow +\infty $. Here $ \eta $ is the solution of (5.1) with respect to $ f_{n} = f $ and $ b_{n} = b $.
Proof. Similar to the prove of [14], model (5.1) has a unique solution. Moreover, on the characteristic lines, the solution to (5.1) has the form
$ \begin{eqnarray} \eta_{n}(a, t) = \left\{ \begin{array}{ll} F(\tau, \eta_{n}(\cdot, \tau))+ \int_{\tau}^{t}G(s, \eta_{n}(\cdot, s))(s-t+a)\, {\rm d}s, & a\leq t, \\ \eta_{0}(a-t)+ \int_{0}^{t}G(s, \eta_{n}(\cdot, s))(s-t+a)\, {\rm d}s, \quad\quad & a > t, \end{array} \right. \end{eqnarray} $ |
where $ \tau = t-a $ and, for $ t\in[0, T] $ and $ \phi\in L^{1} $,
$ \begin{align*} &F(t, \phi) = \int_{0}^{a_{\dagger}}[\beta_{1}(a, t)\phi(a)+\beta_{2}(a, t)S\phi+\beta_{3}(a, t)E(\phi)(a)]\, \mbox{d}a+b_{n}(t), \\ &G(t, \phi)(a) = f_{n}(a, t)-\mu_{1}(a, t)\phi(a)-\mu_{2}(a, t)I\phi, \; \; \; \; \; \; \; \; \; \; \; \; \; \; a\in[0, a_{\dagger}). \end{align*} $ |
Here $ S\phi = \int_{0}^{a_{\dagger}}[1-\omega(a)]\phi(a)\, \mbox{d}a $, $ E(\phi)(a) = \alpha\int_{0}^{a}\omega(r)\phi(r)\, {\rm d}r+\int_{a}^{a_{\dagger}}\omega(r)\phi(r)\, {\rm d}r $, $ a\in[0, a_{\dagger}) $ and $ I\phi = \int_{0}^{a_{\dagger}}m(a)\phi(a)\, \mbox{d}a $.
Let $ \eta_{n} $ and $ \eta $ be solutions of (5.1) with respect to $ (f_{n}, b_{n}) $ and $ (f, b) $, respectively. Then we have
$ \begin{align} |S\eta_{n}-S\eta|(t) = & \bigg|\int_{0}^{a_{\dagger}}[1-\omega(a)]\eta_{n}(a, t)\, {\rm d}a-\int_{0}^{a_{\dagger}}[1-\omega(a)]\eta(a, t)\, {\rm d}a\bigg| \\ \leq& \int_{0}^{a_{\dagger}}|\eta_{n}(a, t)-\eta(a, t)|\, {\rm d}a = \|\eta_{n}(\cdot, t)-\eta(\cdot, t)\|_{L^{1}}, \end{align} $ | (5.2) |
$ \begin{align} |I\eta_{n}-I\eta|(t) = & \bigg|\int_{0}^{a_{\dagger}}m(a)\eta_{n}(a, t)\, {\rm d}a-\int_{0}^{a_{\dagger}}m(a)\eta(a, t)\, {\rm d}a\bigg| \\ \leq& \bar{m}\int_{0}^{a_{\dagger}}|\eta_{n}(a, t)-\eta(a, t)|\, {\rm d}a = \bar{m}\|\eta_{n}(\cdot, t)-\eta(\cdot, t)\|_{L^{1}}, \end{align} $ | (5.3) |
$ \begin{align} |E(\eta_{n})-E(\eta)|(a, t) = & \bigg|\alpha\int_{0}^{a}\omega(r)[\eta_{n}-\eta](r, t)\, {\rm d}r+\int_{a}^{a_{\dagger}}\omega(r)[\eta_{n}-\eta](r, t)\, {\rm d}r\bigg| \\ \leq& \alpha\int_{0}^{a}|\omega(r)|\cdot|\eta_{n}-\eta|(r, t)\, {\rm d}r+\int_{a}^{a_{\dagger}}|\omega(r)|\cdot|\eta_{n}-\eta|(r, t)\, {\rm d}r \\ \leq& \bar{\omega}\int_{0}^{a_{\dagger}}|\eta_{n}-\eta|(a, t)\, {\rm d}a \leq \|\eta_{n}(\cdot, t)-\eta(\cdot, t)\|_{L^{1}}. \end{align} $ | (5.4) |
Moreover,
$ \begin{align} \|\eta_{n}(\cdot, t)-\eta(\cdot, t)\|_{L^{1}} \leq& \int_{0}^{t}|F(\tau, \eta_{n}(\cdot, \tau))-F(\tau, \eta(\cdot, \tau))|\, {\rm d}a \\ +& \int_{0}^{t}\int_{\tau}^{t}|G(s, \eta_{n}(\cdot, s))-G(s, \eta(\cdot, s))|(s-t+a)\, {\rm d}s\, {\rm d}a \\ +& \int_{t}^{a_{\dagger}}\int_{0}^{t}|G(s, \eta_{n}(\cdot, s))-G(s, \eta(\cdot, s))|(s-t+a)\, {\rm d}s\, {\rm d}a \\ \triangleq& I_{10}+I_{11}+I_{12}. \end{align} $ | (5.5) |
Arguing similarly as for $ I_{1} $ and $ I_{2}+I_{3} $, we can show that
$ \begin{align} I_{10} \leq& \int_{0}^{t}\int_{0}^{a_{\dagger}}|\beta_{1}(a, s)|\cdot|\eta_{n}(a, s)-\eta(a, s)|\, {\rm d}a\, {\rm d}s + \int_{0}^{t}\int_{0}^{a_{\dagger}}|\beta_{2}(a, s)|\cdot|S\eta_{n}-S\eta|(s)\, {\rm d}a\, {\rm d}s \\ +& \int_{0}^{t}\int_{0}^{a_{\dagger}}|\beta_{3}(a, s)|\cdot|E(\eta_{n})-E(\eta)|(a, s)\, {\rm d}a\, {\rm d}s + \int_{0}^{t}|b_{n}(s)-b(s)|\, {\rm d}s \\ \leq& \sum\limits_{i = 1}^{3}\|\beta_{i}\|_{L^{\infty}(D)}\int_{0}^{t}\|\eta_{n}(\cdot, s)-\eta(\cdot, s)\|_{L^{1}}\, {\rm d}s + \int_{0}^{t}|b_{n}(s)-b(s)|\, {\rm d}s \end{align} $ | (5.6) |
and
$ \begin{align} I_{11}+I_{12} \leq& \int_{0}^{t}\int_{0}^{a_{\dagger}}|f_{n}(\varsigma, s)-f(\varsigma, s)|\, {\rm d}\varsigma\, {\rm d}s + \int_{0}^{t}\int_{0}^{a_{\dagger}}|\mu_{1}(\varsigma, s)|\cdot|\eta_{n}(\varsigma, s)-\eta(\varsigma, s)|\, {\rm d}\varsigma\, {\rm d}s \\ +& \int_{0}^{t}\int_{0}^{a_{\dagger}}|\mu_{2}(\varsigma, s)|\cdot|I\eta_{n}-I\eta|(s)\, {\rm d}\varsigma\, {\rm d}s \\ \leq& \int_{0}^{t}\int_{0}^{a_{\dagger}}|f_{n}(\varsigma, s)-f(\varsigma, s)|\, {\rm d}\varsigma\, {\rm d}s \\ +& \Big(\|\mu_{1}\|_{L^{\infty}(D)}+\bar{m}\|\mu_{2}\|_{L^{\infty}(D)}\Big)\int_{0}^{t}\|\eta_{n}(\cdot, s)-\eta(\cdot, s)\|_{L^{1}}\, {\rm d}s. \end{align} $ | (5.7) |
From (5.5)–(5.7), we can obtain
$ \begin{align*} \|\eta_{n}(\cdot, t)-\eta(\cdot, t)\|_{L^{1}} \leq& \int_{0}^{t}|b_{n}(s)-b(s)|\, {\rm d}s + \int_{0}^{t}\int_{0}^{a_{\dagger}}|f_{n}(\varsigma, s)-f(\varsigma, s)|\, {\rm d}\varsigma\, {\rm d}s \\ +& M_{5}\int_{0}^{t}\|\eta_{n}(\cdot, s)-\eta(\cdot, s)\|_{L^{1}}\, {\rm d}s, \end{align*} $ |
where $ M_{5} = \sum_{i = 1}^{3}\|\beta_{i}\|_{L^{\infty}(D)}+\|\mu_{1}\|_{L^{\infty}(D)}+\bar{m}\|\mu_{2}\|_{L^{\infty}(D)} $. Thus, Gronwall's inequality implies that
$ \begin{align*} \|\eta_{n}(\cdot, t)-\eta(\cdot, t)\|_{L^{1}} \leq& M_{6}\int_{0}^{t}|b_{n}(s)-b(s)|\, {\rm d}s + M_{6}\int_{0}^{t}\int_{0}^{a_{\dagger}}|f_{n}(\varsigma, s)-f(\varsigma, s)|\, {\rm d}\varsigma\, {\rm d}s, \end{align*} $ |
where $ M_{6} = 1+M_{5}Te^{M_{5}T} $. Hence, we can claim that $ \eta_{n}\rightarrow \eta $ in $ L^{\infty}(0, T; L^{1}(0, a_{\dagger})) $ as $ n\rightarrow +\infty $.
