This work investigated the Kadomtsev Petviashvili-modified equal width (KP-mEW) equation describing ocean waves. Our focus was on the analysis of the KP-mEW equation from various angles, including the study of soliton solutions, bifurcation analysis, multistability, and Lyapunov exponents. First, a transformation was used to transform the partial differential equation (PDE) into an ordinary differential equation (ODE), from which the soliton solutions were obtained by using a new modified (G'/G2)-expansion method. We investigated different types of solutions of the KP-mEW equation with various parameters, including kink, periodic, singular periodic, singular kink, and singular periodic-kink solutions. We also simulated 3D and 2D plots for some solutions to enhance the visualizations. These graphical representations provide important information about the patterns and dynamics of the solutions, leading to a strong understanding of the behavior and applicability of the model. We also observed the chaotic behavior of the system by adding a perturbation term and analyzed the chaotic behavior through bifurcation plots, multistability and time series analysis, and Lyapunov exponents and obtained various dynamic modes such as periodic and quasi-periodic types. A comparison of the obtained solutions with the existing solutions was also presented in the form of
Citation: Amna Mumtaz, Muhammad Shakeel, Abdul Manan, Marouan Kouki, Nehad Ali Shah. Bifurcation and chaos analysis of the Kadomtsev Petviashvili-modified equal width equation using a novel analytical method: describing ocean waves[J]. AIMS Mathematics, 2025, 10(4): 9516-9538. doi: 10.3934/math.2025439
This work investigated the Kadomtsev Petviashvili-modified equal width (KP-mEW) equation describing ocean waves. Our focus was on the analysis of the KP-mEW equation from various angles, including the study of soliton solutions, bifurcation analysis, multistability, and Lyapunov exponents. First, a transformation was used to transform the partial differential equation (PDE) into an ordinary differential equation (ODE), from which the soliton solutions were obtained by using a new modified (G'/G2)-expansion method. We investigated different types of solutions of the KP-mEW equation with various parameters, including kink, periodic, singular periodic, singular kink, and singular periodic-kink solutions. We also simulated 3D and 2D plots for some solutions to enhance the visualizations. These graphical representations provide important information about the patterns and dynamics of the solutions, leading to a strong understanding of the behavior and applicability of the model. We also observed the chaotic behavior of the system by adding a perturbation term and analyzed the chaotic behavior through bifurcation plots, multistability and time series analysis, and Lyapunov exponents and obtained various dynamic modes such as periodic and quasi-periodic types. A comparison of the obtained solutions with the existing solutions was also presented in the form of
| [1] | A. M. Wazwaz, Partial differential equations and solitary waves theory, 1 Ed., Beijing and Springer-Verlag Berlin Heidelberg, Higher Education Press, 2009. |
| [2] |
Y. Ma, X. Geng, A coupled nonlinear Schrödinger type equation and its explicit solutions, Chaos Soliton. Fract., 42 (2009), 2949–2953. https://doi.org/10.1016/j.chaos.2009.04.037 doi: 10.1016/j.chaos.2009.04.037
|
| [3] |
X. Yong, J. Gao, Z. Zhang, Singularity analysis and explicit solutions of a new coupled nonlinear Schrödinger type equation, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 2513–2518. https://doi.org/10.1016/j.cnsns.2010.09.025 doi: 10.1016/j.cnsns.2010.09.025
