Review

The Molecular Basis of Neural Memory. Part 7: Neural Intelligence (NI) versus Artificial Intelligence (AI)

  • The link of memory to intelligence is incontestable, though the development of electronic artifacts with memory has confounded cognitive and computer scientists’ conception of memory and its relevance to “intelligence”. We propose two categories of “Intelligence”: (1) Logical (objective) — mathematics, numbers, pattern recognition, games, programmable in binary format. (2) Emotive (subjective) — sensations, feelings, perceptions, goals desires, sociability, sex, food, love. The 1st has been reduced to computational algorithms of which we are well versed, witness global technology and the internet. The 2nd relates to the mysterious process whereby (psychic) emotive states are achieved by neural beings sensing, comprehending, remembering and dealing with their surroundings.
    Many theories and philosophies have been forwarded to rationalize this process, but as neuroscientists, we remain dissatisfied. Our own musings on universal neural memory, suggest a tripartite mechanism involving neurons interacting with their surroundings, notably the neural extracellular matrix (nECM) with dopants [trace metals and neurotransmitters (NTs)]. In particular, the NTs are the molecular encoders of emotive states. We have developed a chemographic representation of such a molecular code.
    To quote Longuet-Higgins, “Perhaps it is time for the term ‘artificial intelligence’ to be replaced by something more modest and less provisional”. We suggest “artifact intelligence” (ARTI) or “machine intelligence” (MI), neither of which imply emulation of emotive neural processes, but simply refer to the ‘demotive’ (lacking emotive quality) capability of electronic artifacts that employ a recall function, to calculate algorithms.

    Citation: Gerard Marx, Chaim Gilon. The Molecular Basis of Neural Memory. Part 7: Neural Intelligence (NI) versus Artificial Intelligence (AI)[J]. AIMS Medical Science, 2017, 4(3): 241-260. doi: 10.3934/medsci.2017.3.241

    Related Papers:

    [1] Boyu Wang . A splitting lattice Boltzmann scheme for (2+1)-dimensional soliton solutions of the Kadomtsev-Petviashvili equation. AIMS Mathematics, 2023, 8(11): 28071-28089. doi: 10.3934/math.20231436
    [2] Amna Mumtaz, Muhammad Shakeel, Abdul Manan, Marouan Kouki, Nehad Ali Shah . Bifurcation and chaos analysis of the Kadomtsev Petviashvili-modified equal width equation using a novel analytical method: describing ocean waves. AIMS Mathematics, 2025, 10(4): 9516-9538. doi: 10.3934/math.2025439
    [3] Jalil Manafian, Onur Alp Ilhan, Sizar Abid Mohammed . Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. AIMS Mathematics, 2020, 5(3): 2461-2483. doi: 10.3934/math.2020163
    [4] Cheng Chen . Hyperbolic function solutions of time-fractional Kadomtsev-Petviashvili equation with variable-coefficients. AIMS Mathematics, 2022, 7(6): 10378-10386. doi: 10.3934/math.2022578
    [5] Abeer S. Khalifa, Hamdy M. Ahmed, Niveen M. Badra, Jalil Manafian, Khaled H. Mahmoud, Kottakkaran Sooppy Nisar, Wafaa B. Rabie . Derivation of some solitary wave solutions for the (3+1)- dimensional pKP-BKP equation via the IME tanh function method. AIMS Mathematics, 2024, 9(10): 27704-27720. doi: 10.3934/math.20241345
    [6] Wafaa B. Rabie, Hamdy M. Ahmed, Taher A. Nofal, Soliman Alkhatib . Wave solutions for the (3+1)-dimensional fractional Boussinesq-KP-type equation using the modified extended direct algebraic method. AIMS Mathematics, 2024, 9(11): 31882-31897. doi: 10.3934/math.20241532
    [7] Gulnur Yel, Haci Mehmet Baskonus, Wei Gao . New dark-bright soliton in the shallow water wave model. AIMS Mathematics, 2020, 5(4): 4027-4044. doi: 10.3934/math.2020259
    [8] Jamilu Sabi'u, Sekson Sirisubtawee, Surattana Sungnul, Mustafa Inc . Wave dynamics for the new generalized (3+1)-D Painlevé-type nonlinear evolution equation using efficient techniques. AIMS Mathematics, 2024, 9(11): 32366-32398. doi: 10.3934/math.20241552
    [9] Xiaoli Wang, Lizhen Wang . Traveling wave solutions of conformable time fractional Burgers type equations. AIMS Mathematics, 2021, 6(7): 7266-7284. doi: 10.3934/math.2021426
    [10] Zhe Ji, Yifan Nie, Lingfei Li, Yingying Xie, Mancang Wang . Rational solutions of an extended (2+1)-dimensional Camassa-Holm- Kadomtsev-Petviashvili equation in liquid drop. AIMS Mathematics, 2023, 8(2): 3163-3184. doi: 10.3934/math.2023162
  • The link of memory to intelligence is incontestable, though the development of electronic artifacts with memory has confounded cognitive and computer scientists’ conception of memory and its relevance to “intelligence”. We propose two categories of “Intelligence”: (1) Logical (objective) — mathematics, numbers, pattern recognition, games, programmable in binary format. (2) Emotive (subjective) — sensations, feelings, perceptions, goals desires, sociability, sex, food, love. The 1st has been reduced to computational algorithms of which we are well versed, witness global technology and the internet. The 2nd relates to the mysterious process whereby (psychic) emotive states are achieved by neural beings sensing, comprehending, remembering and dealing with their surroundings.
    Many theories and philosophies have been forwarded to rationalize this process, but as neuroscientists, we remain dissatisfied. Our own musings on universal neural memory, suggest a tripartite mechanism involving neurons interacting with their surroundings, notably the neural extracellular matrix (nECM) with dopants [trace metals and neurotransmitters (NTs)]. In particular, the NTs are the molecular encoders of emotive states. We have developed a chemographic representation of such a molecular code.
    To quote Longuet-Higgins, “Perhaps it is time for the term ‘artificial intelligence’ to be replaced by something more modest and less provisional”. We suggest “artifact intelligence” (ARTI) or “machine intelligence” (MI), neither of which imply emulation of emotive neural processes, but simply refer to the ‘demotive’ (lacking emotive quality) capability of electronic artifacts that employ a recall function, to calculate algorithms.


    Nonlinear evolution equations (NLEEs) play an important part in the study of nonlinear science, particular in plasma physics, quantum field theory, nonlinear wave propagation and nonlinear optical fibers so that it attracted the attention of a large number of scholars. The extended auxiliary equation technique [1], the Bernoulli's equation approach [2], the Exp-function technique [3], the homotopy analysis technique [4], the homotopy perturbation technique [5], the improved tan(ϕ/2)-expansion technique ([6,7]), the Hirota's bilinear technique [8,9,10,11,12,13,14,15], the He's variational principle [16,17], the binary Darboux transformation [18], the Lie group analysis [19,20], the Bäcklund transformation method [21], optimal galerkin-homotopy asymptotic method applied [22], and the multiple rogue waves method ([23,24]) have been proposed to solve NLEEs. By using these approaches, various exact solutions including soliton solution, lump solution, rogue wave solution, periodic solution, interaction solution, rational solution and high-order rational solution were obtained ([25,26]).

    In this paper, we mainly consider the following dynamical model, which can be used to describe some interesting (3+1)-dimensional waves of physics, namely, the generalized Kadomtsev-Petviashvili (gKP) equation [27]. That is

    (Ψt+6ΨΨx+Ψxxx)x+aΦyy=0, (1.1)

    and also above equation is integrable. Author of [28] introduced the modification of KP (mKP) equation [29] given

    4Ψt6Ψ2Ψx+Ψxxx+6Ψx1xΨy+Ψ1xΦyy=0. (1.2)

    The generalized KP (gKP) equation has been researched by some scholars [30,31,32] in which is given as

    (Ψt+αΨx+βΨΨx+γΨΨxxt)x+Ψyy=0. (1.3)

    The another type of gKP equation is given in [33] as below

    Ψxxxy+3(ΨxΨy)x+Ψtx+Ψty+ΨtzΨzz=0. (1.4)

    We first present the bilinear form for Eq (1.4), by taking the following first-order logarithmic transformation

    Ψ=2(lnf)x, (1.5)

    then, Eq (1.4) is turned into the bilinear form

    (D3xDy+DxDt+DyDt+DzDtD2z)f.f=0, (1.6)

    in which Dt,Dx,Dy and Dz are Hirota's bilinear frames. Cao [34] investigated the generalized B-type KP equation as follows

    Ψxxxy+3(ΨxΨy)x3ΨxzΨty=0. (1.7)

    Guan et al. [35] derived a (3+1)-dimensional gKP equation in below form

    Ψxxxy+3(ΨxΨy)x+αΨxxxz+3α(ΨxΨz)x+λ1Ψxt+λ2Φyt+λ3Φzt+ω1Φxz+ω2Φyz+ω3Φzz=0, (1.8)

    and some lump soliton solutions have been constructed using the Hirota bilinear method in [36]. Via transformation Ψ=2(lnf)x, the bilinear form of equation (1.8) reads:

    (D3xDy+αD3xDz+λ1DxDt+λ2DyDt+λ3DzDt+ω1DxDz+ω2DyDz+ω3D2z)f.f=0. (1.9)

    Most classical test functions for solving NLPDEs by using the several particular functions can be constructed via Hirota bilinear technique. In other words, Hirota operator covers most of the classical hypothesis function method. For example, the fractional generalized CBS-BK equation [37], the generalized Bogoyavlensky-Konopelchenko equation [38], the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation [39], and the (2+1)-dimensional generalized variable-coefficient KP-Burgers-type equation [40]. Diverse kinds of studies on solve NLPDEs were perused via mighty authors in which some of them can be stated, for instance, multivariate rogue wave to some PDEs [41], interaction lump solutions the gKP equation [42], the (1+1)-dimensional coupled integrable dispersionless equations [43]. Therefore, we embark on the new research topic of constructing the analytic solutions of nonlinear PDEs by exploring the bilinear method. According to recent studies, we can obtain some of the new exact analytic solutions of nonlinear PDEs by way of constructing their corresponding bilinear differential equations in [44,45,46,47]. Here, we will study the multiple Exp-function method (MEFM) for determining the multiple soliton solutions (MSSs). The MEFM employed by some of powerful authors for various nonlinear equations have been surveyed in more studies in [31,48,49,50]. Authors of [51] utilized the reduced differential transform method for solving partial differential equations. Also, Yu and Sun [52] studied the dimensionally reduced generalized KP equations by help of Hirita bilinear method and obtained of lump solutions.