Lemma 5.2. For any $ u\in\mathcal{U} $, $ v\in T_{\mathcal{U}}(u) $ and sufficiently small $ \varepsilon > 0 $, if $ u+\varepsilon v\in\mathcal{U} $, we have
$ \begin{align*} \lim\limits_{\varepsilon\rightarrow0^{+}}\frac{p^{u+\varepsilon v}(a, t)-p^{u}(a, t)}{\varepsilon} = z(a, t), \end{align*} $ |
where $ p^{u+\varepsilon v} $ and $ p^{u} $ are, respectively, solutions of (2.1) corresponding to $ u+\varepsilon v $ and $ u $, and $ z $ satisfies
$ \begin{align} \left\{ \begin{array}{ll} \frac{\partial z(a, t)}{\partial t}+\frac{\partial z(a, t)}{\partial t} = -\big[\mu(a, t)+\delta_{1}u(a, t)+\Phi(I^{u}(t))\big]z(a, t)-\Phi'(I^{u}(t))p^{u}(a, t)P(t) \\ \quad -\delta_{1}v(a, t)p^{u}(a, t), \\ z(0, t) = \int_{0}^{a_{\dagger}}[1-\delta_{2}u(a, t)]\Big[\beta\big(a, t, E(p^{u})(a, t), S^{u}(t)\big)z(a, t)+\beta_{E}\big(a, t, E(p^{u})(a, t), S^{u}(t)\big) \\ \quad \times E(z)(a, t)p^{u}(a, t)+\beta_{S}\big(a, t, E(p^{u})(a, t), S^{u}(t)\big)p^{u}(a, t)Q(t)\Big]\, {\rm d}a \\ \quad - \int_{0}^{a_{\dagger}}\delta_{2}\beta\big(a, t, E(p^{u})(a, t), S^{u}(t)\big)v(a, t)p^{u}(a, t)\, {\rm d}a, \\ z(a, 0) = 0, \\ P(t) = \int_{0}^{a_{\dagger}}m(a)z(a, t)\, {\rm d}a, \; \; Q(t) = \int_{0}^{a_{\dagger}}[1-\omega(a)]z(a, t)\, {\rm d}a, \\ E(z)(a, t) = \alpha \int_{0}^{a}\omega(r)z(r, t)\, {\rm d}a+\int_{a}^{a_{\dagger}}\omega(r)z(r, t)\, {\rm d}r. \end{array} \right. \end{align} $ | (5.8) |
Here, $ \beta_{E} $ and $ \beta_{S} $ are, respectively, the derivatives of $ \beta $ with respect to $ E $ and $ S $.
Proof. Denote $ p^{\varepsilon}(a, t)\triangleq p^{u+\varepsilon v}(a, t) $. A similar discussion as that in Theorem 3.3 shows that system (5.8) has a unique solution. Now, we prove the existence of $ \lim_{\varepsilon\rightarrow0^{+}}\frac{p^{\varepsilon}(a, t)-p^{u}(a, t)}{\varepsilon} $. Let
$ \begin{align*} \theta_{\varepsilon}(a, t)\triangleq\frac{1}{\varepsilon}\big[p^{\varepsilon}(a, t)-p^{u}(a, t)\big]-z(a, t). \end{align*} $ |
Firstly, from (2.1) and (5.8), it follows that
$ \begin{align*} \frac{\partial\theta_{\varepsilon}(a, t)}{\partial t} + \frac{\partial\theta_{\varepsilon}(a, t)}{\partial a} = & -[\mu(a, t)+\delta_{1}u(a, t)+\Phi(I^{u}(t))]\theta_{\varepsilon}(a, t)-\delta_{1}v(a, t)[p^{\varepsilon}(a, t)-p^{u}(a, t)] \\ -& \Phi'(I^{u}(t))\frac{1}{\varepsilon}[I^{\varepsilon}(t)-I^{u}(t)]p^{\varepsilon}(a, t) +\Phi'(I^{u}(t))p^{u}(a, t)P(t) \\ = & -[\mu(a, t)+\delta_{1}u(a, t)+\Phi(I^{u}(t))]\theta_{\varepsilon}(a, t)-\delta_{1}v(a, t)[p^{\varepsilon}(a, t)-p^{u}(a, t)] \\ -& \Phi'(I^{u}(t))I(\theta_{\varepsilon})(t)p^{\varepsilon}(a, t)+\Phi'(I^{u}(t))P(t)[p^{\varepsilon}(a, t)-p^{u}(a, t)], \end{align*} $ |
where $ I(\theta_{\varepsilon})(t) = \int_{0}^{a_{\dagger}}m(a)\big\{\frac{1}{\varepsilon}[p^{\varepsilon}(a, t)-p^{u}(a, t)]-z(a, t)\big\}\, {\rm d}a = \int_{0}^{a_{\dagger}}m(a)\theta_{\varepsilon}(a, t)\, {\rm d}a $.
Secondly, a simple calculation shows that
$ \begin{align*} \theta_{\varepsilon}(0, t) & = \int_{0}^{a_{\dagger}}\beta_{E}\big(a, t, E(p^{u})(a, t), S^{u}(t)\big)[1-\delta_{2}u(a, t)] E\Big(\frac{1}{\varepsilon}[p^{\varepsilon}-p^{u}]\Big)(a, t)[p^{\varepsilon}(a, t)-p^{u}(a, t)]\, \mbox{d}a \\ &+ \int_{0}^{a_{\dagger}}\beta_{E}\big(a, t, E(p^{u})(a, t), S^{u}(t)\big)[1-\delta_{2}u(a, t)]p^{u}(a, t)E(\theta_{\varepsilon})(a, t)\, \mbox{d}a \\ & +\int_{0}^{a_{\dagger}}\beta_{S}\big(a, t, E(p^{u})(a, t), S^{u}(t)\big)[1-\delta_{2}u(a, t)]\frac{1}{\varepsilon}[S^{\varepsilon}(t)-S^{u}(t)][p^{\varepsilon}(a, t)-p^{u}(a, t)]\, \mbox{d}a \\ & +\int_{0}^{a_{\dagger}}\beta_{S}\big(a, t, E(p^{u}), S^{u}(t)\big)[1-\delta_{2}u(a, t)]p^{u}(a, t)S(\theta_{\varepsilon})(t)\, \mbox{d}a \\ & +\int_{0}^{a_{\dagger}}\beta\big(a, t, E(p^{u})(a, t), S^{u}(t)\big)[1-\delta_{2}u(a, t)]\theta_{\varepsilon}(a, t)\, \mbox{d}a \\ & -\int_{0}^{a_{\dagger}}\delta_{2}\beta\big(a, t, E(p^{u})(a, t), S^{u}(t)\big)v(a, t)[p^{\varepsilon}(a, t)-p^{u}(a, t)]\, \mbox{d}a+b_{0}(\varepsilon), \end{align*} $ |
where $ \lim_{\varepsilon\rightarrow0^{+}}b_{0}(\varepsilon) = 0 $ and $ S(\theta_{\varepsilon})(t) = \int_{0}^{a_{\dagger}}[1-\omega(a)]\theta_{\varepsilon}(a, t)\, {\rm d}a $.