|
| [4] |
M. A. Akbar, N. H. M. Ali, M. T. Islam, Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics, AIMS Math., 4 (2019), 397–411. https://doi.org/10.3934/math.2019.3.397 doi: 10.3934/math.2019.3.397
|
| [5] |
B. Kopcasiz, A. R. Seadawy, E. Yasar, Highly dispersive optical soliton molecules to dual-mode nonlinear Schrödinger wave equation in cubic law media, Opt. Quant. Elect., 54 (2022), 194. https://doi.org/10.1007/s11082-022-03561-7 doi: 10.1007/s11082-022-03561-7
|
| [6] |
M. Shakeel, N. A. Shah, J. D. Chung, Novel analytical technique to find closed form solutions of time fractional partial differential equations, Fractal Fract., 6 (2022), 24. https://doi.org/10.3390/fractalfract6010024 doi: 10.3390/fractalfract6010024
|
| [7] |
M. Shakeel, M. A. Iqbal, Q. Din, Q. M. Hassan, K. Ayub, New exact solutions for coupled nonlinear system of ion sound and Langmuir waves, Indian J. Phys., 94 (2020), 885–894. https://doi.org/10.1007/s12648-019-01522-7 doi: 10.1007/s12648-019-01522-7
|
| [8] | K. Ayub, M. Saeed, M. Ashraf, M. Yaqub, Q. M. Hassan, Soliton solutions of variant Boussinesq Equations through exp-function method, UW J. Sci. Tech., 1 (2017), 24–30. https://uwjst.org.pk/index.php/uwjst/article/view/6 |
| [9] |
M. Shakeel, S. T. Mohyud-Din, M. A. Iqbal, Closed form solutions for coupled nonlinear Maccari system, Comput. Math. Appl., 76 (2018), 799–809. https://doi.org/10.1016/j.camwa.2018.05.020 doi: 10.1016/j.camwa.2018.05.020
|
| [10] |
A. Ali, A. R. Seadawy, Dispersive soliton solutions for shallow water wave system and modified Benjamin-Bona-Mahony equations via applications of mathematical methods, J. Ocean Eng. Sci., 6 (2021), 85–98. https://doi.org/10.1016/j.joes.2020.06.001 doi: 10.1016/j.joes.2020.06.001
|
| [11] |
W. Malfliet, The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations, J. Comput. Appl. Math., 164-165 (2004), 529–541. https://doi.org/10.1016/S0377-0427(03)00645-9 doi: 10.1016/S0377-0427(03)00645-9
|
| [12] | L. Akinyemi, U. Akpan, P. Veeresha, H. Rezazadeh, M. Inc, Computational techniques to study the dynamics of generalized unstable nonlinear Schrödinger equation, J. Ocean Eng. Sci., 2022. https://doi.org/10.1016/j.joes.2022.02.011 |
| [13] |
A. H. Arnous, M. M. Mirzazadeh, L. Akinyemi, A. Akbulut, New solitary waves and exact solutions for the fifth-order nonlinear wave equation using two integration techniques, J. Ocean Eng. Sci., 8 (2023), 475–480. https://doi.org/10.1016/j.joes.2022.02.012 doi: 10.1016/j.joes.2022.02.012
|
| [14] |
J. Manafian, M. Lakestani, The classification of the single traveling wave solutions to the modified Fornberg–Whitham equation, Int. J. Appl. Comput. Math., 3 (2016), 3241–3252. https://doi.org/10.1007/s40819-016-0288-y doi: 10.1007/s40819-016-0288-y
|
| [15] |
A. M. Wazwaz, The tanh method and the sine–cosine method for solving the KP-MEW equation, Int. J. Comput. Math., 82 (2005), 235–246. https://doi.org/10.1080/00207160412331296706 doi: 10.1080/00207160412331296706
|
| [16] |
H. Yépez-Martínez, J. F. Gómez-Aguilar, A. Atangana, First integral method for non-linear differential equations with conformable derivative, Math. Model. Nat. Phenom., 13 (2018), 14. https://doi.org/10.1051/mmnp/2018012 doi: 10.1051/mmnp/2018012
|
| [17] |
B. Alshahrani, H. A. Yakout, M. M. A. Khater, A. H. Abdel-Aty, E. E. Mahmoud, D. Baleanu, et al., Accurate novel explicit complex wave solutions of the (2+1)-dimensional Chiral nonlinear Schrödinger equation, Res. Phys., 23 (2021), 104019. https://doi.org/10.1016/j.rinp.2021.104019 doi: 10.1016/j.rinp.2021.104019
|
| [18] |