    The outline of our paper is as follows: the multiple Exp-function scheme has been summarized in section 2. In sections 3, the KP equation, will investigate to finding 1-wave, 2-wave, and three-wave solutions. The Sections 4-6 devote to determined the periodic, cross-kink, and solitary wave solutions. Moreover, in Section 7, the modulation instability analysis is investigated. Finally in Section 8, the SIVP technique is considered with four cases for finding the solitary, bright, dark and singular wave solutions. A few of conclusions and outlook will be given in the final section.

    This method was summarized and improved for achieving the analytic solutions of NLPDEs:

    Step 1. Assume a nonlinear PDE is given in general frame as follows

    N(x,y,t,Ψ,Ψx,Ψy,Ψz,Ψt,Ψxx,Ψtt,...)=0. (2.1)

    Take the novel variables ξi=ξi(x,y,z,t),1in, by differentiable frames:

    ξi,x=αiξi,  ξi,y=βiξi,  ξi,z=γiξi,  ξi,t=δiξi,  1in, (2.2)

    where αi,βi,γi,1in, are unfound amounts. It noted that one can get as the following function

    ξi=ϖieθi,  θi=αix+βiy+γizδit,  1in, (2.3)

    where ϖi,1in, unspecified amounts.

    Step 2. Assuming the solution of the Eq (2.1) is function of variables ξi,1in:

    Ψ=Δ(ξ1,ξ2,...,ξn)Ω(ξ1,ξ2,...,ξn),  Δ=nr,s=1Mi,j=0Δrs,ijξirξjs,  Ω=nr,s=1Ni,j=0Ωrs,ijξirξjs,   (2.4)

    in which Δrs,ij and Ωrs,ij are amounts to be remained. Replacing Eq (2.4) into Eq (2.1) can be achieved the below form as:

    Ψ=Δ(ϖ1eα1x+β1y+γ1zδ1t,...,ϖneαnx+βny+γnzδnt)Ω(ϖ1eα1x+β1y+γ1zδ1t,...,ϖneαnx+βny+γnzδnt), (2.5)

    and also we have

    Δt=ni=1Δξiξi,t,  Ωt=ni=1Ωξiξi,t,  Δx=ni=1Δξiξi,x,  Ωx=ni=1Ωξiξi,x,  Δy=ni=1Δξiξi,y,  Δz=ni=1Δξiξi,z, Ωy=ni=1Ωξiξi,y,  Ωz=ni=1Ωξiξi,z,  (2.6)
       Ψt=Ωni=1Δξiξi,tΔni=1Ωξiξi,tΩ2,  Ψx=Ωni=1Δξiξi,xΔni=1Ωξiξi,xΩ2,
    Ψy=Ωni=1Δξiξi,yΔni=1Ωξiξi,yΩ2,  Ψz=Ωni=1Δξiξi,zΔni=1Ωξiξi,zΩ2.

    The one-wave function of the solution will be reduced as below form

    Ψ=2Δ1Ω1,  Ω1=1+ρ1+ρ2 eα1x+β1y+γ1zδ1t,  Δ1=σ1+σ2 eα1x+β1y+γ1zδ1t, (3.1)

    in which ρ1,ρ2,σ1 and σ2 are unspecified amounts. Substituting (3.1) into Eq (1.8), the below cases will be concluded as:

    Case I:

    α1=α1,  β1=β1,  ρ1=ρ1,  ρ2=  σ2(ρ1+1)σ1  ,  σ1=σ1,  σ2=σ2,  δ1=δ1,  γ1=γ1,  γ2=γ2. (3.2)

    Case II:

    α1=α1,  β1=  αα1  3γ1α1δ1λ1+α1γ1ω1δ1γ1λ3+γ12ω3  α13δ1λ2+γ1ω2,  ρ1=1,  ρ2=ρ2,   (3.3)
    σ1=σ1,  σ2=σ2,  δ1=δ1,  γ1=γ1,  γ2=γ2.

    Case III:

    α1=  γ1(αδ1λ2αγ1ω2δ1λ3+γ1ω3)δ1λ1γ1ω1,  β1=αγ1,  ρ1=ρ1,  ρ2=ρ2,   (3.4)
    σ1=σ1,  σ2=σ2,  δ1=δ1,    γ1=γ1,  γ2=γ2.

    Case IV:

    α1=ϑ,  β1=β1, or  β1=αγ1,   ρ1=1,  ρ2=ρ2,  σ1=σ1,  σ2=σ2, δ1=ϑ3+γ1ω2λ2,  γ1=γ1,  γ2=γ2,  (3.5)

    in which ϑ, solves the equation λ1ϑ4+(γ1λ3αγ1λ2)ϑ3+(γ1λ1ω2γ1λ2ω1)ϑγ21ω3λ2+γ21λ3ω2=0.

    For example, the 1-wave solution for Case III will be considered as

    Ψ=2σ1+σ2e  γ1(αδ1λ2αγ1ω2δ1λ3+γ1ω3)δ1λ1γ1ω1  xαγ1y+γ1zδ1t1+ρ1+ρ2e  γ1(αδ1λ2αγ1ω2δ1λ3+γ1ω3)δ1λ1γ1ω1    xαγ1y+γ1zδ1t. (3.6)

    The two-wave function of the solution will be reduced as below form

    Ψ=2Δ2Ω2, (3.7)
    Ω2=1+σ1eα1x+β1y+γ1zδ1t+σ2eα2x+β2y+γ2zδ2t+σ1σ2σ12e(α1+α2)x+(β1+β2)y+(γ1+γ2)z(δ1+δ2)t,   (3.8)
    Δ2=ρ1eα1x+β1y+γ1zδ1t+ρ2eα2x+β2y+γ2zδ2t+ρ1ρ2ρ12e(α1+α2)x+(β1+β2)y+(γ1+γ2)z(δ1+δ2)t.

    Substituting (3.7) in terms of (3.8) into Eq (1.8), the below cases will be resulted as:

    Case I:

    α1=0,  α2=α2,  β1=β1,  β2=αγ2,  δ1=  γ1(β1ω2+ω3γ1)β1λ2+γ1λ3,  δ2=  γ2(αγ2ω 2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,γ1=γ1,  γ2=γ2,  ρ1=0,  ρ2=ρ2, (3.9)
      ρ12=ρ12,  σ1=σ1,  σ2=σ2,  σ12=1.

    Case II:

    α1=α1,  α2=0,  β1=αγ1,  β2=β2,  δ1=  γ1(αγ1ω 2α1ω1ω3γ1)αγ1λ2α1λ1γ1λ3,  δ2=  γ2(β2ω2+γ2ω3)β2λ2+γ2λ3,γ1=γ1,  γ2=γ2,  ρ1=0,  (3.10)
     ρ2=ρ2,  ρ12=ρ12,  σ1=σ1,  σ2=σ2,  σ12=1.

    Case III:

    α1=α1,  α2=α2,  β1=αγ1,  β2=αγ2,  δ1=  γ1(αγ1ω 2α1ω1ω3γ1)αγ1λ2α1λ1γ1λ3,  δ2=  γ2(αγ2ω 2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,γ1=γ1,  γ2=γ2,  ρ1=0, (3.11)
      ρ2=ρ2,  ρ12=ρ12,  σ1=σ1,  σ2=σ2,  σ12=1.

    Case IV:

    α1=0,  α2=α2,  β1=β1,  β2=αγ2,  δ1=  γ1(β1ω2+ω3γ1)β1λ2+γ1λ3,  δ2=  γ2(αγ2ω 2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,γ1=γ1,  γ2=γ2,  ρ1=ρ1,  ρ2=0, (3.12)
      ρ12=ρ12,  σ1=σ1,  σ2=σ2,  σ12=1.

    Case V:

    α1=α1,  α2=α2,  β1=αγ1,  β2=αγ2,  δ1=  γ1(αγ1ω 2α1ω1ω3γ1)αγ1λ2α1λ1γ1λ3,  δ2=  γ2(αγ2ω 2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,γ1=γ1,  γ2=γ2,  ρ1=ρ1,  ρ2=0, (3.13)
      ρ12=ρ12,  σ1=σ1,  σ2=σ2,  σ12=1.

    Case VI:

    α1=α1,  α2=α2,  β1=αα1γ2  α2,  β2=αγ2,  δ1=  α1γ2(αγ 2ω2α2ω1γ2ω3)α2(αγ2λ2α2λ1γ2λ3),  δ2=  γ2(αγ2ω 2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,γ1=γ1,  γ2=γ2,  ρ1=ρ1,  ρ2=0, (3.14)
      ρ12=ρ12,  σ1=σ1,  σ2=σ2,  σ12=σ12.