Then, we can obtain the system with $ \varepsilon $ as follows
$ \begin{align} \left\{ \begin{array}{ll} \frac{\partial\theta_{\varepsilon}}{\partial t} + \frac{\partial\theta_{\varepsilon}}{\partial a} = -[\mu(a, t)+\delta_{1}u(a, t)+\Phi(I^{u}(t))]\theta_{\varepsilon}(a, t)-\delta_{1}v(a, t)[p^{\varepsilon}(a, t)-p^{u}(a, t)] \\ \quad -\Phi'(I^{u}(t))I(\theta_{\varepsilon})(t)p^{\varepsilon}(a, t)+\Phi'(I^{u}(t))P(t)[p^{\varepsilon}(a, t)-p^{u}(a, t)], \\ \theta_{\varepsilon}(0, t) = \int_{0}^{a_{\dagger}}\beta\big(a, t, E(p^{u})(a, t), S^{u}(t)\big)[1-\delta_{2}u(a, t)]\theta_{\varepsilon}(a, t)\, \mbox{d}a \\ \quad + \int_{0}^{a_{\dagger}}\beta_{S}\big(a, t, E(p^{u}), S^{u}(t)\big)[1-\delta_{2}u(a, t)]p^{u}(a, t)S(\theta_{\varepsilon})(t)\, \mbox{d}a \\ \quad + \int_{0}^{a_{\dagger}}\beta_{E}\big(a, t, E(p^{u}), S^{u}(t)\big)[1-\delta_{2}u(a, t)]p^{u}(a, t)E(\theta_{\varepsilon})(a, t)\, \mbox{d}a \\ \quad + \int_{0}^{a_{\dagger}}\beta_{S}\big(a, t, E(p^{u})(a, t), S^{u}(t)\big)[1-\delta_{2}u(a, t)]\frac{1}{\varepsilon}[S^{\varepsilon}(t)-S^{u}(t)][p^{\varepsilon}-p^{u}](a, t)\, \mbox{d}a \\ \quad +\int_{0}^{a_{\dagger}}\beta_{E}\big(a, t, E(p^{u}), S^{u}(t)\big)[1-\delta_{2}u(a, t)] E\Big(\frac{1}{\varepsilon}[p^{\varepsilon}-p^{u}]\Big)(a, t)[p^{\varepsilon}-p^{u}](a, t)\, \mbox{d}a \\ \quad - \int_{0}^{a_{\dagger}}\delta_{2}\beta\big(a, t, E(p^{u})(a, t), S^{u}(t)\big)v(a, t)[p^{\varepsilon}(a, t)-p^{u}(a, t)]\, \mbox{d}a+b_{0}(\varepsilon), \\ \theta_{\varepsilon}(a, 0) = 0. \end{array} \right. \end{align} $ | (5.9) |
By Theorem 3.4, we have $ p^{\varepsilon}(a, t)-p^{u}(a, t)\rightarrow0 $ as $ \varepsilon\rightarrow0^{+} $, and
$ \begin{align*} E\Big(\frac{1}{\varepsilon}[p^{\varepsilon}-p^{u}]\Big)(a, t)[p^{\varepsilon}(a, t)-p^{u}(a, t)]\rightarrow0, \; \; \frac{1}{\varepsilon}[S^{\varepsilon}(t)-S^{u}(t)][p^{\varepsilon}(a, t)-p^{u}(a, t)]\rightarrow0\; \; {\rm as}\; \; \varepsilon\rightarrow0^{+}. \end{align*} $ |
Passing to $ \varepsilon\rightarrow0^{+} $, we can obtain the following limit system of (5.9)
$ \begin{align} \left\{ \begin{array}{ll} \frac{\partial\theta}{\partial t}+\frac{\partial\theta}{\partial a} = -[\mu(a, t)+\delta_{1}u(a, t)+\Phi(I^{u}(t))]\theta(a, t)-\Phi'(I^{u}(t))I(\theta)(t)p^{u}(a, t), \\ \theta(0, t) = \int_{0}^{a_{\dagger}}\beta\big(a, t, E(p^{u}), S^{u}(t)\big)[1-\delta_{2}u(a, t)]\theta(a, t)\, \mbox{d}a \\ \quad + \int_{0}^{a_{\dagger}}\beta_{S}\big(a, t, E(p^{u}), S^{u}(t)\big)[1-\delta_{2}u(a, t)]p^{u}(a, t)S(\theta)(t)\, \mbox{d}a \\ \quad + \int_{0}^{a_{\dagger}}\beta_{E}\big(a, t, E(p^{u}), S^{u}(t)\big)[1-\delta_{2}u(a, t)]p^{u}(a, t)E(\theta)(a, t)\, \mbox{d}a, \\ \theta(a, 0) = 0. \end{array} \right. \end{align} $ | (5.10) |
Clearly, (5.10) is a homogeneous linear system with the zero initial value. Thus, $ \theta(a, t)\equiv0 $ (see [22, Theorem 4.1]). Further, from Lemma 5.1, we can claim that $ \lim_{\varepsilon\rightarrow0^{+}}\theta_{\varepsilon}(a, t) = 0 $. Hence,
$ \begin{align*} \lim\limits_{\varepsilon\rightarrow0^{+}}\frac{p^{\varepsilon}(a, t)-p^{u}(a, t)}{\varepsilon} = z(a, t), \end{align*} $ |
and $ z(a, t) $ satisfies (5.8). The proof is complete.
Theorem 5.3. Let $ u^{\ast}(a, t) $ be an optimal policy for the management problem (2.1)–(2.2). Then
$ \begin{equation} u^{*}(a, t) = \left\{ \begin{array}{ll} 0\ \ \ &\mathit{\mbox{if}}\ \ \delta_{1}\xi(a, t)+\delta_{2}\beta\big(a, t, E(p^{\ast})(a, t), S^{\ast}(t)\big)\xi(0, t) < r(t), \\ L &\mathit{\mbox{if}}\ \ \delta_{1}\xi(a, t)+\delta_{2}\beta\big(a, t, E(p^{\ast})(a, t), S^{\ast}(t)\big)\xi(0, t) > r(t), \end{array} \right. \end{equation} $ | (5.11) |
where $ \xi(a, t) $ satisfies the following adjoint system
$ \begin{align} \left\{ \begin{array}{ll} \frac{\partial \xi}{\partial t}+\frac{\partial \xi}{\partial a} = \big[\mu+\delta_{1}u^{\ast}(a, t)+\Phi(I^{\ast}(t))\big]\xi(a, t)+\Phi'(I^{\ast}(t)) \int_{0}^{a_{\dagger}}m(r)p^{\ast}(r, t)\xi(r, t)\, {\rm d}r \\ \quad - \alpha\int_{a}^{a_{\dagger}}\beta_{E}\big(r, t, E(p^{\ast})(r, t), S^{\ast}(t)\big)[1-\delta_{2}u^{\ast}(r, t)]\omega(r)p^{\ast}(r, t)\xi(0, t)\, {\rm d}r \\ \quad - \int_{0}^{a}\beta_{E}\big(r, t, E(p^{\ast})(r, t), S^{\ast}(t)\big)[1-\delta_{2}u^{\ast}(r, t)]\omega(r)p^{\ast}(r, t)\xi(0, t)\, {\rm d}r \\ \quad - \int_{0}^{a_{\dagger}}\beta_{S}\big(r, t, E(p^{\ast})(r, t), S^{\ast}(t)\big)[1-\delta_{2}u^{\ast}(r, t)][1-\omega(r)]p^{\ast}(r, t)\xi(0, t)\, {\rm d}r \\ \quad -\beta\big(a, t, E(p^{\ast})(a, t), S^{\ast}(t)\big)[1-\delta_{2}u^{\ast}(a, t)]\xi(0, t)-r(t)u^{\ast}(a, t), \\ \xi(a, T) = 1, \; \; \; \; \; \; \; \xi(a_{\dagger}, t) = 0. \end{array} \right. \end{align} $ | (5.12) |
Here $ p^{\ast}(a, t) $ is the solution of model (2.1) corresponding to $ u^{\ast}\in\mathcal{U} $, $ I^{\ast}(t) = \int_{0}^{a_{\dagger}}m(a)p^{\ast}(a, t)\, {\rm d}a $, $ S^{\ast}(t) = \int_{0}^{a_{\dagger}}[1-\omega(a)]p^{\ast}(a, t)\, {\rm d}a $ and $ E(p^{\ast})(a, t) = \alpha\int_{0}^{a}\omega(r)p^{\ast}(r, t)\, {\rm d}r +\int_{a}^{a_{\dagger}}\omega(r)p^{\ast}(r, t)\, {\rm d}r $.