S. El-Ganaini, M. O. Al-Amr, New abundant solitary wave structures for a variety of some nonlinear models of surface wave propagation with their geometric interpretations, Math. Meth. App. Sci., 45 (2022), 7200–7226. https://doi.org/10.1002/mma.8232 doi: 10.1002/mma.8232
|
| [19] | E. Az-Zo'bi, M. O. Al-Amr, A. Yildrim, W. A. Alzoubi, Revised reduced differential transform method using Adomian's polynomials with convergence analysis, Math. Eng. Sci. Aero., 11 (2020), 827–840. |
| [20] |
M. O. Al-Amr, H. Rezazadeh, K. K. Ali, A. Korkmazki, N1-soliton solution for Schrödinger equation with competing weakly nonlocal and parabolic law nonlinearities, Commun. Theor. Phys., 72 (2020), 065503. https://doi.org/10.1088/1572-9494/ab8a12 doi: 10.1088/1572-9494/ab8a12
|
| [21] |
L. Akinyemi, M. Inc, M. M. A. Khater, H. Rezazadeh, Dynamical behaviour of Chiral nonlinear Schrödinger equation, Opt. Quant. Elect., 54 (2022), 191. https://doi.org/10.1007/s11082-022-03554-6 doi: 10.1007/s11082-022-03554-6
|
| [22] |
A. Mumtaz, M. Shakeel, M. Alshehri, N. A. Shah, New analytical technique for prototype closed form solutions of certain nonlinear partial differential equations, Results Phys., 60 (2024), 107640. https://doi.org/10.1016/j.rinp.2024.107640 doi: 10.1016/j.rinp.2024.107640
|
| [23] |
S. I. Zaki, Solitary wave interactions for the modified equal width equation, Comput. Phys. Commun., 126 (2000), 219–231. https://doi.org/10.1016/S0010-4655(99)00471-3 doi: 10.1016/S0010-4655(99)00471-3
|
| [24] |
T. Geyikli, S. B. G. Karakoc, Subdomain finite element method with quartic B-splines for the modified equal width wave equation, Comput. Math. Math. Phys., 55 (2015), 410–421. https://doi.org/10.1134/S0965542515030070 doi: 10.1134/S0965542515030070
|
| [25] |
S. Dusuel, P. Michaux, M. Remoissenet, From kinks to compacton-like kinks, Phys. Rev. E, 57 (1998), 2320–2326. https://doi.org/10.1103/PhysRevE.57.2320 doi: 10.1103/PhysRevE.57.2320
|
| [26] |
W. X. Ma, Lump solutions to the Kadomtsev–Petviashvili equation, Phys. Lett. A, 379 (2015), 1975–1978. https://doi.org/10.1016/j.physleta.2015.06.061 doi: 10.1016/j.physleta.2015.06.061
|
| [27] |
A. Das, N. Ghosh, Bifurcation of traveling waves and exact solutions of Kadomtsev–Petviashvili modified equal width equation with fractional temporal evolution, Comput. Appl. Math., 38 (2019), 9. https://doi.org/10.1007/s40314-019-0762-3 doi: 10.1007/s40314-019-0762-3
|
| [28] |
S. Behera, N. H. Aljahdaly, J. P. S. Virdi, On the modified ($ \frac{\mathrm{G}\mathrm{'}}{{\mathrm{G}}^{2}} $)-expansion method for finding some analytical solutions of the traveling waves, J. Ocean Eng. Sci., 7 (2022), 313–320. https://doi.org/10.1016/j.joes.2021.08.013 doi: 10.1016/j.joes.2021.08.013
|
| [29] |
M. M. Miah, A. R. Seadawy, H. S. Ali, M. A. Akbar, Abundant closed form wave solutions to some nonlinear evolution equations in mathematical physics, J. Ocean Engin. Sci., 5 (2020), 269–278. https://doi.org/10.1016/j.joes.2019.11.004 doi: 10.1016/j.joes.2019.11.004
|
| [30] |
M. Parto-Haghighi, J. Manafian, Solving a class of boundary value problems and fractional Boussinesq-like equation with β-derivatives by fractional-order exponential trial functions, J. Ocean Engin. Sci., 5 (2020), 197–204. https://doi.org/10.1016/j.joes.2019.11.003 doi: 10.1016/j.joes.2019.11.003
|
| [31] |
R. M. El-Shiekh, M. Gaballah, Solitary wave solutions for the variable-coefficient coupled nonlinear Schrödinger equations and Davey–Stewartson system using modified sine-Gordon equation method, J. Ocean Engin. Sci., 5 (2020), 180–185. https://doi.org/10.1016/j.joes.2019.10.003 doi: 10.1016/j.joes.2019.10.003