    Case VII:

    α1=α1,  α2=α2,  β1=αα1γ2  α2,  β2=αγ2,  δ1=  α1γ2(αγ 2ω2α2ω1γ2ω3)α2(αγ2λ2α2λ1γ2λ3),  δ2=  γ2(αγ2ω 2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,γ1=  α1γ2  α2  ,  γ2=γ2,  ρ1=ρ1,  ρ2=ρ2, (3.15)
      ρ12=ρ12,  σ1=0,  σ2=σ2,  σ12=σ12.

    Case VIII:

    α1=12α2,  α2=α2,  β1=12αγ2,  β2=αγ2,  δ1=12  γ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,  δ2=  γ2(αγ2ω 2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,γ1=12γ2,  γ2=γ2,  ρ1=ρ1,  (3.16)
     ρ2=ρ2,  ρ12=ρ12,  σ1=σ1,  σ2=σ2,  σ12=0.

    For instance, the 2-wave solution for Case I will be taken as

    Ψ1=2ρ2e  tγ2(αγ 2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα2yαγ2+zγ2  /(1+σ1etγ1(β1ω2+ω3γ1)β1λ2+γ1λ3  +yβ1+zγ1  + (3.17)
    σ2e  tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα2yαγ2+zγ2  +σ1σ2e  tγ1(β1ω2+ω3γ1)β1λ2+γ1λ3    tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα2+yβ1yαγ2+zγ1+zγ2).

    Also, the 2-wave solution for Case III will be considered as

    Ψ2=2ρ2e  tγ2(αγ 2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα2yαγ2+zγ2  /(1+σ1etγ1(αγ1ω2α1ω1ω3γ1)αγ1λ2α1λ1γ1λ3  +xα1yαγ1+zγ1  + (3.18)
    σ2e  tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα2yαγ2+zγ2  +σ1σ2e  tγ1(αγ1ω2α1ω1ω3γ1)αγ1λ2α1λ1γ1λ3    tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα1+xα2yαγ1yαγ2+zγ1+zγ2).

    And finally, the resulting two-wave solution for Case VIII will be read as

    Ψ3(x,y,z,t)=2(ρ1e12  tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +12xα212yαγ2+12zγ2  +ρ2e  tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα2yαγ2+zγ2  + (3.19)
    ρ1ρ2ρ12 e32tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +32xα232yαγ2+32zγ2  )/(1+σ1e12  tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +12xα212yαγ2+12zγ2  
    +σ2e  tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα2yαγ2+zγ2  ).

    The triple-wave function of the solution will be reduced as below form

    Ψ=Δ3Ω3, (3.20)
    Ω3=1+ρ1eΛ1+ρ2eΛ2+ρ3eΛ3+ρ1ρ2ρ12eΛ1+Λ2+ρ1ρ3ρ13eΛ1+Λ3+ρ2ρ3ρ23eΛ2+Λ3+ρ1ρ2ρ3ρ12ρ13ρ23eΛ1+Λ2+Λ3,   (3.21)
    Δ3=2σ1eΛ1+2σ2eΛ2+2σ1σ2σ12eΛ1+Λ2+2σ1σ3σ13eΛ1+Λ3+2σ2σ3σ23eΛ2+Λ3+
    2σ1σ2σ3σ12σ13σ23eΛ1+Λ2+Λ3,

    in which Λi=αix+βiy+γixδit,i=1,2,3. Inserting (3.20) in terms of (3.21) into Eq (1.8), the below case will be reached:

    αi=αi,  γi=γi,  σi=σi,  ρ1=0,  ρ2=ρ2,  ρ3=ρ3,  βi=αγi,  δi=  γi(αγiω 2αiω1ω3γi)αγiλ2αiλ1γiλ3,  i=1,2,3,  ρij=ρij,  σij=1,  i,j=1,2,3, ij. (3.22)

    Then, the solution is

    Ψ1=2σ1eΛ1+2σ2eΛ2+2σ1σ2eΛ1+Λ2+2σ1σ3eΛ1+Λ3+2σ2σ3eΛ2+Λ3+2σ1σ2σ3eΛ1+Λ2+Λ3  1+ρ2eΛ2+ρ3eΛ3+ρ2ρ3ρ23eΛ2+Λ3  , (3.23)

    in which Λi=αixαγiy+γixγi(αγiω 2αiω1ω3γi)αγiλ2αiλ1γiλ3  t,i=1,2,3 and Ψ=Ψ(x,y,z,t).

    The triangular periodic waves for Eq (1.8) can be assumed as below:

    f=exp(τ1)+a16exp(τ1)+cosh(τ2)+cos(τ3)+a17,   τ1=4i=1aixi+a5,   τ2=9i=6aixi5+a10,    (4.1)
    τ3=14i=11aixi10+a15,  (x1,x2,x3,x4)=(x,t)=(x,y,z,t),   Ψ(x,t)=v0+2ln(f)x, (4.2)

    in which ai,i=1,...,17 are unfound values. Substituting (4.1) and (4.2) into Eq (1.8) the below consequences will be gained:

    Case I:

    f=ea4t+a1x  y(a3a14ω3a4a12ω2a4a13ω3)a14ω2  +a3z+a5  +cosh(a9ty(a8a14ω3a9a12ω2a 9a13ω3)a14ω2  +a8z+a 10)+cos(ta14+ya12+za13+a15). (4.3)

    Appending (4.3) into (4.1) and (4.2), the soliton-periodic wave solution of Eq (1.8) as below will be achieved:

    Ψ1=v0+2a1ea4t+a1x  y(a3a14ω3a4a12ω2a4a13ω3)a14ω2  +a3z+a5  f. (4.4)

    By selecting the suitable values of parameters including

    a1=1,a3=1.5,a4=2,a5=1.5,a8=2,a9=1.5,a10=1,a12=2,a13=2.5,a14=1,a15=3.2,ω2=1.5,ω3=1.2,

    the graphical display of soliton-periodic wave solution is offered in Figure 1 such as 3D plot and density plot.

    Figure 1.  The soliton-periodic solution (4.4) at (f1, f2) x=2,y=2, (f3, f4) x=0,y=0, and (f5, f6) x=2,y=2.

    Case II:

    f=ea4t+a1x+ya2  (a1  3a 14a4a13ω2)za14ω2  +a5  +cosh(a9t+ya7+  a9a13za14  +a10)+cos(ta14+ya12+za13+a 15). (4.5)

    Plugging (4.5) into (4.1) and (4.2), obtain a soliton-periodic wave solution of Eq (1.8) as below case:

    Ψ2=v0+2a1ea4t+a1x+ya2  (a13a14a4a13ω2)za14ω2  +a5  f. (4.6)

    Case III:

    f=ea4t+a1x  y(a3ω3+a4λ3)ω2  +a3z+a5  +cosh(a9t  y(a8ω3+a9λ3)ω2  +a8z+a10)+cos(  a13ω3yω2  +za13+a15). (4.7)

    Incorporating (4.7) into (4.1) and (4.2), the soliton-periodic wave solution of Eq (1.8) will be gained as below:

    Ψ3=v0+2a1ea4t+a1x  y(a3ω3+a4λ3)ω2  +a3z+a5  f. (4.8)

    Case IV:

    f=ea4t  y(a3a9ω3a4a7ω2a4a8ω3)a9ω2  +a3z+a5  +cosh(a9t+ya7+a8z+a10)+cos(xa11+a15). (4.9)

    Plugging (4.9) into (4.1) and (4.2), the soliton-periodic wave solution of Eq (1.8) will be achieved as below:

    Ψ4=v02sin(xa11+a15)a11f. (4.10)

    Case V:

    f=ea4t+ya2+  a4a8za9  +a5+cosh(a9t+ya7+a8z+a10)+cos(xa11  (a112ω3+ω 1ω2)a11yω22  +  a 11  3zω2  +a15). (4.11)

    Incorporating (4.11) into (4.1) and (4.2), we capture a soliton-periodic wave solution of Eq (1.8) as below:

    Ψ5=v02sin(xa11  (a11  2ω3+ω1ω2)a11yω2  2  + a113zω2  +a15)a11f. (4.12)

    Case VI:

    f=ea4t+  ω2(a3a9a4a8)xa9a112  13  y(2αa9a116ω2+2a9a11  6ω3+3αa32a9ω2  33αa3a4a8ω23+2a9a114ω1ω2)ω23(a3a9a4a8)  +a3z+a5+cosh(a9t13  yΩa4ω2  3(a3a9a4a8)(a92a116+ω22(a3a9a4a8)2)+a8z+a10)+cos(xa11  αa113yω2  +a113zω2  +a15), (4.13)
    Ω=3αa4a8ω25(a3a9a4a8)3+αa92a116ω23(a3a9+2a4a8)(a3a9a4a8)a92a114ω22(a3a9a4a8)2(a112ω3+ω1ω2)a92a1112(3a42a9  2)(αω2ω3).

    Appending (4.13) into (4.1) and (4.2), the soliton-periodic wave solution of Eq (1.8) will be obtained as below:

    Ψ5=v0+2f[  ω2(a3a9a4a8)a9a112ea4t+  ω2(a3a9a4a8)xa9a112  13  y(2αa9a116ω2+2a9a116ω3+3αa32a9ω233αa3a4a8ω23+2a9a114ω1ω2)ω23(a3a9a4a8)+a3z+a5  +sin(xa11+  αa113yω2    a113zω2  a15)a11]. (4.14)

    By selecting suitable values of parameters including

    α=0.5,a3=1,a4=1.5,a5=2,a8=2,a9=1.5,a10=1,a11=2,a13=2.5,a14=1,a15=3.2,ω1=1.5,ω2=1.2,ω3=1.5,

    the graphical display of soliton-periodic wave solution is offered in Figure 2 such as 3D chart and density chart.