Proof. For any $ v\in\mathcal{T}_{\mathcal{U}}(u^{\ast}) $ and sufficiently small $ \varepsilon > 0 $, we have $ u^{\varepsilon}\triangleq u^{\ast}+\varepsilon v\in \mathcal{U} $. Let $ p^{\varepsilon}(a, t) $ be the solution of (2.1) with respect to $ u^{\varepsilon} $. Then the optimality of $ u^{\ast} $ implies $ J(u^{\ast})\leq J(u^{\varepsilon}) $, that is,
$ \begin{align*} \int_{0}^{a_{\dagger}}\frac{p^{\varepsilon}(a, T)-p^{\ast}(a, T)}{\varepsilon}\, {\rm d}a + \int_{0}^{T}\int_{0}^{a_{\dagger}}r(t)\bigg[\frac{u^{\ast}(a, t)[p^{\varepsilon}(a, t)-p^{\ast}(a, t)]}{\varepsilon}+v(a, t)p^{\varepsilon}(a, t)\bigg]\, {\rm d}a\, {\rm d}t \geq0. \end{align*} $ |
It follows from Theorem 3.4 and Lemma 5.2 that
$ \begin{align} \int_{0}^{a_{\dagger}}z(a, T)\, {\rm d}a + \int_{0}^{T}\int_{0}^{a_{\dagger}}r(t)\bigg[u^{\ast}(a, t)z(a, t)+v(a, t)p^{\ast}(a, t)\bigg]\, {\rm d}a\, {\rm d}t \geq0. \end{align} $ | (5.13) |
Here $ z(a, t) $ is the solution of (5.8) with $ u $ and $ p^{u} $ being replaced by $ u^{\ast} $ and $ p^{\ast} $, respectively.
In system (5.8) (with $ u $ and $ p^{u} $ being replaced by $ u^{\ast} $ and $ p^{\ast} $, respectively), multiplying the first equation by $ \xi(a, t) $ and integrating on $ D $ yield
$ \begin{align} \int_{D}\Big(\frac{\partial z}{\partial t}+\frac{\partial z}{\partial a}\Big)\xi\, {\rm d}a\, {\rm d}t = & -\int_{D}\bigg\{\big[\mu(a, t)+\delta_{1}u^{\ast}(a, t)+\Phi(I^{\ast}(t))\big]z(a, t) \\ +& \Phi'(I^{\ast}(t))p^{\ast}(a, t)P(t)+\delta_{1}v(a, t)p^{\ast}(a, t)\bigg\}\xi(a, t)\, {\rm d}a\, {\rm d}t. \end{align} $ | (5.14) |
Using integration by parts and (5.8), one can derive
$ \begin{align} \int_{D}\Big(\frac{\partial z}{\partial t}+\frac{\partial z}{\partial a}\Big)\xi\, {\rm d}a\, {\rm d}t & = \int_{0}^{a_{\dagger}}z(a, T)\, {\rm d}a - \int_{D}\Big(\frac{\partial \xi}{\partial t}+\frac{\partial \xi}{\partial a}\Big)z(a, t)\, {\rm d}a\, {\rm d}t \\ & -\int_{D}\beta\big(a, t, E(p^{\ast})(a, t), S^{\ast}(t)\big)[1-\delta_{2}u^{\ast}(a, t)]z(a, t)\xi(0, t)\, {\rm d}a\, {\rm d}t \\ & -\int_{D}\beta_{E}\big(a, t, E(p^{\ast})(a, t), S^{\ast}(t)\big)[1-\delta_{2}u^{\ast}(a, t)]p^{\ast}E(z)(a, t)\xi(0, t)\, {\rm d}a\, {\rm d}t \\ & -\int_{D}\beta_{S}\big(a, t, E(p^{\ast})(a, t), S^{\ast}(t)\big)[1-\delta_{2}u^{\ast}(a, t)]p^{\ast}(a, t)Q(t)\xi(0, t)\, {\rm d}a\, {\rm d}t \\ & +\int_{D}\delta_{2}\beta\big(a, t, E(p^{\ast})(a, t), S^{\ast}(t)\big)v(a, t)p^{\ast}(a, t)\xi(0, t)\, {\rm d}a\, {\rm d}t. \end{align} $ | (5.15) |
Thus, from (5.14) and (5.15) and a simple calculation, we obtain
$ \begin{align} \int_{D}\Big(\frac{\partial \xi}{\partial t}&+\frac{\partial \xi}{\partial a}\Big)z(a, t)\, {\rm d}a\, {\rm d}t \\ & = \int_{0}^{a_{\dagger}}z(a, T)\, {\rm d}a - \int_{D}\beta\big(a, t, E(p^{\ast})(a, t), S^{\ast}(t)\big)[1-\delta_{2}u^{\ast}(a, t)]z(a, t)\xi(0, t)\, {\rm d}a\, {\rm d}t \\ & -\int_{D}z(a, t)\alpha\int_{a}^{a_{\dagger}}\beta_{E}\big(r, t, E(p^{\ast})(r, t), S^{\ast}(t)\big)[1-\delta_{2}u^{\ast}(r, t)]\omega(r)p^{\ast}(r, t)\xi(0, t)\, {\rm d}r\, {\rm d}a\, {\rm d}t \\ & -\int_{D}z(a, t)\int_{0}^{a}\beta_{E}\big(r, t, E(p^{\ast})(r, t), S^{\ast}(t)\big)[1-\delta_{2}u^{\ast}(r, t)]\omega(r)p^{\ast}(r, t)\xi(0, t)\, {\rm d}r\, {\rm d}a\, {\rm d}t \\ & -\int_{D}z(a, t)\int_{0}^{a_{\dagger}}\beta_{S}\big(r, t, E(p^{\ast})(r, t), S^{\ast}(t)\big)[1-\delta_{2}u^{\ast}(r, t)][1-\omega(r)]p^{\ast}(r, t)\xi(0, t)\, {\rm d}a\, {\rm d}t \\ & + \int_{D}\delta_{2}\beta\big(a, t, E(p^{\ast})(a, t), S^{\ast}(t)\big)v(a, t)p^{\ast}(a, t)\xi(0, t)\, {\rm d}a\, {\rm d}t + \int_{D}\delta_{1}v(a, t)p^{\ast}(a, t)\xi(a, t)\, {\rm d}a\, {\rm d}t \\ &+ \int_{D}z(a, t)\Phi'(I^{\ast}(t))\int_{0}^{a_{\dagger}}m(r)p^{\ast}(r, t)\xi(r, t)\, {\rm d}r\, {\rm d}a\, {\rm d}t \\ &+ \int_{D}z(a, t)\big[\mu(a, t)+\delta_{1}u^{\ast}(a, t)+\Phi(I^{\ast}(t))\big]\xi(a, t)\, {\rm d}a\, {\rm d}t. \end{align} $ | (5.16) |
Multiplying $ z(a, t) $ on both sides of the first equation of (5.12) and integrating on $ D $, we get
$ \begin{align} \int_{D}\Big(\frac{\partial \xi}{\partial t}&+\frac{\partial \xi}{\partial a}\Big)z(a, t)\, {\rm d}a\, {\rm d}t \\ & = -\int_{D}z(a, t)\alpha\int_{a}^{a_{\dagger}}\beta_{E}\big(r, t, E(p^{\ast})(r, t), S^{\ast}(t)\big)[1-\delta_{2}u^{\ast}(r, t)]\omega(r)p^{\ast}(r, t)\xi(0, t)\, {\rm d}r\, {\rm d}a\, {\rm d}t \\ & -\int_{D}z(a, t)\int_{0}^{a}\beta_{E}\big(r, t, E(p^{\ast})(r, t), S^{\ast}(t)\big)[1-\delta_{2}u^{\ast}(r, t)]\omega(r)p^{\ast}(r, t)\xi(0, t)\, {\rm d}r\, {\rm d}a\, {\rm d}t \\ & -\int_{D}z(a, t)\int_{0}^{a_{\dagger}}\beta_{S}\big(r, t, E(p^{\ast})(r, t), S^{\ast}(t)\big)[1-\delta_{2}u^{\ast}(r, t)][1-\omega(r)]p^{\ast}(r, t)\xi(0, t)\, {\rm d}r\, {\rm d}a\, {\rm d}t \\ & + \int_{D}z(a, t)\Phi'(I^{\ast}(t))\int_{0}^{a_{\dagger}}m(r)p^{\ast}(r, t)\xi(r, t)\, {\rm d}r\, {\rm d}a\, {\rm d}t - \int_{D}z(a, t)r(t)u^{\ast}(a, t)\, {\rm d}a\, {\rm d}t \\ &+ \int_{D}z(a, t)\big[\mu(a, t)+\delta_{1}u^{\ast}(a, t)+\Phi(I^{\ast}(t))\big]\xi(a, t)\, {\rm d}a\, {\rm d}t \\ & - \int_{D}z(a, t)\beta\big(a, t, E(p^{\ast})(a, t), S^{\ast}(t)\big)[1-\delta_{2}u^{\ast}(a, t)]\xi(0, t)\, {\rm d}a\, {\rm d}t. \end{align} $ | (5.17) |