|
| [32] |
R. W. Ibrahim, C. Meshram, S. B. Hadid, S. Momani, Analytic solutions of the generalized water wave dynamical equations based on time-space symmetric differential operator, J. Ocean Engin. Sci., 5 (2020), 186–195. https://doi.org/10.1016/j.joes.2019.11.001 doi: 10.1016/j.joes.2019.11.001
|
| [33] |
M. A. Shallal, K. K. Ali, K. R. Raslan, H. Rezazadeh, A. Bekir, Exact solutions of the conformable fractional EW and MEW equations by a new generalized expansion method, J. Ocean Engin. Sci., 5 (2020), 223–229. https://doi.org/10.1016/j.joes.2019.12.004 doi: 10.1016/j.joes.2019.12.004
|
| [34] |
A. Jhangeer, Beenish, Dynamics and wave analysis in longitudinal motion of elastic bars or fluids, Ain Shams Eng. J., 15 (2024), 102907. https://doi.org/10.1016/j.asej.2024.102907 doi: 10.1016/j.asej.2024.102907
|
| [35] |
A. Jhangeer, A. R. Ansari, M. Imran, Beenish, M. B. Riaz, Lie symmetry analysis, and traveling wave patterns arising the model of transmission lines, AIMS Math., 9 (2024), 18013–18033. https://doi.org/10.3934/math.2024878 doi: 10.3934/math.2024878
|
| [36] |
A. R. Seadawy, M. Younis, M. Z. Baber, S. T. R. Rizvi, M. S. Iqbal, Diverse acoustic wave propagation to confirmable time-space fractional KP equation arising in dusty plasma, Commun. Theor. Phys., 73 (2021), 115004. https://doi.org/10.1088/1572-9494/ac18bb doi: 10.1088/1572-9494/ac18bb
|
| [37] |
A. E. Hamza, K. S. Mohamed, A. Mustafa, K. Aldwoah, M. Hassan, H. Saber, Abundant novel stochastic fractional solitary wave solutions of a new extended (3+1)-dimensional Kadomtsev–Petviashvili equation, Alex. Eng. J., 119 (2025), 45–55. https://doi.org/10.1016/j.aej.2025.01.073 doi: 10.1016/j.aej.2025.01.073
|
| [38] |
C. Li, N = 2 supersymmetric extension on multi-component D type Drinfeld–Sokolov hierarchy, Phys. Lett. B, 855 (2024), 138771. https://doi.org/10.1016/j.physletb.2024.138771 doi: 10.1016/j.physletb.2024.138771
|
| [39] |
C. Li, A. Mironov, A. Yu. Orlov, Hopf link invariants and integrable hierarchies, Phys. Lett. B, 860 (2025), 139170. https://doi.org/10.1016/j.physletb.2024.139170 doi: 10.1016/j.physletb.2024.139170
|
| [40] |
M. T. Islam, M. A. Akter, S. Ryehan, J. F. Gómez-Aguilar, M. A. Akbar, A variety of solitons on the oceans exposed by the Kadomtsev Petviashvili-modified equal width equation adopting different techniques, J. Ocean Engin. Sci., 9 (2024), 566–577. https://doi.org/10.1016/j.joes.2022.07.001 doi: 10.1016/j.joes.2022.07.001
|
| [41] | S. N. Chow, J. K. Hale, Methods of bifurcation theory, Springer Science & Business Media, 1982. |
| [42] |
M. B. Riaz, A. Jhangeer, F. Z. Duraihem, J. Martin, Analyzing dynamics: Lie symmetry approach to bifurcation, chaos, multistability, and solitons in extended (3+1)-dimensional wave equation, Symmetry, 16 (2024), 608. https://doi.org/10.3390/sym16050608 doi: 10.3390/sym16050608
|
| [43] |
A. Jhangeer, Beenish, Study of magnetic fields using dynamical patterns and sensitivity analysis, Chaos Soliton. Fract., 182 (2024), 114827. https://doi.org/10.1016/j.chaos.2024.114827 doi: 10.1016/j.chaos.2024.114827
|
| [44] |
A. Jhangeer, W. Faridi, M. Alshehri, The study of phase portraits, multistability visualization, Lyapunov exponents and chaos identification of coupled nonlinear volatility and option pricing model, Eur. Phys. J. Plus, 139 (2024), 658. https://doi.org/10.1140/epjp/s13360-024-05435-1 doi: 10.1140/epjp/s13360-024-05435-1
|
| [45] |
A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano, Determining Lyapunov exponents from a time series, Phys. D, 16 (1985), 285–317. https://doi.org/10.1016/0167-2789(85)90011-9 doi: 10.1016/0167-2789(85)90011-9
|