    Figure 2.  The soliton-periodic solution (4.14) at (f1, f2) x=2,y=2, (f3, f4) x=0,y=0, and (f5, f6) x=2,y=2.

    Case VII:

    f=e  Ωa9ta113  +a1x16  y(6a14a115ω33a14a113ω1ω2+2a117ω1ω2+6Ωa1a8a112ω2ω3+3Ωa1a8ω1ω2  2)a115ω22a1  +  (a13a113+Ωa8ω2)za11  3ω2  +a5  + (4.15)
    cosh(a9t+ya7+a8z+a10)+cos(xa1112  (2a112ω3+ω1ω2)a11yω22  +  a113zω2  +a15),
    Ω=a162a14a112+a116.

    Incorporating (4.15) into (4.1) and (4.2), the soliton-periodic wave solution of Eq (1.8) will be received as below:

    Ψ5=v0+2f[a1e  Ωa9ta113  +a1x16  y(6a14a115ω33a14a11  3ω1ω2+2a117ω1ω2+6Ωa1a8a112ω2ω3+3Ωa1a8ω1ω22)a115ω22a1  +  (a13a11  3+Ωa8ω2)za113ω2  +a5  sin(xa1112  (2a11  2ω3+ω1ω2)a11yω22  +  a113zω2  +a15)a11]. (4.16)

    By selecting the specific amounts of parameters including

    α=0.5,a1=1,a4=a9=ω1=ω3=1.5,,a5=2,a7=1.5,a8=2,a10=1,a11=2,a13=2.5,a14=1,a15=3.2,ω2=1.2,

    the graphical display of soliton-periodic wave solution is offered in Figure 3 such as 3D chart, density chart, and 2D chart and below cases:

    (f3) y=1,2,3,  (f6) y=1,2,3, and  (f9) y=1,2,3.
    Figure 3.  The soliton-periodic solution (4.16) at (f1, f2) z=2,t=2, (f4, f5) z=0,t=0, and (f7, f8) z=2,t=2.

    Three function containing exponential, hyperbolic, and triangular periodic waves for Eq (1.8) can be assumed as the following:

    f=exp(τ1)+a16exp(τ1)+sinh(τ2)+sin(τ3)+a17,   τ1=4i=1aixi+a5,   τ2=9i=6aixi5+a10, (5.1)
    τ3=14i=11aixi10+a15,  (x1,x2,x3,x4)=(x,t)=(x,y,z,t),   Ψ(x,t)=v0+2ln(f)x, (5.2)

    in which ai,i=1,...,17 are unfound values. Substituting (5.2) into Eq (1.8) the below consequences will be gained:

    Case I:

    f=ea4t+a1x  (a3a14ω3a4a12ω2a4a13ω3)ya14ω2  +a3z+a5  +sinh(a9t  (a8a14ω3a9a12ω2a9a13ω3)ya14ω2  +a8z+a10) (5.3)
    +sin(ta14+ya12+za13+a15).

    Substituting (5.3) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be gained as the following:

    Ψ1=v0+2a1ea4t+a1x  (a3a14ω3a4a12ω2a4a13ω3)ya14ω2  +a3z+a5  f. (5.4)

    By selecting the suitable values of parameters including

    a1=1,a3=3,a4=2,a5=1.5,a8=1.7,a9=1.5,a10=1.5,a12=2.5,a13=1.1,a14=2.1,a15=3.2,ω2=1,ω3=1.5,

    the graphical representation of cross-kink wave solution is offered in Figure 4 such 3D plot and density plot.

    Figure 4.  The cross-kink wave solution (5.4) at (f1, f2) x=3,y=2, (f3, f4) x=0,y=2, and (f5, f6) x=3,y=2.

    Case II:

    f=ea4t+a1x+a2y  (a1  3a14a4a13ω2)za14ω2  +a5  +sinh(a9t+a7y+  a9a13za14  +a10)+sin(ta14+ya12+za13+a15). (5.5)

    Putting (5.5) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be received as the following:

    Ψ2=v0+2a1ea4t+a1x+a2y(a13a14a4a13ω2)za14ω2  +a5  f. (5.6)

    By selecting the suitable values of parameters including

    a1=1,a3=3,a4=2,a5=1.5,a8=1.7,a9=1.5,a10=1.5,a12=2.5,a13=1.1,a14=2.1,a15=3.2,ω2=1,ω3=1.5,

    the graphical exhibition of cross-kink solution is offered in Figure 5 such as 3D chart and density chart.

    Figure 5.  The cross-kink wave solution (5.6) at (f1, f2) x=3,y=2, (f3, f4) x=0,y=2, and (f5, f6) x=3,y=2.

    Case III:

    f=ea4t+a1x  (a3ω3+a4λ3)yω2  +a3z+a5  +sinh(a9t  (a8ω3+a9λ 3)yω2  +a8z+a10)+sin(  a13ω3yω2  +a13z+a15). (5.7)

    Plugging (5.7) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be obtained as the following:

    Ψ3=v0+2a1ea4t+a1x  (a3ω3+a4λ3)yω2  +a3z+a5  f. (5.8)

    Case IV:

    f=e  a9(a112(ω3a12ω1ω2)(a1  3+a3ω2)a15ω1ω2)ta12a7a112ω22  +a1x  a3(ω3a12ω1ω2)ya12ω2  +a3z+a5  +sin(xa11+a15)+sinh(a9t+a7y  (a13+a3ω2)a12a7a112ω2za11  2(ω3a12ω1ω2)(a13+a3ω2)a15ω1ω2  +a10). (5.9)

    Inserting (5.9) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be gained as the following:

    Ψ4=v0+2a1e  a9(a11  2(ω3a12ω1ω2)(a13+a3ω2)a15ω1ω2)ta12a7a112ω2  2  +a1x  a3(ω3a12ω1ω2)ya12ω2  +a3z+a5  +cos(xa11+a15)a11  f. (5.10)

    Case V:

    f=ea4t+a2y+  a4a8za9  +a5  +sinh(a9t+a7y+a8z+a10)+sin(xa11  a11(a112ω3+ω1ω2)yω22  +  a113zω2  +a15). (5.11)

    Substituting (5.11) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be received as the following:

    Ψ5=v0+2cos(xa11  a11(a112ω3+ω1ω2)yω22+  a113zω2  +a15)a11  f. (5.12)

    By selecting the suitable values of parameters including

    a1=1,a3=3,a4=2,a5=1.5,a8=1.7,a9=1.5,a10=1.5,a12=2.5,a13=1.1,a14=2.1,a15=3.2,ω2=1,ω3=1.5,

    the graphical exhibition of cross-kink solution is offered in Figure 6 such as 3D chart and density chart.

    Figure 6.  The cross-kink wave solution (5.6) at (f1, f2) x=3,y=2, (f3, f4) x=0,y=2, and (f5, f6) x=3,y=2.

    Case VI:

    f=e  Ωa9ta113  +a1x112  (3Ωa1a8ω2(4a112ω3+3ω1ω2)12a14a115ω3a113ω1ω2(9a142a112a122a11  4))ya115ω22a1  +  (a13a113+Ωa8ω2)zω2a113  +a5  sinh(a9t+a7y+a8z+a10)+sin(xa11112  a11(12a112ω3+7ω1ω2)yω22  +  a311zω2+a15), (5.13)
    Ω=3a164a14a112+a116.

    Putting (5.13) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be concluded as the following:

    Ψ5=v0+2f[a1e  Ωa9ta113  +a1x112  (3Ωa1a8ω2(4a112ω3+3ω1ω2)12a14a11  5ω3a113ω1ω2(9a1  42a112a122a114))ya115ω22a1  +  (a13a11  3+Ωa8ω2)zω2a113  +a5  +cos(xa11112  a11(12a112ω3+7ω1ω2)yω2  2  +  a113zω2  +a15)a11]. (5.14)

    By selecting suitable values of parameters including

    α=0.5,a3=1,a4=a9=ω1=ω3=1.5,a5=2,a8=2,a10=1,a11=2,a13=2.5,a14=1,a15=3.2,ω2=1.2,

    the graphical representation of cross-kink solution is offered in Figure 7 such as 3D chart and density chart.

    Figure 7.  The cross-kink wave solution (5.14) at (f1, f2) x=2,y=2, (f3, f4) x=0,y=0, and (f5, f6) x=2,y=2.

    Case VII:

    f=e  Ωa9ta113  +a1x16 y(6a14a115ω33a14a113ω1ω2+2a11  7ω1ω2+6Ωa1a8a11  2ω2ω3+3Ωa1a8ω1 ω22)a115ω22a1  + (a13a113+Ωa8ω2)za113ω2  +a5  +cosh(a9t+ya7+a8z+a10)+cos(xa 1112  (2a112ω3+ω1ω2)a11yω22  +  a113zω2  +a15), (5.15)
    Ω=a162a14a112+a116.

    Inserting (5.15) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be gained as the following:

    Ψ5=v0+2f[a1e  Ωa9ta113  +a1x16  y(6a14a115ω33a14a11  3ω1ω2+2a117ω1ω2+6Ωa1a8a112ω2ω3+3Ωa1a8ω1ω22)a115ω22a1  +  (a13a11  3+Ωa8ω2)za113ω2  +a5  sin(xa1112  (2a11  2ω3+ω1ω2)a11yω22  +  a113zω2  +a15)a11]. (5.16)

    By selecting suitable values of parameters including

    α=0.5,a1=1,a5=1.5,a8=2,a9=0.5,a10=1.5,a15=3.2,ω1=1.5,ω2=1.2,ω3=1.5,

    the graphical representation of cross-kink solution is offered in Figure 8 such as 3D chart and density chart.