Thus, from (5.16) and (5.17), we have
$ \begin{align} \int_{0}^{a_{\dagger}}z(a, T)&\, {\rm d}a+\int_{0}^{T}\int_{0}^{a_{\dagger}}r(t)z(a, t)u^{\ast}(a, t)\, {\rm d}a\, {\rm d}t \\ = & - \int_{0}^{T}\int_{0}^{a_{\dagger}}[\delta_{1}\xi(a, t)+\delta_{2}\beta\big(a, t, E(p^{\ast})(a, t), S^{\ast}(t)\big)\xi(0, t)]v(a, t)p^{\ast}(a, t)\, {\rm d}a\, {\rm d}t. \end{align} $ | (5.18) |
For each $ v\in\mathcal{T}_{\mathcal{U}}(u^{\ast}) $, by (5.13) and (5.18), we claim that
$ \begin{align*} \int_{0}^{T}\int_{0}^{a_{\dagger}}[\delta_{1}\xi(a, t)+\delta_{2}\beta\big(a, t, E(p^{\ast})(a, t), S^{\ast}(t)\big)\xi(0, t)-r(t)] v(a, t)p^{\ast}(a, t)\, {\rm d}a\, {\rm d}t \leq0. \end{align*} $ |
That is, $ [\delta_{1}\xi(a, t)+\delta_{2}\beta\big(a, t, E(p^{\ast})(a, t), S^{\ast}(t)\big)\xi(0, t)-r(t)]p^{\ast}(a, t)\in\mathcal{N}_{\mathcal{U}}(u^{\ast}) $. Hence, the conclusion follows from using the structure of normal cone.
In this section, we will give an illustrative example to show the conditions for the existence are not empty.
Example 1. Let the parameters be $ a_{\dagger} = 10 $, $ T = 20 $, $ \alpha = 0.3 $, $ L = 2 $, $ \delta_{1} = 0.05 $, $ \delta_{2} = 0.02 $. Obviously, $ \delta_{2}L = 0.04 < 1 $. With the weight functions $ \omega(a) = 0.5 $ and $ m(a) = 1 $, the immigration rate $ f(a, t) = (1+\sin\pi t)(10-a) $ and the initial age distribution $ p_{0}(a) = 0.4(10-a)(1+\cos 2a) $, we can easily verify that assumption $ {\bf(A_4)} $ holds. Choose the natural mortality rate to be
$ \begin{align*} \mu(a, t) = \left\{ \begin{array}{ll} (2+\cos \pi t)\left[0.04(1+\cos a)+\frac{(2-a)^{2}}{20}\right], \qquad &(a, t)\in [0, 2)\times[0, 20], \\ (2+\cos \pi t)0.04(1+\cos a), &(a, t)\in [0, 8)\times[0, 20], \\ (2+\cos \pi t)\left[0.04(1+\cos a)+\frac{a-8}{10-a}\right], &(a, t)\in [8, 10)\times[0, 20]. \end{array} \right. \end{align*} $ |
For $ t\in[0, 20] $, a direct calculation gives
$ \begin{align*} \int_{0}^{a_{\dagger}}\mu(a, t)\, {\rm d}a = & (2+\cos \pi t)\Bigg[0.04\int_{0}^{10}(1+\cos a)\, {\rm d}a+\int_{0}^{2}\frac{(2-a)^{2}}{20}\, {\rm d}a+\int_{8}^{10}\frac{a-8}{10-a}\, {\rm d}a\Bigg] \\ = & (2+\cos \pi t)\Bigg[0.04(a+\sin a)\bigg|_{0}^{10}-\frac{(2-a)^{3}}{60}\bigg|_{0}^{2}-a\bigg|_{8}^{10} -2\ln(10-a)\bigg|_{8}^{10}\Bigg] \\ = & +\infty, \end{align*} $ |
which means that assumption $ {\bf(A_1)} $ holds. Assume that $ \Phi(s) = 0.02(e^{-0.8s}+\cos s+2) $. It is easy to show that $ \Phi(s)\leq 0.08 $ for any $ s\in R_{+} $. Moreover, for any $ s_{1} $, $ s_{2}\in R_{+} $, we have
$ \begin{align*} |\Phi(s_{1})-\Phi(s_{2})| = & 0.02\left|e^{-0.8s_{1}}+\cos s_{1}-e^{-0.8s_{2}}-\cos s_{2}\right| \\ \leq& 0.02\left|e^{-0.8s_{1}}-e^{-0.8s_{2}}\right|+0.02|\cos s_{1}-\cos s_{2}| \\ \leq& 0.04|s_{1}-s_{2}|. \end{align*} $ |
Thus assumption $ {\bf(A_2)} $ holds. For any $ (t, s, q)\in[0, 20]\times R_{+}\times R_{+} $, take the birth rate as
$ \begin{align*} \beta(a, t, s, q) = \left\{ \begin{array}{ll} 0, \qquad &a\in [0, 1)\cup[9, 10), \\[2.5mm] (1+\sin \pi t)\left[0.31(1+\sin a)+\frac{0.03}{1+s}+0.2(1+\sin q)\right](a-1)^{2}, &a\in [1, 2), \\[2.5mm] (1+\sin \pi t)\left[0.51(1+\sin a)+\frac{0.05}{1+s}+0.5(1+\sin q)\right], &a\in [2, 7), \\[2.5mm] (1+\sin \pi t)\left[0.21(1+\sin a)+\frac{0.03}{1+s}+0.2(1+\sin q)\right](a-9)^{2}, &a\in [7, 9). \end{array} \right. \end{align*} $ |
By a simple computation, we have $ \beta(a, t, s, q)\leq 2.1 $ for any $ (a, t, s, q)\in[0, 10)\times[0, 20]\times R_{+}\times R_{+} $. Moreover, for any $ t\in[0, 20] $, $ s_{1} $, $ s_{2} $, $ q_{1} $, $ q_{2}\in R_{+} $, when $ a\in[1, 2) $, we have
$ \begin{align*} |\beta(a, t, s_{1}, q_{1})-\beta(a, t, s_{2}, q_{2})| \leq& 2\left|\frac{0.03}{1+s_{1}}+0.2(1+\sin q_{1})-\frac{0.03}{1+s_{2}}-0.2(1+\sin q_{2})\right| \\ \leq& 0.06\left|\frac{1}{1+s_{1}}-\frac{1}{1+s_{2}}\right|+0.4|\sin q_{1}-\sin q_{2}| \\ \leq& 0.4(|s_{1}-s_{2}|+|q_{1}-q_{2}|), \end{align*} $ |
when $ a\in[2, 7) $, we have
$ \begin{align*} |\beta(a, t, s_{1}, q_{1})-\beta(a, t, s_{2}, q_{2})| \leq& 2\left|\frac{0.05}{1+s_{1}}+0.5(1+\sin q_{1})-\frac{0.05}{1+s_{2}}-0.5(1+\sin q_{2})\right| \\ \leq& 0.1\left|\frac{1}{1+s_{1}}-\frac{1}{1+s_{2}}\right|+|\sin q_{1}-\sin q_{2}| \\ \leq& |s_{1}-s_{2}|+|q_{1}-q_{2}|, \end{align*} $ |
when $ a\in[7, 9) $, we have
$ \begin{align*} |\beta(a, t, s_{1}, q_{1})-\beta(a, t, s_{2}, q_{2})| \leq& 8\left|\frac{0.03}{1+s_{1}}+0.2(1+\sin q_{1})-\frac{0.03}{1+s_{2}}-0.2(1+\sin q_{2})\right| \\ \leq& 0.24\left|\frac{1}{1+s_{1}}-\frac{1}{1+s_{2}}\right|+1.6|\sin q_{1}-\sin q_{2}| \\ \leq& 1.6(|s_{1}-s_{2}|+|q_{1}-q_{2}|). \end{align*} $ |
Thus, for any $ a\in[0, a_{\dagger}) $ and $ t\in[0, T] $, we have
$ \begin{align*} |\beta(a, t, s_{1}, q_{1})-\beta(a, t, s_{2}, q_{2})|\leq 1.6(|s_{1}-s_{2}|+|q_{1}-q_{2}|). \end{align*} $ |
This implies that assumption $ {\bf(A_3)} $ holds. Hence, from Theorems 3.1–3.3, for any $ p_{0}\in L_{+}^{1} $ and $ u\in\mathcal{U} $, system (2.1) has a unique non-negative solution $ p(a, t) $. Moreover, the solution has the form $ p(a, t) = \bar{p}^{y}(a, t)y(t) $. Here $ (\bar{p}^{y}, y)\in C([0, T]; L_{+}^{1})\times C([0, T]; R_{+}) $ is the solution of (3.5)–(3.6).
In view of the reproductive laws of vermin, we formulated and analyzed a hierarchical age-structured vermin contraception control model. The model is based on the assumption that the reproductive ability of vermin mainly depends on older females. It also considers the encounter mechanism between females and males. This allows the fertility of an individual to depend not only on age and time but also on their "internal environment" and the size of males. Note that sterilant has the dual effects of causing infertility and death of vermin. Thus, we assumed that the mortality of vermin depends not only on its intrinsic dynamics (including natural mortality and mortality caused by competition) but also on the effect of female sterilant. The dual effects of sterilant make the control variable appear not only in the principal equation (distributed control) but also in the boundary condition (boundary control). Our model contains some existing ones as special cases.
By transforming our model into two subsystems and using the contraction mapping principle, we have shown that the model has a unique non-negative bounded solution, which has a separable form. In this work, we discussed the existence of optimal management policy and derived the Euler-Lagrange optimality conditions. The former is established by using compactness and minimization sequences, while the latter is derived by employing adjoint systems and normal cones techniques. To show the compactness, we used the Fréchet-Kolmogorov Theorem (see Lemma 4.1) and its generalization (see Lemma 4.2). In order to construct the adjoint system, we used the continuity of the solution on the control parameters (see Theorem 3.4) and the continuity of the solution of an integro-partial differential equation with respect to its boundary distribution and inhomogeneous term (see Lemma 5.1).
This paper only discussed the existence and structure of the optimal management policy and did not carry out any numerical simulations. This is because it is very challenging to choose an appropriate numerical algorithm and analyze its convergence. The relevant numerical algorithm can be found in [20]. However, our model is more complicated than that in [20], because the birth rate depends not only on the "internal environment" of vermin but also on the number of males. We leave the study on the numerical algorithm of our optimal control problem as future work.
This work was supported by the National Natural Science Foundation of China (Nos. 12071418, 12001341).
The authors declare there is no conflict of interest.
[1] | International Diabetes Federation (2013) IDF Diabetes Atlas (6th Edition) . |
[2] | Schoenaker DA, Mishra GD, Callaway LK, et al. (2016) The Role of Energy, Nutrients, Foods, and Dietary Patterns in the Development of Gestational Diabetes Mellitus: A Systematic Review of Observational Studies. Diabetes Care ,39: 16-23. |
[3] | Zhang C, Liu S, Solomon CG, et al. (2006) Dietary fiber intake, dietary glycemic load, and the risk for gestational diabetes mellitus. Diabetes Care ,29: 2223-2230. |
[4] | Zhang C, Ning Y (2011) Effect of dietary and lifestyle factors on the risk of gestational diabetes: review of epidemiologic evidence. Am J Clin Nutr ,94: 1975S-1979S. |
[5] | Akhlaghi F, Bagheri SM, Rajabi O (2012) A Comparative Study of Relationship between Micronutrients and Gestational Diabetes. ISRN Obstet Gynecol ,2012: 470419. |
[6] | Solomon CG, Willett WC, Carey VJ (1997) A prospective study of pregravid determinants of gestational diabetes mellitus. JAMA ,278: 1078-1083. |
[7] | Bo S, Menato G, Lezo A, et al. (2001) Dietary fat and gestational hyperglycaemia. Diabetologia ,44: 972-978. |
[8] | Chu SY, Callaghan WM, Kim SY, et al. (2007) Maternal Obesity and Risk of Gestational DIabetes Mellitus. Diabetes Care ,30: 2070-2076. |
[9] | Saldana TM, Siega-Riz AM, Adair LS (2004) Effect of macronutrient intake on the development of glucose intolerance during pregnancy. Am J Clin Nutr ,79: 479-486. |
[10] | Wang Y, Storlien LH, Jenkins AB, et al. (2000) Dietary Variables and Glucose Tolerance in Prenancy. Diabetes Care ,23: 460-464. |
[11] | Krebs-Smith SM (2014) Approaches to Dietary Pattern Analyses: Potential to Inform Guidance. National Cancer Institute, U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES, National Institute of Health. Nutrition Evidence Library, Technical Expert Collaborative on Study of Dietary Patterns. |
[12] | Wirt A, Collins CE (2009) Diet quality—what is it and does it matter? Public Health Nutr ,12: 2473-2492. |
[13] | United Nations (2014) Country Classification. World Economic Situation and Prospects ,143-150. |
[14] | Zhang C, Schulze MB, Solomon CG, et al. (2006) A prospective study of dietary patterns, meat intake and the risk of gestational diabetes mellitus. Diabetologia ,49: 2604-2613. |
[15] | Radesky JS, Oken E, Rifas-Shiman SL, et al. (2008) Diet during early pregnancy and development of gestational diabetes. Paediatr Perinat Epidemiol ,22: 47-59. |
[16] | Morrison MK, Koh D, Lowe JM, et al. (2012) Postpartum diet quality in Australian women following a gestational diabetes pregnancy. Eur J Clin Nutr ,66: 1160-1165. |
[17] | Tobias DK, Hu FB, Chavarro J, et al. (2012) Healthful dietary patterns and type 2 diabetes mellitus risk among women with a history of gestational diabetes mellitus. Arch Intern Med ,172: 1566-1572. |
[18] | Tobias DK, Zhang C, Chavarro J, et al. (2012) Prepregnancy adherence to dietary patterns and lower risk of gestational diabetes mellitus. Am J Clin Nutr ,96: 289-295. |
[19] | Louie JC, Markovic TP, Ross GP, et al. (2013) Higher glycemic load diet is associated with poorer nutrient intake in women with gestational diabetes mellitus. Nutr Res ,33: 259-265. |
[20] | Lim SY, Yoo HJ, Kim AL, et al. (2013) Nutritional Intake of Pregnant Women with Gestational Diabetes or Type 2 Diabetes Mellitus. Clin Nutr Res ,2: 81-90. |
[21] | Ferranti EP, Narayan KM, Reilly CM, et al. (2014) Dietary Self-Efficacy Predicts AHEI Diet Quality in Women With Previous Gestational Diabetes. Diabetes Educ ,40: 688-699. |
[22] | Xiao RS, Simas TA, Person SD, et al. (2015) Diet Quality and History of Gestational Diabetes Mellitus Among Childbearing Women, United States, 2007–2010. Prev Chronic Dis ,12: 140360. |
[23] | Gresham E, Collins CE, Mishra GD, et al. (2016) Diet quality before or during pregnancy and the relationship with pregnancy and birth outcomes: The Australian Longitudinal Study on Women's Health. Public Health Nutr ,19: 2975-2983. |
[24] | Meinilä J, Valkama A, Koivusalo SB, et al. (2016) Healthy Food Intake Index (HFII) - Validity and reproducibility in a gestational-diabetes-risk population. BMC Public Health ,16: 680. |
[25] | de Seymour J, Chia A, Colega M, et al. (2016) Maternal dietary patterns and gestational diabetes mellitus in a multi-ethnic Asian cohort: The GUSTO study. Nutrients ,8: 574. |