    Figure 8.  The lump-periodic solution (5.16) at (f1, f2) z=2, (f4, f5) z=0, and (f7, f8) z=2.

    Three function containing exponential, hyperbolic, and triangular periodic waves for Eq (1.8) can be assumed as the following:

    f=exp(τ1)+a16exp(τ1)+tanh(τ2)+tan(τ3)+a17,   τ1=4i=1aixi+a5,   τ2=9i=6aixi5+a10,    (6.1)
    τ3=14i=11aixi10+a15,  (x1,x2,x3,x4)=(x,t)=(x,y,z,t),   Ψ(x,t)=v0+2ln(f)x, (6.2)

    in which ai,i=1,...,17 are unfound values. Substituting (6.2) into Eq (1.8) the below consequences will be gained:

    Case I:

    f=ea4t+a1x+a2y  (a1  3+a4λ2)zω2  +a5  +tanh(ya7+a10)+tan(ya12+a15)+a17. (6.3)

    Substituting (6.3) into (6.1) and (6.2), we can capture a solitary wave solution of Eq (1.8) as the following:

    Ψ1=v0+2a1ea4t+a1x+a2y(a13+a4λ2)zω2  +a5  f. (6.4)

    Case II:

    f=ea1x+a2y  a13zω2  +a5  +tanh(ya7+a10)+tan(ya12+a15)+a17. (6.5)

    Inserting (6.5) into (6.1) and (6.2), we can capture a solitary wave solution of Eq (1.8) as below:

    Ψ2=v0+2a1ea1x+a2y  a13zω2  +a5  f. (6.6)

    Case III:

    f=ea4t+a1x+a2y  (a1  3ω3+a4λ3ω2)zω2ω3  +a5  +tanh(ta9+ya7  za9λ3  ω3  +a10)+tan(ya12+a15)+a17. (6.7)

    Putting (6.7) into (6.1) and (6.2), the solitary wave solution of Eq (1.8) can be indicated as below:

    Ψ3=v0+2a1ea4t+a1x+a2y(a13ω3+a4λ3ω2)zω2ω3  +a5  f. (6.8)

    Case IV:

    f=ea4t+a1x+a2y+za3+a5  tanh(  ya8ω3  ω2  za8a10)tan(  ya13ω3  ω2  a13za15)+a17. (6.9)

    Putting (6.9) into (6.1) and (6.2), the solitary wave of Eq (1.8) can be stated as the following:

    Ψ4=v0+2a1ea4t+a1x+a2y+za3+a5  f. (6.10)

    By selecting the suitable values of parameters including

    a1=1,a2=1.5,a3=2,a4=2,a5=1.5,a8=2,a9=1.5,a10=1.5,a13=2,a13=1.1,a15=3.2,a17=2,ω2=1.5,
    ω3=1.2,λ2=1,λ3=1.5,x=2,t=2,

    with the following components

    α=  a13ω3a1ω1ω2a2ω22a3ω2ω3+a4λ2ω3a4λ3ω2  ω2a13  ,  λ1=  a13a2ω2+a13a3ω3+a2a4λ2ω2+a3a4λ2ω3  a1a4ω2,

    the graphical representation of rational solitary solution is offered in Figure 9 such as 3D chart and density chart.

    Figure 9.  The rational solitary wave solution (6.10) at (f1) z=0, (f2) z=1, and (f3) z=3.

    Case V:

     f=ea1x  a3ω3yω2  +za3+a5  tanh(  ya8ω3  ω2za8a10)tan(  ya13ω3  ω2  a13za15)+a17. (6.11)

    Incorporating (6.11) into (6.1) and (6.2), the solitary solution of Eq (1.8) will be gained as below:

    Ψ5=v0+2a1ea1x  a3ω3yω2  +za3+a5  f,  α=  a12ω3ω1ω2  a12ω2  . (6.12)

    Case VI:

    f=ea4t+a1x  (a3ω3+a4λ3)yω2  +za3+a5  +tanh(ta9  y(a8ω3+a9λ3)ω2  +za8+a10)tan( ya13ω3  ω2  a13za15)+a17. (6.13)

    Appending (6.13) into (6.1) and (6.2), the solitary solution of Eq (1.8) can be written as the following:

    Ψ6=v0+2a1ea4t+a1x  (a3ω 3+a4λ3)yω2  +za3+a5  f,  α=  a12ω3ω1ω2  a12ω2  . (6.14)

    Case VII:

    f=ea4t+a1x  a3ω3yω2  +za3+a5  +tanh(ta9  ya8ω3  ω2  +za8+a10)tan(  ya13ω3  ω2  a13za15)+a17. (6.15)

    Appending (6.15) into (6.1) and (6.2), the solitary solution of Eq (1.8) will be obtained as below:

    Ψ7=v0+2a1ea4t+a1x  a3ω3yω2  +za3+a5  f,  α=  a12ω3ω1ω2  a1  2ω2,  λ2=  λ3ω2  ω3  . (6.16)

    By choosing the specific amounts of parameters including

    a1=1,a2=1.5,a3=2,a4=2,a5=1.5,a8=2,a9=1.3,a10=1.5,a13=2,a13=2,a15=3.2,a17=2,ω2=1.5,ω3=1.2,λ2=1,λ3=1.5,x=2,t=2,

    the graphical representation of rational solitary solution is offered in Figure 10 such as 3D chart and density chart.

    Figure 10.  The rational solitary wave solution (6.16) at (f1) z=0, (f2) z=1, and (f3) z=3.

    Case VIII:

    f=ea4t+a1x+a2y  (a1  3a 14a4a13ω2)za14ω2  +a5  +tanh(ta9+ya7+  za9a13  a14  +a10)+tan(ta14+ya12+a13z+a 15)+a17. (6.17)

    Incorporating (6.17) into (6.1) and (6.2), the solitary solution of Eq (1.8) will be received as below:

    Ψ8=v0+2a1ea4t+a1x+a2y(a13a14a4a13ω2)za14ω2  +a5  f,  α=  a1  2ω3ω1ω2  a12ω2,  λ2=  a13ω2  a14,  λ3=a13ω3  a14  . (6.18)

    Case IX:

    f=ea4t+a1x  (a3a14ω3a4a12ω2a4a13ω3)ya14ω2  +a3z+a5   (6.19)
    +tanh(ta9  y(a8a14ω3a9a12ω2a 9a13ω3)a14ω2  +za8+a 10) (6.20)
    +tan(ta14+ya12+za13+a15)+a17. (6.21)

    Appending (6.21) into (6.1) and (6.2), the solitary solution of Eq (1.8) can be reached as below:

    Ψ9=v0+2a1ea4t+a1x  (a3a14ω3a4a12ω2a4a13ω3)ya14ω2  +a3z+a5  f, α=  a12ω3ω1ω2  a12ω2,  (6.22)
    λ1=  a12(a12ω2+a 13ω3)a14ω2, λ3=  a12ω2+a13ω3  a 14  .

    Case X:

    f=ea4t+a1x  a3ω3yω2+a3z+a5  +tanh(  ya8ω3ω2  +za8+a10)+tan(ta14 ya13ω3  ω2  +za13+a15)+a17. (6.23)

    Inserting (6.21) into (6.1) and (6.2), the solitary solution of Eq (1.8) will be gained as below form:

    Ψ10=v0+2a1ea4t+a1x  a3ω3yω2  +a3z+a5  f, α=a12ω3ω1ω2  a1  2ω2  , λ2=  λ3ω2  ω3  . (6.24)

    By choosing the specific amounts of parameters including

    a1=1,a3=1.5,a4=2,a5=1.5,a7=2,a8=2,a9=2.1,a10=1.5,a13=2,a13=2,a14=2.5,a15=3.2,a17=2,ω2=1.5,ω3=1.2,λ3=1.5,x=2,t=2,

    the graphical representation of rational solitary solution is offered in Figure 11 such as 3D chart and density chart.

    Figure 11.  The rational solitary wave solution (6.24) at (f1) z=2, (f2) z=0, and (f3) z=2.

    Case XI:

    f=ea4t+a1x+a2y  (a1  3a 14a4a13ω2)za14ω2  +a5  +tanh(  ta14a8  a13  +ya7+za8+a10)+tan(ta14+za13+a15)+a17. (6.25)

    Inserting (6.25) into (6.1) and (6.2), the solitary solution of Eq (1.8) can be stated as below case:

    Ψ11=v0+2a1ea4t+a1x+a2y(a13a14a4a13ω2)za14ω2  +a5  f, α=  a1  3a2+a1a3ω1+a2a3ω2+a3  2ω3  a13a3, (6.26)
    λ1=  a13a2a12a13a1  3a3a122+a2a3a12a13ω2+a2a3a132ω3+a2a3a13a14λ3  a3a12a1a14  +a32a122ω2a32a12a13ω3a32a12a14λ3  a3a12a1a14  ,
    λ2=  a13(a12ω2+a13ω3+a14λ3)a12a14  .

    Case XII:

    f=ea4t+a1x  a3ω3yω2  +a3z+a5  +tanh(ta9+ya7  za7ω2  ω3  +a10)+tan(ta14 ya13ω3  ω2  +za13+a15)+a17. (6.27)

    Inserting (6.27) into (6.1) and (6.2), the solitary solution of Eq (1.8) will be gained as below form:

    Ψ12=v0+2a1ea4t+a1x  a3ω3yω2  +a3z+a5  f, α=a13a2+a1a3ω1+a2a3ω2+a32ω3  a13a3, (6.28)
    λ1=  a13a2a12a13a1  3a3a122+a2a3a12a13ω2+a2a3a132ω3+a2a3a13a14λ3  a3a12a1a14  +a32a122ω2a32a12a13ω3a32a12a14λ3  a3a12a1a14  ,
    λ2=  a13(a12ω2+a13ω3+a14λ3)a12a14  .

    In the current section, we will analyze the continuous modulational instability of the nonlinear generalized KP equation. In addition, the feasibility of the localized waves in the present system is certified by linear stability analysis. First, we search the perturbed solution for the giving Eq (1.8) of the form

    Ψ(x,y,z,t)=ζ+δ Θ, (7.1)

    where Θ=Θ(x,y,z,t) and ζ is a steady state solution. Inserting (7.1) into Eq (1.8), become

    δ  4x3yΘ+αδ  4x3zΘ+3δ2(  2x2  Θ) yΘ+3δ2(xΘ)  2xyΘ+3αδ2(  2x2  Θ)  zΘ+ (7.2)
    3αδ2(  xΘ) 2xzΘ+λ1δ  2txΘ+λ2δ2tyΘ+λ3δ 2tzΘ+ω1δ2xzΘ+ω2δ2yzΘ+ω3δ 2z2  Θ=0,

    by linerization Eq (7.2), one gets

    δ  4x3yΘ+αδ  4x3zΘ+λ1δ  2txΘ+λ2δ  2tyΘ+λ3δ  2tzΘ+ω1δ  2xzΘ+ω2δ  2yzΘ+ω3δ  2z2  Θ=0. (7.3)

    Theorem 7.1. Assume that the solution of Eq (7.3) has the following case as

    Θ(x,y,z,t)=ρ1 ei(Mx+Ny+Pz+Bt), (7.4)

    in which M,N,P are the normalized wave numbers, by plugging (7.4) into Eq (7.3), separation the coefficients of ei(Mx+Ny+Pz+Wt) one gets

    B(M,N,P)=  M3Pα+M3NMPω1NPω2P2ω3  Mλ1+Nλ2+Pλ3  . (7.5)

    Proof. By putting (7.4) into (7.3), becomes

    δ  4x3y¯Θ+αδ  4x3z¯Θ+λ1δ  2tx¯Θ+λ2δ  2ty¯Φ+λ3δ  2tz¯Θ+ω1δ  2xz¯Θ+ω2δ  2yz¯Θ+ω3δ  2z2  ¯Θ (7.6)
    =ei(Mx+Ny+Pz+Bt)δρ1(M3Pα+M3NMPω1MBλ1NPω2NBλ2P2ω3PBλ3),

    in which ¯Θ=Θ(x,y,z,t). By solving and simplifying we can determine the function of B(M,N,P) as the following

    B(M,N,P)=  M3Pα+M3NMPω1NPω2P2ω3  Mλ1+Nλ2+Pλ3  . (7.7)

    Accordingly, the considered solution was obtained. Thereupon the proof is perfect.

    It is easy to notice that modulation stability occurs when Mλ1+Nλ2+Pλ30. So, the modulation stability achieve spectrum Υ(B) will be as below form:

    Υ(B)=  M3Pα+M3NMPω1NPω2P2ω3  Mλ1+Nλ2+Pλ3  . (7.8)

    In Figures 12-14 can be discovered that while the sign of B(M,N,P) is positive for all quantity of M. Furthermore, in Figure 12 can be observed if the B(M,N,P) is positive or negative for some quantities of M. Finally, in Figure 13 and 14 can be perceived that while the sign of B(M,N,P) is positive for all quantity of M.

    Figure 12.  The graphic representation Υ(B) for the wave number M via considering the diverse quantities λ1=1,λ2=1.5,λ3=2,ω1=2.2,ω2=2,ω3=3,α=0.5.
    Figure 13.  The graphic representation Υ(B) for the wave number M via considering the diverse quantities λ1=1,λ2=1.5,λ3=2,ω1=2.2,ω2=2,ω3=3,α=0.5.
    Figure 14.  The graphic representation Υ(B) for the wave number M via considering the diverse quantities λ1=1,λ2=1.5,λ3=2,ω1=2.2,ω2=2,ω3=3,α=0.5.

    Via employing the wave alteration ξ=k(x+ay+bzct) in Eq (1.8) once can gain to the below ODE as

    k2(αb+a)Ψ+6k(αb+a)ΨΨ+(abω2acλ2+b2ω3bcλ3+bω1cλ1)Ψ=0, (8.1)

    in which Ψ=Ψ(ξ) and Ψ=dΨdξ. According to the SIVP [16,17] and by multiplying Eq (8.1) with Ψ and integrating once respect to ξ, the following stationary integral will be arises

    J=0[A1(ΨΨ12(Ψ2)+13A2(Ψ3+12A3(Ψ2]dξ, (8.2)

    in which

    A1=k2(αb+a),   A2=6k(αb+a),   A3=abω2acλ2+b2ω3bcλ3+bω1cλ1.

    We utilize the solitary wave function as the following

    u(ξ)=δ sech(μξ). (8.3)

    Hence, the stationary integral transforms to

    J=130k2δ2μ21αbk2μ221ak2μ28αbδkμ8aδkμ+5abω25acλ2+5b2ω35bcλ 3+5bω15cλ1). (8.4)

    Based on the SIVP and using derivative J respect to A and B, one get

    JA=115k2δμ21αbk2μ221ak2μ28αbδkμ8aδkμ+5abω25acλ2+5b2ω35bcλ3+5bω15cλ1)+130k2δ2μ(8αbkμ8akμ)=0, (8.5)

    and

    JB=130k2δ221αbk2μ221a k2μ28αbδkμ8aδkμ+5abω25acλ2+5b2ω35bcλ3+5bω15cλ1)+130k2δ2μ(42αbk2μ42ak2μ8αbδk8aδk)=0. (8.6)

    Solve the Eqs (8.5) and (8.6), become

    δ=±212  abω2acλ2+b2ω3bcλ3+bω1cλ1  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1),    (8.7)
    μ=±121  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)(αb+a)k.

    The condition can be obtained as below

    (αb+a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)<0. (8.8)

    Finally, the solitary solution received by utilizing of SIVP can be reached as

    Ψ(x,y,z,t)=δ sech[kμ(x+ay+bzct)]. (8.9)

    We utilize the bright wave function as the following

    u(ξ)=δ sech2(μξ). (8.10)

    Hence, the stationary integral transforms to

    J=  2δ2μ(120αbk2μ2+120ak2μ2+35αbδkμ+35aδkμ14abω2  105+14acλ214b2ω3+14bcλ314bω1+14cλ1)105. (8.11)

    Based on the SIVP and using derivative J respect to A and B, one get

    JA=  4δμ(120αbk2μ2+120ak2μ2+35αbδkμ+35aδkμ14abω2+14acλ2  105+14b2ω3+14bcλ314bω1+14cλ1)2δ2μ(35αbkμ+35akμ)105=0. (8.12)

    and

    JB=  2δ2(120αbk2μ2+120a k2μ2+35αbδkμ+35aδkμ14abω2+14acλ214b2ω3  105++14bcλ314bω1+14cλ1)2δ2μ(240αbk2μ+240ak2μ+35αbδk+35aδk)105=0. (8.13)

    Solve the Eqs (8.12) and (8.13), become

    δ=±485  abω2acλ2+b2ω3bcλ3+bω1cλ1  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1),    (8.14)
    μ=±130  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)(αb+a)k.

    The condition of definition of the above relations can be expressed as

    (αb+a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)<0. (8.15)

    Finally, the solitary solution gained by utilizing of SIVP will be as

    Ψ(x,y,z,t)=δ sech2[kμ(x+ay+bzct)]. (8.16)

    Assume the dark soliton wave solution be as the below case as

    u(ξ)=δ tanh2(μξ). (8.17)

    Hence, the stationary integral transforms to

    J=  2δ2μ(120αbk2μ2120ak2μ2+35αbδkμ+35aδkμ+14abω2  105+14acλ2+14b2ω314bcλ3+14bω114cλ1)105. (8.18)

    Based on the SIVP and using derivative J respect to A and B, one get

    Jδ=  4δμ(120αbk2μ2120ak2μ2+35αbδkμ+35aδkμ+14abω214acλ2  105++14b2ω314bcλ3+14bω114cλ1)+2δ2μ(35αbkμ+35akμ)105=0, (8.19)

    and

    Jμ=  2δ2(120αbk2μ2120a k2μ2+35αbδkμ+35aδkμ+14abω214acλ2+105+14b2ω314bcλ3+14bω114cλ1)+2δ2μ(240αbk2μ240ak2μ+35αbδk+35aδk)105=0. (8.20)

    Solve the Eqs (8.19) and (8.20), one get

    δ=485  abω2acλ2+b2ω3bcλ3+bω1cλ1  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1),    (8.21)
    μ=±130  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)(αb+a)k.

    The condition of definition of the above relations can be presented the following form

    (αb+a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)<0. (8.22)

    Finally, the dark solution acquired by utilizing of SIVP will be as

    Ψ(x,y,z,t)=δ tanh2[kμ(x+ay+bzct)]. (8.23)

    Let the singular soliton wave solution be as the below case as

    u(ξ)=δ csch2(μξ). (8.24)

    Then, the stationary integral transforms to

    J=  2δ2μ(120αbk2μ2120ak2μ270αbδkμ70aδkμ+14abω2  105+14acλ2+14b2ω314bcλ3+14bω114cλ1)105. (8.25)

    Based on the SIVP and using derivative J respect to A and B, become

    Jδ=  4δμ(120αbk2μ2120ak2μ270αbδkμ70aδkμ+14abω214acλ2105++14b2ω314bcλ3+14bω114cλ1)2δ2μ(70αbkμ70akμ)105=0 (8.26)

    and

    Jμ=  2δ2(120αbk2μ2120ak2μ270αbδkμ70aδkμ+14abω214acλ2+14b2ω3  105+14bcλ3+14bω114cλ1)2δ2μ(240αbk2μ240ak2μ70αbδk70aδk)105=0. (8.27)

    Solve the Eqs (8.26) and (8.27), one get

    δ=±245  abω2acλ2+b2ω3bcλ3+bω1cλ1  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1),    (8.28)
    μ=±130  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)(αb+a)k.