[26] | Gicevic S, Gaskins AJ, Fung TT, et al. (2018) Evaluating pre-pregnancy dietary diversity vs. dietary quality scores as predictors of gestational diabetes and hypertensive disorders of pregnancy. PLoS One ,13: e0195103. |
[27] | Nascimento GR, Alves LV, Fonseca CL, et al. (2016) Dietary patterns and gestational diabetes mellitus in a low-income pregnant women population in Brazila—A cohort study. Arch Latinoam Nutri ,66: 301-308. |
[28] | Izadi V, Tehrani H, Haghighatdoost F, et al. (2016) Adherence to the DASH and Mediterranean diets is associated with decreased risk for gestational diabetes mellitus. Nutrition ,32: 1092-1096. |
[29] | Sedaghat F, Akhoondan M, Ehteshami M, et al. (2017) Maternal Dietary Patterns and Gestational Diabetes Risk: A Case-Control Study. J Diabetes Res ,2017: 5173926. |
[30] | Zareei S, Homayounfar R, Naghizadeh MM, et al. (2018) Dietary pattern in pregnancy and risk of gestational diabetes mellitus (GDM). Diabetes Metab Syndr ,12: 399-404. |
[31] | Sahariah SA, Potdar RD, Gandhi M, et al. (2016) A Daily Snack Containing Leafy Green Vegetables, Fruit, and Milk before and during Pregnancy Prevents Gestational Diabetes in a Randomized, Controlled Trial in Mumbai, India. J Nutr ,146: 1453S-1460S. |
[32] | Lao TT, Chan PL, Tam KF (2001) Gestational diabetes mellitus in the last trimester - A feature of maternal iron excess? Diabet Med ,18: 218-223. |
[33] | Lao TT, Ho LF (2004) Impact of iron deficiency anemia on prevalence of gestational diabetes mellitus. Diabetes Care ,27: 650-656. |
[34] | Chan KKL, Chan BCP, Lam KF, et al. (2009) Iron supplement in pregnancy and development of gestational diabetes—A randomised placebo-controlled trial. BJOG: Int J Obstet Gy ,116: 789-797. |
[35] | Bo S, Menato G, Villois P, et al. (2009) Iron supplementation and gestational diabetes in midpregnancy. Am J Obstet Gynecol ,201: 158.e1-158.e6. |
[36] | Bowers K, Yeung E, Williams MA, et al. (2011) A prospective study of prepregnancy dietary iron intake and risk for gestational diabetes mellitus. Diabetes Care ,34: 1557-1563. |
[37] | Qiu C, Zhang C, Gelaye B, et al. (2011) Gestational diabetes mellitus in relation to maternal dietary heme iron and nonheme iron intake. Diabetes Care ,34: 1564-1569. |
[38] | Helin A, Kinnunen TI, Raitanen J, et al. (2012) Iron intake, haemoglobin and risk of gestational diabetes: A prospective cohort study. BMJ Open ,2: e001730. |
[39] | Darling AM, Mitchell AA, Werler MM (2016) Preconceptional iron intake and gestational diabetes mellitus. Int J Environ Res Public Health ,13: 525. |
[40] | Bo S, Lezo A, Menato G, et al. (2005) Gestational hyperglycemia, zinc, selenium, and antioxidant vitamins. Nutrition ,21: 186-191. |
[41] | Nabouli MR, Lassoued L, Bakri Z, et al. (2016) Modification of Total Magnesium level in pregnant Saudi Women developing gestational diabetes mellitus. Diabetes Metab Syndr ,10: 183-185. |
[42] | Zhang C, Qiu C, Hu FB, et al. (2008) Maternal plasma 25-hydroxyvitamin D concentrations and the risk for gestational diabetes mellitus. PLoS One ,3: e3753. |
[43] | Makgoba M, Nelson SM, Savvidou M, et al. (2011) First-trimester circulating 25-hydroxyvitamin D levels and development of gestational diabetes mellitus. Diabetes Care ,34: 1091-1093. |
[44] | Baker AM, Haeri S, Camargo CA, et al. (2012) First-trimester maternal vitamin D status and risk for gestational diabetes (GDM) a nested case-control study. Diabetes Metab Res Rev ,28: 164-168. |
[45] | Burris HH, Rifas-Shiman SL, Kleinman K, et al. (2012) Vitamin D deficiency in pregnancy and gestational diabetes mellitus. Am J Obstet Gynecol ,207: 182.e1-182.e8. |
[46] | Whitelaw DC, Scally AJ, Tuffnell DJ, et al. (2014) Associations of circulating calcium and 25-hydroxyvitamin D with glucose metabolism in pregnancy: A cross-sectional study in European and south Asian women. J Clin Endocrinol Metab ,99: jc20132896. |
[47] | Arnold DL, Enquobahrie DA, Qiu C, et al. (2015) Early Pregnancy Maternal Vitamin D Concentrations and Risk of Gestational Diabetes Mellitus. Paediatr Perinat Epidemiol ,29: 200-210. |
[48] | Wolak T, Sergienko R, Wiznitzer A, et al. (2010) Low potassium level during the first half of pregnancy is associated with lower risk for the development of gestational diabetes mellitus and severe pre-eclampsia. J Matern Fetal Neonatal Med ,23: 994-998. |
[49] | Wolak T, Shoham-Vardi I, Sergienko R, et al. (2016) High potassium level during pregnancy is associated with future cardiovascular morbidity. Journal Matern Fetal Neonatal Med ,29: 1021-1024. |
[50] | Gunton JE, Hams G, Hitchman R, et al. (2001) Serum chromium does not predict glucose tolerance in late pregnancy. Am J Clin Nutr ,73: 99-104. |
[51] | Houldsworth A, Williams R, Fisher AS, et al. (2017) Proposed Relationships between the Degree of Insulin Resistance, Serum Chromium Level/BMI and Renal Function during Pregnancy and the Pathogenesis of Gestational Diabetes Mellitus. Int J Endocrinol Metab Disord ,3: 1-8. |
[52] | Zhang C, Williams MA, Sorensen TK, et al. (2004) Maternal plasma ascorbic acid (vitamin C) and risk of gestational diabetes mellitus. Epidemiology ,15: 597-604. |
[53] | Afkhami-Ardekani M, Rashidi M (2009) Iron status in women with and without gestational diabetes mellitus. J Diabetes Complications ,23: 194-198. |
[54] | Amiri FN, Basirat Z, Omidvar S, et al. (2013) Comparison of the serum iron, ferritin levels and total iron-binding capacity between pregnant women with and without gestational diabetes. J Nat Sci Biol Med ,4: 302-305. |
[55] | Behboudi-Gandevani S, Safary K, Moghaddam-Banaem L, et al. (2013) The relationship between maternal serum iron and zinc levels and their nutritional intakes in early pregnancy with gestational diabetes. Biol Trace Elem Res ,154: 7-13. |
[56] | Javadian P, Alimohamadi S, Gharedaghi MH, et al. (2014) Gestational diabetes mellitus and iron supplement; effects on pregnancy outcome. Acta Med Iran ,52: 385-389. |
[57] | Wang Y, Tan M, Huang Z, et al. (2002) Elemental Contents in Serum of Pregnant Women with Gestational Diabetes Mellitus. Biol Trace Elem Res ,88: 113-118. |
[58] | Hussein HK (2005) Level of serum copper and zinc in pregnant women with gestational diabetes mellitus. J Fac Med Baghdad ,47: 287-289. |
[59] | Roshanravan N, Alamdari NM, Ghavami A, et al. (2017) Serum levels of copper, zinc and magnesium in pregnant women with Impaired Glucose Tolerance test: a case-control study. Prog Nutr ,20: 1-5. |
[60] | Behrashi M, Mahdian M, Aliasgharzadeh A (2011) Effects of zinc supplementation on glycemic control and complications of gestational diabetes. Pak J Med Sci ,27: 1203-1206. |
[61] | Genova MP, Atanasova B, Todorova-Ananieva K (2014) Plasma and Intracellular Erythocyte Zinc Levels during Pregnancy in Bulgarian Females with and without Gestational Diabetes. Int J Adv Res ,2: 661-667. |
[62] | Roshanravan N, Alizadeh M, Hedayati M, et al. (2015) Effect of zinc supplementation on insulin resistance, energy and macronutrients intakes in pregnant women with impaired glucose tolerance. Iran J Public Health ,44: 211-217. |