    The condition of definition of the above relations can be presented as the below form as

    (αb+a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)<0. (8.29)

    Finally, the singular solution acquired by utilizing of SIVP will be as

    Ψ(x,y,z,t)=δ csch2[kμ(x+ay+bzct)]. (8.30)

    In this article, the MEFM employed for searching the MSSs for the gKP equation, which contains 1-wave, 2-wave, and 3-wave solutions. The periodic wave, cross-kink, and solitary wave solutions have been obtained. In continuing, the modulation instability applied to discuss the stability of earned solutions. It is quite visible that these novel schemes have plenty of family solutions containing rational exponential, hyperbolic, and periodic functions with selecting particular parameters. Also, the semi-inverse variational principle will be used for the gKP equation. Four major cases containing the solitary, bright, dark and singular wave solutions were studied from four different ansatzes.

    By means of symbolic computation, these analytical solutions and corresponding rogue waves are obtained. Via various curve plots, density plot and three-dimensional plots, dynamical characteristics of these rouge waves are exhibited. Because of the strong nonlinear characteristic of Hirota bilinear method, the test function constructed by the Hirota operator, which can be regarded as the test function constructed by considered model. The results are beneficial to the study of the plasma, optics, acoustics, fluid dynamics and fluid mechanics. All computations in this paper have been employed quickly with the help of the Maple 18. Moreover, the method applied in this paper provides an effective tool to obtain exact solutions of nonlinear system and can in common use for other NLEEs.

    This work is supported by the Education and scientific research project for young and middle-aged teachers of Fujian Province (No. JAT.190666-No.JAT200469)

    The authors declare that there is no conflict of interests regarding the publication of this paper.