[63] | Karamali M, Heidarzadeh Z, Seifati SM, et al. (2015) Zinc supplementation and the effects on metabolic status in gestational diabetes: A randomized, double-blind, placebo-controlled trial. J Diabetes Complications ,29: 1314-1319. |
[64] | Genova MP, Atanasova B, Todorova-Ananieva K, et al. (2016) Zinc and Insulin Resistance in Pregnancy Complicated with Gestational Diabetes. Int J Health Sci Res ,6: 191-197. |
[65] | Parast VM, Paknahad Z (2017) Antioxidant Status and Risk of Gestational Diabetes Mellitus: a Case-Control Study. Clin Nutr Res ,6: 81-88. |
[66] | Genova MP, Todorova-Ananieva K, Atanasova B (2014) Plasma and Intracellular Erythrocyte Magnesium Levels in Healthy Pregnancy and Pregnancy with Gestational Diabetes. Int J Sci Res ,3: 326-329. |
[67] | Asemi Z, Jamilian M, Mesdaghinia E, et al. (2015) Effects of selenium supplementation on glucose homeostasis, inflammation, and oxidative stress in gestational diabetes: Randomized, double-blind, placebo-controlled trial. Nutrition ,31: 1235-1242. |
[68] | Mostafavi E, Nargesi AA, Asbagh FA, et al. (2015) Abdominal obesity and gestational diabetes: The interactive role of magnesium. Magnes Res ,28: 116-125. |
[69] | Goker Tasdemir U, Tasdemir N, Kilic S, et al. (2015) Alterations of ionized and total magnesium levels in pregnant women with gestational diabetes mellitus. Gynecol Obstet Invest ,79: 19-24. |
[70] | Karamali M, Bahramimoghadam S, Sharifzadeh F, et al. (2018) Magnesium-zinc-calcium-vitamin D co-supplementation improves glycemic control and markers of cardio-metabolic risk in gestational diabetes: a randomized, double-blind, placebo-controlled trial. Appl Physiol Nutr Metab ,43: 565-570. |
[71] | Maktabi M, Jamilian M, Amirani E, et al. (2018) The effects of magnesium and vitamin E co-supplementation on parameters of glucose homeostasis and lipid profiles in patients with gestational diabetes. Lipids Health Dis ,17: 163. |
[72] | Tan M, Sheng L, Qian Y, et al. (2001) Changes of serum selenium in pregnant women with gestational diabetes mellitus. Biol Trace Elem Res ,83: 231-237. |
[73] | Kilinc M, Guven MA, Ezer M, et al. (2008) Evaluation of serum selenium levels in Turkish women with gestational diabetes mellitus, glucose intolerants, and normal controls. Biol Trace Elem Res ,123: 35-40. |
[74] | Asemi Z, Jamilian M, Esmaillzadeh A, et al. (2014) Effects of calcium-vitamin D co-supplementation on glycaemic control, inflammation and oxidative stress in gestational diabetes: A randomised placebo-controlled trial. Diabetologia ,57: 1798-1806. |
[75] | Zhang Q, Cheng Y, He M, et al. (2016) Effect of various doses of vitamin D supplementation on pregnant women with gestational diabetes mellitus: A randomized controlled trial. Exp Ther Med ,12: 1889-1895. |
[76] | Jamilian M, Samimi M, Ebrahimi FA, et al. (2017) The effects of vitamin D and omega-3 fatty acid co-supplementation on glycemic control and lipid concentrations in patients with gestational diabetes. J Clin Lipidol ,11: 459-468. |
[77] | Prasad DKV, Sheela P, Kumar AN, et al. (2013) Iron Levels Increased in Serum from Gestational Diabetes Mellitus Mothers in Coastal Area of Andhra Pradesh. J Diabetes Metab ,4: 269. |
[78] | Joseph M, Das Gupta R, Shetty S, et al. (2017) How Adequate are Macro- and Micronutrient Intake in Pregnant Women with Diabetes Mellitus? A Study from South India. J Obstet Gynecol India ,68: 400-407. |
[79] | Hamdan HZ, Elbashir LM, Hamdan SZ, et al. (2014) Zinc and selenium levels in women with gestational diabetes mellitus at Medani Hospital, Sudan. J Obstet Gynaecol ,34: 567-570. |
[80] | Asha D, Nivedita N, Daniel M, et al. (2014) Association of serum copper level with fasting serum glucose in south Indian women with gestational diabetes mellitus. Int J Clin Exp Physiol ,1: 298-302. |
[81] | Sundararaman PG, Sridhar GR, Sujatha V, et al. (2012) Serum chromium levels in gestational diabetes mellitus. Indian J Endocrinol Metab ,16: S70-S73. |
[82] | Muthukrishnan J, Dhruv G (2015) Vitamin D status and gestational diabetes mellitus. Indian J Endocrinol Metab ,19: 616-619. |
[83] | Krishnaveni GV, Hill JC, Veena SR, et al. (2009) Low plasma vitamin B12 in pregnancy is associated with gestational ‘diabesity’ and later diabetes. Diabetologia ,52: 2350-2358. |
[84] | Mishu FA, Muttalib MA, Sultana B (2018) Serum Zinc and Copper Levels in Gestational Diabetes Mellitus in a Tertiary Care Hospital of Bangladesh. Birdem Med J ,8: 52-55. |
[85] | American Diabetes Association (2018) Management of Diabetes in Pregnancy: Standards of Medical Care in Diabetes. Diabetes Care ,41: S137-S143. |
[86] | Esmaillzadeh A, Azadbakht L, Kimiagar M (2007) Dietary Pattern Analysis: A New Approach to Identify Diet-disease Relations. Iran J Nutr Sci Food Technol ,2: 71-80. |
[87] | Rashidkhani B, Shaneshin M, Neyestani T, et al. (2009) Validity of energy intake reporting and its association with dietary patterns among 18–45-year old women in Tehran. Iran J Nutr Sci Food Technol ,4: 63-74. |
[88] | Green R, Milner J, Joy EJ, et al. (2016) Dietary patterns in India: a systematic review. Br J Nutr ,116: 142-148. |
[89] | Mazzocchi M, Brasili C, Sandri E (2008) Trends in dietary patterns and compliance with World Health Organization recommendations: A cross-country analysis. Public Health Nutr ,11: 535-540. |
[90] | Catalano PM, McIntyre HD, Cruickshank JK, et al. (2012) The hyperglycemia and adverse pregnancy outcome study: Associations of GDM and obesity with pregnancy outcomes. Diabetes Care ,35: 780-786. |
[91] | Genova M, Atanasova B, Ivanova I, et al. (2018) Trace Elements and Vitamin D in Gestational Diabetes. Acta Med Bulgarica ,45. |
[92] | Fu S, Li F, Zhou J, et al. (2016) The Relationship Between Body Iron Status, Iron Intake and Gestational Diabetes. Medicine ,95: e2383. |
[93] | Fernández-Real JM, McClain D, Manco M (2015) Mechanisms Linking Glucose Homeostasis and Iron Metabolism Toward the Onset and Progression of Type 2 Diabetes. Diabetes Care ,38: 2169-2176. |
[94] | Moghaddam-banaem L (2017) Maternal Serum Iron and Zinc Levels and Gestational Diabetes. Arch Med Lab Sci ,3: 28-33. |
[95] | Kong FJ, Ma LL, Chen SP, et al. (2016) Serum selenium level and gestational diabetes mellitus: a systematic review and meta-analysis. Nutr J ,15: 94. |
[96] | Chehade JM, Sheikh-Ali M, Mooradian AD (2009) The Role of Micronutrients in Managing Diabetes. Diabetes Spectrum ,22: 214-218. |
1. | ChungYuen Khew, Rahmad Akbar, Norfarhan Mohd-Assaad, Progress and challenges for the application of machine learning for neglected tropical diseases, 2023, 12, 2046-1402, 287, 10.12688/f1000research.129064.1 | |
2. | ChungYuen Khew, Rahmad Akbar, Norfarhan Mohd-Assaad, Progress and challenges for the application of machine learning for neglected tropical diseases, 2025, 12, 2046-1402, 287, 10.12688/f1000research.129064.2 |