    [1] Boole G (1853) The Laws of Thought. In: The Mathematical Theories of Logic and Probabilities. Project Gutenberg (EBook #15114).
    [2] Calderone J (2014) 10 Big Ideas in 10 Years of Brain Science. Scientific American MIND, November 6.
    [3] Chalmers DJ (1996) The Conscious Mind: In Search for a Fundamental Theory. New York: Oxford University Press.
    [4] Dehaene S (2014) Consciousness and the Brain. In: Deciphering How the Brain Codes Our Thoughts. New York: Penguin Publishers.
    [5] Edelman G, Tononi G (2000) A universe of consciousness: How matter becomes imagination. Basic books.
    [6] LeDoux JE (2003) Synaptic self: How our brains become who we are. New York: Penguin Publishers.
    [7] LeDoux JE (2012) Evolution of human emotion: A view through fear. Prog Brain Res 195:431-442. doi: 10.1016/B978-0-444-53860-4.00021-0
    [8] Penrose R (1989) The Emperor's New Mind. New York: Oxford University Press.
    [9] Shiffman D, Fry S, Marsh Z (2012) The nature of code. D. Shiffman.
    [10] Bostrom N (2014) Superintelligence: Paths, dangers, strategies. OUP Oxford.
    [11] Zimme (2014) The New Science of the Brain. National Geographic.
    [12] McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. B Math Biol 5: 115-133.
    [13] Turing AM (1950) Computing machinery and intelligence. Mind 59: 433-460.
    [14] Graves A, Wayne G, Danihelka I (2014) Neural turing machines. arXiv preprint arXiv:1410.5401
    [15] Von Neumann J (2012) The computer and the brain. 3rd ed. New Haven: Yale University Press: 66.
    [16] Jeffress LA (1951) Cerebral mechanisms in behavior; the Hixon Symposium. a. von Neumann J. The general and logical theory of automata: 1-41. b. McCullogh WS. Why the mind is in the head: 42-57.
    [17] Arbib MA (1987) Brains, Machines and Mathematics. In: Neural Nets and Finite Automata. 2nd ed. Berlin: Springer US: 15-29.
    [18] Franklin S (1995) Artificial Minds. Cambridge, MA: MIT Press.
    [19] Longuet-Higgins HC (1981) Artificial intelligence-a new theoretical psychology? Cognition 10: 197-201.
    [20] Neisser U (1963) The imitation of man by machine. Science 139: 193-197. doi: 10.1126/science.139.3551.193
    [21] Sloman A (1979) Epistemology and Artificial Intelligence: Expert Systems in the Microelectronic Age. Edinburgh: Edinburgh University Press.
    [22] Gardner H (1985) The Mind's New Science. New York: Basic Books.
    [23] Garland A (2015) Ex Machina – Movie.
    [24] Sejnowski TJ, Koch C, Churchland PS (1988) Computational neuroscience. Science 24: 1299-1330.
    [25] Russel S, Norvig P (2009) Artificial Intelligence: A Modern Approach. 3rd ed. NY: Pearson Publishers.
    [26] Aho AV (2012) Computation and computational thinking. Comput J 55: 832-835.
    [27] Guidolin D, Albertin G, Guescini M, et al. (2011) Central nervous system and computation. Quart Rev Biol 86: 265-85 doi: 10.1086/662456
    [28] Howard N (2012) Brain Language: The fundamental code unit. Brain Sci 1: 6-34.
    [29] Howard N, Guidere M (2012) LXIO: The mood detection Robopsych Brain Sci 1: 71-77.
    [30] Pockett S (2014) Problems with theories of consciousness. Front Syst Neurosci: 225.
    [31] Hirschberg J, Manning CD (2015) Advances in natural language processing. Science 349: 261-266. doi: 10.1126/science.aaa8685
    [32] Parkes DC, Wellman MP (2015) Economic reasoning and artificial intelligence. Science 349: 267-272. doi: 10.1126/science.aaa8403
    [33] Gershman SJ, Horvitz EJ, Tenenbaum JB (2015) Computational rationality: A converging paradigm for intelligence in brains, minds, and machines. Science 349: 273-278. doi: 10.1126/science.aac6076
    [34] Jordan M, Mitchell TM (2015) Machine learning: Trends, perspectives, and prospects. Science 349: 255-260. doi: 10.1126/science.aaa8415
    [35] Wu Y, Schuster M, Chen Z, et al. (2016) Google's neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv 1609.08144.
    [36] y Cajal SR (1995) Histology of the nervous system of man and vertebrates. USA: Oxford University Press.
    [37] Garcia-Lopez P, Garcia-Marin V, FreireM (2010) The histological slides and drawing s of Cajal. Front Neuroanat 4: 9
    [38] Hebb DO (1949). The Organization of Behavior. New York: Wiley.
    [39] Kandel ER, Schwartz JH, Jessell TM, et al. (2013) Principles of Neural Science. New York: MacGraw-Hill.
    [40] Arshavsky YI (2006) "The seven sins" of the Hebbian synapse: can the hypothesis of synaptic plasticity explain long-term memory consolidation?. Prog Neurobiol 80: 99-113. doi: 10.1016/j.pneurobio.2006.09.004
    [41] Gallistel CR, KingA (2009) Memory and the Computational Brain. New York: Wiley Blackwell.
    [42] Hawkins J, Blakeslee S (2005) On Intelligence. New York: St Martin's Press.
    [43] Zador A, Koch C, Brown TH (1990) Biophysical model of a Hebbian synapse. Proc Natl Acad Sci USA 87: 6718-6722. doi: 10.1073/pnas.87.17.6718
    [44] Vizi ES, Fekete A, Karoly R, et al (2010) Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment. Br J Pharmacol 160: 785-809. doi: 10.1111/j.1476-5381.2009.00624.x
    [45] Vizi E (2013) Role of high-affinity receptors and membrane transporters in non-synaptic communication and drug action in the central nervous system. Pharmacol Rev 52: 63-89.
    [46] Schmitt FO, Samson FE, Irwin LN, et al. (1969) Brain cell micro-environment. NRP Bulletin: 7.
    [47] Cserr HF (1986) The Neuronal Environment. Ann NY Acad Sci: 481.
    [48] Juliano RI, Haskill S (1993) Signal transduction from extracellular matrix. J Cell Biol 120: 577-585. doi: 10.1083/jcb.120.3.577
    [49] Vargova L, Sykova E (2014) Astrocytes and extracellular matrix in extrasynaptic volume transmission. Phil Trans R Soc B 369: 20130608. doi: 10.1098/rstb.2013.0608
    [50] Giaume C, Oliet S (2016) Introduction to the special issue: Dynamic and metabolic interactions between astrocytes and neurons. Neuroscience 323: 1-2. doi: 10.1016/j.neuroscience.2016.02.062
    [51] Hrabětová S, Nicholson C (2007) Biophysical properties of brain extracellular space explored with ion-selective microelectrodes, integrative optical imaging and related techniques. In: Michael AC, Borland LM, editors. Electrochemical Methods for Neuroscience. Boca Raton, FL: CRC Press: chapter 10.
    [52] Kuhn TS (1970) The Structure of Scientific Revolutions. 2nd ed. Chicago, IL: University of Chicago Press.
    [53] Landauer R (1996) The physical nature of information. Physics Letters A 217: 188-193. doi: 10.1016/0375-9601(96)00453-7
    [54] Chua LO (2011) Resistance switching memories are memristors. Applied Physics A 102: 765-783.
    [55] Di Ventra M, Pershin YY (2011) Memory materials: A unifying description. Mater Today 14: 584-591. doi: 10.1016/S1369-7021(11)70299-1
    [56] Kamalanathan D, Akhavan A, Kozicki MN (2011) Low voltage cycling of programmable metallization cell memory devices. Nanotechnology 22: 254017.
    [57] Tian F, Jiao D, Biedermann F, et al. (2012) Orthogonal switching of a single supramolecular complex. Nat Commun 3: 1207. doi: 10.1038/ncomms2198
    [58] Sakata Y, Furukawa S, Kondo M, et al. (2013) Shape-memory nanopores induced in coordination frameworks by crystal downsizing. Science 339: 193-196. doi: 10.1126/science.1231451
    [59] Lin WP, Liu S, Gong T, et al. (2014) Polymer-based resistive memory materials and devices. Adv Mater 26: 570-606. doi: 10.1002/adma.201302637
    [60] Zhou X, Xia M, Rao F, et al. (2014) Understanding phase-change behaviors of carbon-doped Ge₂Sb₂Te₅ for phase-change memory application. ACS Appl Mater Interfaces 6: 14207-14214. doi: 10.1021/am503502q
    [61] Agnati LF, Fuxe K (2014) Extracellular-vesicle type of volume transmission and tunnelling-nanotube type of wiring transmission add a new dimension to brain neuro-glial networks. Philos Trans R Soc Lond B Biol Sci 369: pii: 20130505.
    [62] Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, et al. (2013) Volume transmission and its different forms in the central nervous system. Chin J Integr Med 19: 323-329. doi: 10.1007/s11655-013-1455-1
    [63] Fuxe L, Borroto-Escuela DO (2016) Volume transmission and receptor-receptor interactions in heteroreceptor complexes: Understanding the role of new concepts for brain communication. Neural Regen Res 11: 1220-1223. doi: 10.4103/1673-5374.189168
    [64] Fodor JA (1975) The Language of Thought. Boston, MA: Harvard University Press.
    [65] Sloman A, Croucher M (1981) Why robots will have emotions. Sussex University.
    [66] Mayer JD (1986) How mood influences cognition. Advances in Cognitive Science 1: 290-314.
    [67] Salovey P, Mayer JD (1990) Emotional intelligence. Imagination, Cognition and Personality 9: 285-311.
    [68] Goleman D (1995) Emotional Intelligence. New York: Bantam Books.
    [69] Valverdu J, Casacuberta D (2009) Handbook of Research on Synthetic Emotions and Sociable Robotics: New Applications in Affective Computing and Artificial Intelligence. Information Science Reference. New York: Hershey.
    [70] Meyer JJ, Dastani MM (2010) The logical structure of emotions. Dutch Companion project grant nr: IS053013. SIKS Dissertation Series No. 2010-2.
    [71] Hasson C (2011) Modelisation des mecanismes emotionnels pour un robot autonome: perspective developpementale et sociale. PhD Thesis, Universite de Cergy Pontoise, France.
    [72] Meshulam M, Winter E, Ben-Shakhar G, et al. (2011). Rational emotions. Soc Neurosci 1: 1-7.
    [73] Steunebrink BR. The Logical structure of emotions. Utrecht University, 2010.
    [74] Steunebrink BR, Dastani M, Meyer JJC (2012) A formal model of emotion triggers: an approach for BDI agents. Synthese 185: 83-129. doi: 10.1007/s11229-011-0004-8
    [75] Bosse T, Broekens J, Dias J, et al. (2014) Emotion Modeling. Towards Pragmatic Computational Models of Affective Processes. New York: Springer.
    [76] a. Hudlicka E. From habits to standards: Towards systematic design of emotion models and affective architecture: 3-23.
    [77] b. Dastani M, Floor C. Meyer JJ. Programming agents with emotions: 57-75.
    [78] c. Lowe R, Kiryazov K, Utilizing emotions in autonomous robots: An enactive approach: 76-98.
    [79] 76. Smailes D, Moseley P, Wilkinson S (2015) A commentary on: Affective coding: the emotional dimension of agency. Front Hum Neurosci 9: 142.
    [80] 77. Lewis M (2016) The Undoing Project: A Friendship That Changed Our Minds. New York:W.W. Norton & Co.
    [81] 78. Binet A, Simon T (1916) The Intelligence of the Feeble Minded. Baltimore, MD: Williams and Wilkins.
    [82] 79. Griffin D (2001) Animal Minds: Beyond Cognition to Consciousness. Chicago, IL: University Chicago Press.
    [83] 80. Albuquerque N, Guo K, Wilkinson A, et al. (2016) Dogs recognize dog and human emotions. Biol Lett 12: 201508 doi: 10.1098/rsbl.2015.0883
    [84] 81. Andics A, Gábor A, Gácsi M, et al. (2016) Neural mechanisms for lexical processing in dogs. Science 353:1030-1032. doi: 10.1126/science.aaf3777
    [85] 82. De Waal F (2016) Are We Smart Enough To Know How Smart Animals Are? New York: WW Norton & Co.
    [86] 83. Kekecs Z, Szollosi A, Palfi B, et al. (2016). Commentary: Oxytocin-gaze positive loop and the coevolution of human-dog bond. Front Neurosci 10:155.
    [87] 84. Kovács K, Kis A, Kanizsár O, et al. (2016) The effect of oxytocin on biological motion perception in dogs (Canis familiaris). Animal Cogn 19: 513-522. doi: 10.1007/s10071-015-0951-4
    [88] 85. Wasserman EA (2016). Thinking abstractly like a duck(ling). Science 353: 222-223.
    [89] 86. Wynne CDL (2004) Do Animals Think? New Jersey: Princeton University Press.
    [90] 87. Levy S (1993) Artificial Life. New York: Random House.
    [91] 88. Marx G, Gilon C (2012) The molecular basis of memory. ACS Chem Neurosci 3: 633-642. doi: 10.1021/cn300097b
    [92] 89. Marx G, Gilon C (2013) The molecular basis of memory. MBM Pt 2: The chemistry of the tripartite mechanism. ACS Chem Neurosci 4: 983–993.
    [93] 90. Marx G, Gilon C (2014) The molecular basis of memory. MBM Pt 3: Tagging with neurotransmitters (NTs). Front Neurosci 3: 58.
    [94] 91. Marx G, Gilon C (2016) The molecular basis of neural memory. MBM Pt 4: The brain is not a computer. "Binary" computation versus "multinary" mentation. Neuroscience and Biomedical Engineering 4: 14-24.
    [95] 92. Marx G, Gilon C (2016) The Molecular Basis of Neural Memory Part 5: Chemograhic notations from alchemy to psycho-chemistry. In Press.
    [96] 93. Marx G, Gilon C (2016) The molecular basis of neural memory. MBM Pt 6: Chemical coding of logical and emotive modes. Int J Neurology Res 2: 259-268.
    [97] 94. Asimov I (1950) I, Robot. New York: Gnome Press.
    [98] 95. Waldrop MM (1992) Complexity: The Emerging Science at the Edge of Order and Chaos. New York: Viking Penguin Group.
    [99] 96. Freedman DH (1) Brainmakers. New York: Touchstone Press.
    [100] 97. Maass W, Joshi P, Sontag ED (2007) Computational aspects of feedback in neural circuits. PLoS Comput Biol 3: e165.
    [101] 98. Picard RW, Vyzas E, Healey J (2001) Toward machine emotional intelligence: Analysis of affective physiological state. IEEE transactions on pattern analysis and machine intelligence 23: 1175-1191. doi: 10.1109/34.954607
    [102] 99. Hirschberg J, Manning CD (2015) Advances in natural language processing. Science 349: 261-266.
    [103] 100. Critique of Pure Reason (1781) Translated by Norman Kemp Smith. London Macmillan 1934.
    [104] 101. Sloman A (2008) Kantian philosophy of mathematics and young robots. In: Proceedings 7th International Conference on Mathematical Knowledge Management Birmingham, UK, July 28-30. Available from: http://events.cs.bham.ac.uk/cicm08/mkm08/.
    [105] 102. Berto F (2010). There's Something about Gödel: The Complete Guide to the Incompleteness Theorem. New York: John Wiley and Sons.
    [106] 103. Ryle G (1949) The Concept of Mind. UK: Penguin Books.
  • This article has been cited by:

    1. Chaudry Masood Khalique, Oke Davies Adeyemo, Kentse Maefo, Symmetry solutions and conservation laws of a new generalized 2D Bogoyavlensky-Konopelchenko equation of plasma physics, 2022, 7, 2473-6988, 9767, 10.3934/math.2022544
    2. K. Hosseini, D. Baleanu, S. Rezapour, S. Salahshour, M. Mirzazadeh, M. Samavat, Multi-complexiton and positive multi-complexiton structures to a generalized B-type Kadomtsev−Petviashvili equation, 2022, 24680133, 10.1016/j.joes.2022.06.020
    3. Abdul-Majid Wazwaz, Naisa S. Alatawi, Wedad Albalawi, S. A. El-Tantawy, Painlevé analysis for a new (3 +1 )-dimensional KP equation: Multiple-soliton and lump solutions, 2022, 140, 0295-5075, 52002, 10.1209/0295-5075/aca49f
    4. Yan Zhu, Chuyu Huang, Junjie Li, Runfa Zhang, Lump solitions, fractal soliton solutions, superposed periodic wave solutions and bright-dark soliton solutions of the generalized (3+1)-dimensional KP equation via BNNM, 2024, 112, 0924-090X, 17345, 10.1007/s11071-024-09911-2
    5. Adisie Fenta Agmas, Fasika Wondimu Gelu, Meselech Chima Fino, A robust, exponentially fitted higher-order numerical method for a two-parameter singularly perturbed boundary value problem, 2025, 10, 2297-4687, 10.3389/fams.2024.1501271
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5880) PDF downloads(1310) Cited by(1)

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog