Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Re-circulating Phagocytes Loaded with CNS Debris: A Potential Marker of Neurodegeneration in Parkinsons Disease?

  • Received: 24 December 2014 Accepted: 12 February 2015 Published: 15 February 2015
  • Diagnosis and monitoring of diseases by measurement of biochemical markers has most commonly been performed on samples of peripheral blood. However, no such markers are available for clinical use in the major diseases of the central nervous system (CNS). In Parkinson's disease circulating biomarkers would find clinical utility in early diagnosis and also monitoring of disease progression. Of particular interest is early diagnosis as this would create .a window of opportunity for treatment with neuroprotective drugs. We have developed a novel strategy for monitoring disease activity in the CNS based on the recognition that tissue injuries incite inflammation and recruitment of phagocytes that engulf debris. We postulated that some of these debris laden phagocytes may return to the peripheral blood and their cargo of CNS proteins could be measured. If CNS antigens can be measured in PBMCs it may be an indicator of active neurodegeneration as the debris engulfed by phagocytes is completely degraded within days. To make this approach more specific to Parkinson's disease we probed PBMC lysates for neuromelanin as a marker of degeneration within the substancia nigra. We performed a proof of principle study in ten subjects with early PD and ten age and sex matched controls. The biomarkers neuromelanin, Tau protein, UCH-L1 and HPCAL-1 were measured in PBMC lysates from these two groups. Neuromelanin and Tau protein mean levels were elevated in PD compared with controls and was extremely statistically significant in both cases. UCH-L1 and HPCAL-1 mean levels were elevated in PD over controls and were not quite significant in both cases. These results suggest that this is a promising new approach for diagnosis and monitoring of PD and potentially other CNS diseases.

    Citation: Vanessa J. White, Ramesh C. Nayak. Re-circulating Phagocytes Loaded with CNS Debris: A Potential Marker of Neurodegeneration in Parkinsons Disease?[J]. AIMS Medical Science, 2015, 2(1): 26-34. doi: 10.3934/medsci.2015.1.26

    Related Papers:

    [1] Attaullah, Shahzaib Ashraf, Noor Rehman, Asghar Khan, Choonkil Park . A decision making algorithm for wind power plant based on q-rung orthopair hesitant fuzzy rough aggregation information and TOPSIS. AIMS Mathematics, 2022, 7(4): 5241-5274. doi: 10.3934/math.2022292
    [2] Sumbal Ali, Asad Ali, Ahmad Bin Azim, Ahmad ALoqaily, Nabil Mlaiki . Averaging aggregation operators under the environment of q-rung orthopair picture fuzzy soft sets and their applications in MADM problems. AIMS Mathematics, 2023, 8(4): 9027-9053. doi: 10.3934/math.2023452
    [3] Attaullah, Asghar Khan, Noor Rehman, Fuad S. Al-Duais, Afrah Al-Bossly, Laila A. Al-Essa, Elsayed M Tag-eldin . A novel decision model with Einstein aggregation approach for garbage disposal plant site selection under $ q $-rung orthopair hesitant fuzzy rough information. AIMS Mathematics, 2023, 8(10): 22830-22874. doi: 10.3934/math.20231163
    [4] Adel Fahad Alrasheedi, Jungeun Kim, Rukhsana Kausar . q-Rung orthopair fuzzy information aggregation and their application towards material selection. AIMS Mathematics, 2023, 8(8): 18780-18808. doi: 10.3934/math.2023956
    [5] Ahmad Bin Azim, Ahmad ALoqaily, Asad Ali, Sumbal Ali, Nabil Mlaiki, Fawad Hussain . q-Spherical fuzzy rough sets and their usage in multi-attribute decision-making problems. AIMS Mathematics, 2023, 8(4): 8210-8248. doi: 10.3934/math.2023415
    [6] Dilshad Alghazzwi, Arshad Ali, Ahmad Almutlg, E. A. Abo-Tabl, A. A. Azzam . A novel structure of $ q $-rung orthopair fuzzy sets in ring theory. AIMS Mathematics, 2023, 8(4): 8365-8385. doi: 10.3934/math.2023422
    [7] Sumbal Ali, Asad Ali, Ahmad Bin Azim, Abdul Samad Khan, Fuad A. Awwad, Emad A. A. Ismail . TOPSIS method based on q-rung orthopair picture fuzzy soft environment and its application in the context of green supply chain management. AIMS Mathematics, 2024, 9(6): 15149-15171. doi: 10.3934/math.2024735
    [8] Jia-Bao Liu, Rashad Ismail, Muhammad Kamran, Esmail Hassan Abdullatif Al-Sabri, Shahzaib Ashraf, Ismail Naci Cangul . An optimization strategy with SV-neutrosophic quaternion information and probabilistic hesitant fuzzy rough Einstein aggregation operator. AIMS Mathematics, 2023, 8(9): 20612-20653. doi: 10.3934/math.20231051
    [9] Ghous Ali, Kholood Alsager, Asad Ali . Novel linguistic $ q $-rung orthopair fuzzy Aczel-Alsina aggregation operators for group decision-making with applications. AIMS Mathematics, 2024, 9(11): 32328-32365. doi: 10.3934/math.20241551
    [10] Muhammad Saqlain, Xiao Long Xin, Rana Muhammad Zulqarnain, Imran Siddique, Sameh Askar, Ahmad M. Alshamrani . Energy supplier selection using Einstein aggregation operators in an interval-valued q-rung orthopair fuzzy hypersoft structure. AIMS Mathematics, 2024, 9(11): 31317-31365. doi: 10.3934/math.20241510
  • Diagnosis and monitoring of diseases by measurement of biochemical markers has most commonly been performed on samples of peripheral blood. However, no such markers are available for clinical use in the major diseases of the central nervous system (CNS). In Parkinson's disease circulating biomarkers would find clinical utility in early diagnosis and also monitoring of disease progression. Of particular interest is early diagnosis as this would create .a window of opportunity for treatment with neuroprotective drugs. We have developed a novel strategy for monitoring disease activity in the CNS based on the recognition that tissue injuries incite inflammation and recruitment of phagocytes that engulf debris. We postulated that some of these debris laden phagocytes may return to the peripheral blood and their cargo of CNS proteins could be measured. If CNS antigens can be measured in PBMCs it may be an indicator of active neurodegeneration as the debris engulfed by phagocytes is completely degraded within days. To make this approach more specific to Parkinson's disease we probed PBMC lysates for neuromelanin as a marker of degeneration within the substancia nigra. We performed a proof of principle study in ten subjects with early PD and ten age and sex matched controls. The biomarkers neuromelanin, Tau protein, UCH-L1 and HPCAL-1 were measured in PBMC lysates from these two groups. Neuromelanin and Tau protein mean levels were elevated in PD compared with controls and was extremely statistically significant in both cases. UCH-L1 and HPCAL-1 mean levels were elevated in PD over controls and were not quite significant in both cases. These results suggest that this is a promising new approach for diagnosis and monitoring of PD and potentially other CNS diseases.


    Numerous researchers have conducted extensive research on multi-criteria decision making (MCDM) techniques in the real world [5,6,7,8,11,12]. This pursuit resulted in the development of various industrious techniques for dealing with real-world challenges. The approaches developed to achieve that goal are based entirely on a description of the problem under consideration. Every aspect of practical life contains numerous ambiguities, complexities, and uncertainties, and it is impossible to analyse different types of decision-making information using a single value. Numerous scholars have concentrated on the challenges associated with imprecise, ambiguous, and hazy information throughout the previous few decades. To deal with uncertainties and vagueness, Zadeh [36] pioneered the concept of fuzzy sets (FSs), which has been defined by the element's membership function. Various researchers have shown the fuzzy set's applicability in a variety of fields, including decision-making, medical diagnosis, engineering, socioeconomic, and financial difficulties, etc.

    Atanassov [9] introduced the notion of intuitionistic fuzzy sets (IFSs) based on the two characteristic functions, which are membership and non-membership grades, such that their sum is less than or equal to $ 1 $. As an efficient mathematical tool, the IFSs have been widely applied to many research fields. However, as the complexity of problems increases, the IFSs cannot depict the fuzzy situations where $ \eth _{\digamma }(x)+\mathcal{B} _{\digamma }(x) > 1 $. To address this issue, Yager [33] expanded the restrictive conditions of IFSs to $ \left(\eth _{\digamma }(x)\right) ^{2}+\left(\mathcal{B} _{\digamma }(x)\right) ^{2} = 1 $ and created Pythagorean fuzzy sets (PyFSs). In 2014, Zhang [38] introduced the concept of a scoring function based on Yager's approach and enhanced TOPSIS by utilizing PFS to describe ambiguous information. In 2015, Peng and Yang [26] investigated the basic operational laws under PyFS and discussed their significance in group DM through similarity measures. Khan et al. [16] established the Dombi aggregation operators (AOp) based on Dombi t-norm and t-conorm. Batool et al. [10] introduced the DM methodology using the entropy measure and Pythagorean probabilistic HFSs and discussed their applicability in evaluation of the fog-haze factor. Ashraf et al. [2] presented the sine trigonometric function based novel AOp under PyFS. This good work provides the necessary preparation for the extensive application of PyF numbers. Although PyFSs can express fuzzier information than IFSs, they will also lose efficiency in situations where $ \left(\eth _{\digamma }(x)\right) ^{2}+\left(\mathcal{B} _{\digamma }(x)\right) ^{2} > 1 $. q-Rung orthopair fuzzy sets (q-ROFSs) in which $ \left(\eth _{\digamma }(x)\right) ^{q}+\left(\mathcal{B} _{\digamma }(x)\right) ^{q}\leq 1 $, introduced by Yager [34], are able to solve the above-mentioned predicament fundamentally. The concept of q-ROFSs provides decision-makers (DMs) with a lot of flexibility and space to explore different alternatives under a set of criteria. In recent years, q-ROFSs have emerged many new methods and techniques in decision-making theory and its application. These achievements can be attributed to two aspects: MADM and multi-attribute group decision making (MAGDM) [19,22,23,24]. This is mainly because it is difficult for decision-makers to accurately decide alternatives for multiple attribute indexes when they obtain uncertain or incomplete information. In 2018, Peng et al. [27] developd the novel AOp using exponential function and elaborate their applicability in MADM. Peng and Liu [28] introduced the information measures under q-ROFSs. Khan et al., [17] established the knowledge measures for q-ROFSs. Ali [1] presented the novel DM technique to tackle the uncertainty in the form of q-ROFSs. Liu and Huang [21] established the extended TOPSIS under probabilistic linguistic q-ROFSs using correlation measures and highlighted their applicability in decision making. Afterwards, by taking into consideration the hesitancy, the notion of the hesitant fuzzy set (HFS) was formulated by Torra [29], in which the membership degree is represented by multiple discrete values rather than a single value. Khan et al. [18] established the technique of similarity measures under probabilistic hesitant fuzzy rough environment. Liu et al. [20] extended the notation of HFSs to q-rung orthopair hesitant fuzzy sets (q-ROHFSs), considering the hesitancy in membership as well as in non-membership grades. Wang et al. [30] proposed the Hamacher norm based AOps under dual hesitant q-ROFSs and discussed their application in decision making problems. Wang et al. [31] developed the AOps based on Muirhead mean under dual hesitant q-rung orthopair fuzzy information. Wang et al.[32] constructed the extended TOPSIS process for q-ROHFSs and discussed their application in DM.

    Pawlak [25] is pioneer who studied the dominant concept of rough set (RS) theory. Rough set theory (RS) is an extension of traditional set theory that deals with inconsistencies and uncertainty. In recent decades, research on the rough set has progressed significantly, both in terms of theoretical implementations and theory itself. Numerous scholars from across the globe have broadened the notion of RS in a variety of areas. Using the fuzzy relation rather than the crisp binary relation, Dubois et al. [15] initiated the notion of fuzzy rough sets. The hybrid structure of IFSs and rough sets, intuitionistic fuzzy rough (IFR) sets introduced by Cornelis et al. [13]. IFRSs serve as a crucial link between these two theories. By utilizing IFR approximations, Zhou and Wu [40] established a novel decision making technique under IFR environment to address their constrictive and axiomatic analysis in detail. Zhan et al. [37] presented the DM techniques under IFR environment and explored their application in real word problems. Different extensions of IFRS are being investigated [35,39] to tackle the uncertainty in MCGDM problems. Chinram et al. [14] developed the algebraic norm based AOs based EDAS technique under IFR settings and discussed their application in MAGDM. In certain real-world situations, decision-makers (DMs) have strong opinions regarding the ranking or rating of a organization's plans, projects, or official statements. For example, let the administration of a university initiate a large-scale project of football ground. The members of the university administration may rate their project highly by assigning positive membership $ \left(\eth = 0.9\right) $, but others may consider the same program as a waste of money and attempt to discredit it by proposing completely contradictory viewpoints. So they assign negative membership $ \left(\mathcal{B} = 0.7\right) $. In this situation, $ \eth _{\digamma }(x)+\mathcal{B} _{\digamma }(x) > 1 $ and $ \left(\eth _{\digamma }(x)\right) ^{2}+\left(\mathcal{B} _{\digamma }(x)\right) ^{2} > 1 $ but $ \left(\eth _{\digamma }(x)\right) ^{q}+\left(\mathcal{B} _{\digamma }(x)\right) ^{q} < 1 $ for $ q > 3 $. So that $ \left(\eth, \mathcal{B} \right) $ is neither IFN nor PFN but it is q-ROFN. Thus, Yager's q-ROFNs are effective in dealing with data uncertainty. The q-Rung orthopair hesitant fuzzy rough sets (q-ROHFRS), a hybrid intelligent structure of rough sets, and q-ROHFS is a comprehensive classification approach that has attracted researchers for its capacity to cope with ambiguous and imperfect information. The research leads to the fact that AOps are crucial in DM because they provide information from several sources to be integrated into a single value. According to existing literature, the development of AOps following q-ROHFS hybridization with a rough set is not observed in the q-ROF environment. As a consequence of this inspiration, we construct a variety of algebraic aggregation operators for rough information, including q-rung orthopair hesitant fuzzy rough weighted averaging, order weighted averaging, and hybrid weighted averaging, under the algebraic t-norm and t-conorm. The noteworthy contributions of the present article are follows:

    (1) To construct new notion of q-rung orthopair hesitant fuzzy rough sets and investigate their basic operational laws.

    (2) To compile a list of aggregation operators based on the algebraic t-norm and t-conorm, and analyze their associated features in details.

    (3) To develop a DM methodology using proposed aggregation operators to aggregate the uncertain information in real word decision making problems.

    (4) A numerical case study of a real-world DM problem in agricultural farming is addressed to demonstrate the methodology's validity.

    (5) $ q $-ROHFR-VIKOR method is employed to validate the proposed DM approach.

    The remainder of the manuscript is arranged as follows: Section 2 briefly retrospects some basic concepts of q-ROFSs, HFSs and rough set theory. A novel notion of q-rung orthopair hesitant fuzzy sets is presented and also their basic interesting operational laws are defined in Section 3. Section 4 highlights the improved $ q $ -ROHFR-VIKOR methodology under q-rung orthopair hesitant fuzzy rough information. Section 5 presents the numerical illustration concerning the agriculture farming. Further this section deals with the applicability of the developed methodology. Section 6 establishes comparison analysis using q-ROHFR weighted averaging aggregation operator to validate the $ q $ -ROHFR-VIKOR methodology. Section 7 concludes this manuscript.

    This section describes the basic terminologies i.e., intuitionistic fuzzy sets (IFS), $ q $-Rung orthopair fuzzy sets ($ q $-ROFS), hesitant fuzzy sets (HFS), q-rung ortopair hesitant fuzzy sets ($ q $-ROHFS), rough sets (RS) and $ q $-rung orthopair fuzzy rough set ($ q $-ROFRS).

    Definition 1. [9] For a universal set $ \aleph, $ an IFS $ \digamma $ over $ \aleph $ is follows as:

    $ ϝ={x,ðϝ(x),Bϝ(x)|x}, $

    for each $ x\in \digamma $ the functions $ \eth _{\digamma }:\aleph \rightarrow \lbrack 0 $, $ 1] $ and $ \mathcal{B} _{\digamma }:\aleph \rightarrow \lbrack 0, $ $ 1] $ denotes the degree of membership and non membership respectively, which must satisfy the property $ 0\leq \eth _{\digamma }(x)+\mathcal{B} _{\digamma }(x)\leq 1. $

    Definition 2. [34] For a universal set $ \aleph, $ a q-ROFS $ \mathcal{T} $\ over $ \aleph $ is defined as:

    $ T={x,ðT(x),BT(x)|x} $

    for each $ x\in \mathcal{T} $ the functions $ \eth _{\mathcal{T} }:\aleph \rightarrow \lbrack 0, $ $ 1] $ and $ \mathcal{B} _{\mathcal{T} }:\aleph \rightarrow \lbrack 0, $ $ 1] $ denote the degrees of membership and non membership respectively, which must satisfy $ (\mathcal{B} _{\mathcal{T} }(x))^{q}+(\eth _{\mathcal{T} }(x))^{q}\leq 1, (q > 2\in \mathbb{Z}). $

    Definition 3. [20] For a universal set $ \aleph, $ a q-rung orthopair hesitant fuzzy set ($ q $-ROHFS) $ \mathcal{H} $ is defined as:

    $ H={x,ðhH(x),BhH(x)|x}, $

    where $ \eth _{h_{\mathcal{H} }}(x) $ and $ \mathcal{B} _{h_{\mathcal{H} }}(x) $ are sets of some values in $ \left[ 0, 1\right] $ denote the membership and non membership grades respectively. It is required to satisfy the following properties: $ \forall x\in \aleph, $ $ \forall \mu _{\mathcal{H} }(x)\in \eth _{h_{\mathcal{H} }}(x), $ $ \forall \nu _{\mathcal{H} }(x)\in \mathcal{B} _{h_{\mathcal{H} }}(x) $ with $ \left(\max \left(\eth _{h_{\mathcal{H} }}(x)\right) \right) ^{q}+\left(\min \left(\mathcal{B} _{h_{\mathcal{H} }}(x)\right) \right) ^{q}\leq 1 $ and $ \left(\min \left(\eth _{h_{\mathcal{H} }}(x)\right) \right) ^{q}+\left(\max \left(\mathcal{B} _{h_{\mathcal{H} }}(x)\right) \right) ^{q}\leq 1. $ For simplicity, we will use a pair $ \mathcal{H} = $ $ (\eth _{h_{\mathcal{H} }}, \mathcal{B} _{h_{\mathcal{H} }}) $ to mean q-ROHF number (q-ROHFN).

    Definition 4. [20] Let $ \mathcal{H} _{1} = (\eth _{h_{\mathcal{H} _{1}}}, \mathcal{B} _{h_{\mathcal{H} _{1}}}) $ and $ \mathcal{H} _{2} = (\eth _{h_{\mathcal{H} _{2}}}, \mathcal{B} _{h_{\mathcal{H} _{2}}}) $ be two q-ROHFNs. Then the basic set theoretic operations are as follows:

    (1) $ \mathcal{H} _{1}\cup \mathcal{H} _{2} = \left\{ \bigcup\limits_{\underset{{{\mu }_{2}}\in {{\eth }_{{{h}_{{{\mathcal{H}}_{2}}}}}}}{\mathop{{{\mu }_{1}}\in {{\eth }_{{{h}_{{{\mathcal{H}}_{1}}}}}}}}\, }{\max \left({{\mu }_{1}}, {{\mu }_{2}} \right)}, \bigcup\limits_{\underset{{{\nu }_{2}}\in {{\mathcal{B}}_{{{h}_{{{\mathcal{H}}_{2}}}}}}}{\mathop{{{\nu }_{1}}\in {{\mathcal{B}}_{{{h}_{{{\mathcal{H}}_{1}}}}}}}}\, }{\min \left({{\nu }_{1}}, {{\nu }_{2}} \right)} \right\}; $

    (2) $ \mathcal{H} _{1}\cap \mathcal{H} _{2} = \left\{ \bigcup\limits_{\underset{{{\mu }_{2}}\in {{\eth }_{{{h}_{{{\mathcal{H}}_{2}}}}}}}{\mathop{{{\mu }_{1}}\in {{\eth }_{{{h}_{{{\mathcal{H}}_{1}}}}}}}}\, }{\min \left({{\mu }_{1}}, {{\mu }_{2}} \right)}, \bigcup\limits_{\underset{{{\nu }_{2}}\in {{\mathcal{B}}_{{{h}_{{{\mathcal{H}}_{2}}}}}}}{\mathop{{{\nu }_{1}}\in {{\mathcal{B}}_{{{h}_{{{\mathcal{H}}_{1}}}}}}}}\, }{\max \left({{\nu }_{1}}, {{\nu }_{2}} \right)} \right\}; $

    (3) $ \mathcal{H} _{1}^{c} = \left\{ \mathcal{B} _{h_{\mathcal{H} _{1}}}, \eth _{h_{\mathcal{H} _{1}}}\right\}. $

    Definition 5. [20] Let $ \mathcal{H} _{1} = (\eth _{h_{\mathcal{H} _{1}}}, \mathcal{B} _{h_{\mathcal{H} _{1}}}) $ and $ \mathcal{H} _{2} = (\eth _{h_{\mathcal{H} _{2}}}, \mathcal{B} _{h_{\mathcal{H} _{2}}}) $ be two q-ROHFNs and $ q > 2 $ and $ \gamma > 0 $ be any real number. Then the operational laws can be defined as:

    (1) $ \mathcal{H} _{1}\oplus \mathcal{H} _{2} = \left\{ \bigcup\limits_{\underset{ \mu _{2}\in \eth _{h_{\mathcal{H} _{2}}}}{\mu _{1}\in \eth _{h_{\mathcal{H} _{1}}}}}\left\{ \sqrt[q]{\mu _{1}^{q}+\mu _{2}^{q}-\mu _{1}^{q}\mu _{2}^{q}}\right\}, \bigcup\limits_{\underset{\nu _{2}\in \mathcal{B} _{h_{\mathcal{H} _{2}}}}{\nu _{1}\in \mathcal{B} _{h_{\mathcal{H} _{1}}}}}\left\{ \nu _{1}\cdot \nu _{2}\right\} \right\}; $

    (2) $ \mathcal{H} _{1}\otimes \mathcal{H} _{2} = \left\{ \bigcup\limits_{\underset{ \mu _{2}\in \eth _{h_{\mathcal{H} _{2}}}}{\mu _{1}\in \eth _{h_{\mathcal{H} _{1}}}}}\left\{ \mu _{1}\cdot \mu _{2}\right\}, \bigcup\limits_{ \underset{\nu _{2}\in \mathcal{B} _{h_{\mathcal{H} _{2}}}}{\nu _{1}\in \mathcal{B} _{h_{\mathcal{H} _{1}}}}}\left\{ \sqrt[q]{\nu _{1}^{q}+\nu _{2}^{q}-\nu _{1}^{q}\nu _{2}^{q}}\right\} \right\}; $

    (3) $\gamma {{\mathcal{H}}_{1}} = \left\{ \bigcup\limits_{{{\mu }_{1}}\in {{\eth }_{{{h}_{{{\mathcal{H}}_{1}}}}}}}{\left\{ \sqrt[q]{1-{{(1-\mu _{1}^{q})}^{\gamma }}} \right\}}, \ \bigcup\limits_{{{\nu }_{1}}\in {{\mathcal{B}}_{{{h}_{{{\mathcal{H}}_{1}}}}}}}{\mathop{\left\{ \nu _{1}^{\gamma } \right\}}}\, \right\}; $

    (4) $ \mathcal{H}_{1}^{\gamma } = \left\{ \bigcup\limits_{{{\mu }_{1}}\in {{\eth }_{{{h}_{{{\mathcal{H}}_{1}}}}}}}{\left\{ \mu _{1}^{\gamma } \right\}}, \bigcup\limits_{{{\nu }_{1}}\in {{\mathcal{B}}_{{{h}_{{{\mathcal{H}}_{1}}}}}}}{\mathop{\left\{ \sqrt[q]{1-{{(1-\nu _{1}^{q})}^{\gamma }}} \right\}}}\, \right\}. $

    Definition 6. [25] Let $ \aleph $ be the universal set and $ \mathcal{P} \subseteq \aleph \times \aleph $ be a crisp relation. Then

    (1) $ \mathcal{P} $ is reflexive if $ (\flat, \flat)\in \mathcal{P}, $ for each $ \flat \in \aleph; $

    (3) $ \mathcal{P} $ is symmetric if $ \forall \flat, a\in \aleph, $ $ (\flat, a)\in \mathcal{P} $ then $ (a, \flat)\in \mathcal{P}; $

    (4) $ \mathcal{P} $ is transitive if $ \forall $ $ \flat, a, b\in \aleph, (\flat, a)\in \aleph $ and $ (a, b)\in \mathcal{P} $ implies $ (\flat, b)\in \mathcal{P}. $

    Definition 7. [25] Let $ \aleph $ be a universal set and $ \mathcal{P} $ be any relation on $ \aleph. $ Define a set valued mapping $ \mathcal{P} ^{\ast }:\aleph \rightarrow M(\aleph) $ by $ \mathcal{P} ^{\ast }(\flat) = \{a\in \aleph |(\flat, a)\in \mathcal{P} \}, $ for $ \flat \in \aleph $ where $ \mathcal{P} ^{\ast }(\flat) $ is called a successor neighbourhood of the element $ \flat $ with respect to relation $ \mathcal{P}. $ The pair $ \left(\aleph, \mathcal{P} \right) $ is called crisp approximation space. Now for any set $ \mathcal{S} \subseteq \aleph, $ the lower and upper approximation of $ \mathcal{S} $ with respect to approximations space $ \left(\aleph, \mathcal{P} \right) $ is defined as:

    $ P_(S)={|P()S};¯P(S)={|P()Sϕ}. $

    The pair $ \left(\underline{\mathcal{P} }(\mathcal{S}), \overline{\mathcal{P} }(\mathcal{S})\right) $ is called rough set and both $ \underline{\mathcal{P} }(\mathcal{S}), \overline{\mathcal{P} }(\mathcal{S}):M(\aleph)\rightarrow M(\aleph) $ are upper and lower approximation operators.

    Definition 8. [14] Let $ \aleph $ be the universal set and $ \mathcal{P} \in IFS(\aleph \times \aleph) $ be an IF relation. Then

    (1) $ \mathcal{P} $ is reflexive if $ \mu _{\mathcal{P} }(\flat, \flat) = 1 $ and $ \nu _{\mathcal{P} }(\flat, \flat) = 0, \forall \flat \in \aleph; $

    (2) $ \mathcal{P} $ is symmetric if $ \ \forall (\flat, a)\in \aleph \times \aleph, $ $ \mu _{\mathcal{P} }(\flat, a) = \mu _{\mathcal{P} }(a, \flat) $ and\text{ }$ \nu _{\mathcal{P} }(\flat, a) = \nu _{\mathcal{P} }(a, \flat); $

    (3) $ \mathcal{P} $ is transitive if $ \forall (\flat, b)\in \aleph \times \aleph, $

    $ μP(,b)a[μP(,a)μP(a,b)]; $

    and

    $ νP(,b)=a[νP(,a)νP(a,b)]. $

    Definition 9. [3] Let $ \aleph $ be the universal set and for any subset $ \mathcal{P} \in q-ROHFS(\aleph \times \aleph) $ is said to be an q-rung hesitant fuzzy relation. The pair $ \left(\aleph, \mathcal{P} \right) $ is said to be q-ROHF approximation space. If for any $ \mathcal{S} \subseteq q-ROHFS(\aleph) $, then the upper and lower approximations of $ \mathcal{S} $\ with respect to q-ROHF approximation space $ \left(\aleph, \mathcal{P} \right) $ are two q-ROHFSs, which are denoted by $ \overline{\mathcal{P} }(\mathcal{S}) $ and $ \underline{\mathcal{P} } (\mathcal{S}) $ and defined as:

    $ ¯P(S)={,ðh¯P(S)(),Bh¯P(S)()|};P_(S)={,ðhP_(S)(),BhP_(S)()|}; $

    where

    $ ðh¯P(S)()=k[ðhP(,k)ðhS(k)];Bh¯P(S)()=k[BhP(,k)BhS(k)];ðhP_(S)()=k[ðhP(,k)ðhS(k)];BhP_(S)()=k[BhP(,k)BhS(k)]; $

    such that $ 0\leq \left(\max (\eth _{h_{\overline{\mathcal{P} }(\mathcal{S})}}(\flat))\right) ^{q}+\left(\min (\mathcal{B} _{h_{\overline{\mathcal{P} }(\mathcal{S})}}(\flat))\right) ^{q}\leq 1 $ and $ 0\leq \left(\min (\eth _{h_{\underline{\mathcal{P} } (\mathcal{S})}}(\flat)\right) ^{q}+\left(\max (\mathcal{B} _{h_{\underline{\mathcal{P} } (\mathcal{S})}}(\flat))\right) ^{q}\leq 1. $ As $ \left(\overline{\mathcal{P} } (\mathcal{S}), \underline{\mathcal{P} }(\mathcal{S})\right) $ are $ q-ROHFSs, $ so $ \overline{\mathcal{P} }(\mathcal{S}), \underline{\mathcal{P} }(\mathcal{S}):q-ROHFS(\aleph)\rightarrow q-RFS(\aleph) $ are upper and lower approximation operators. The pair

    $ P(S)=(P_(S),¯P(S))={,(ðhP_(S)(),BhP_(S)()),(ðh¯P(S)(),Bh¯P(S)())|S} $

    will be called $ q $-rung orthopair hesitent fuzzy rough set. For simplicity

    $ P(S)={,(ðhP_(S)(),BhP_(S)()),(ðh¯P(S)(),Bh¯P(S)())|S} $

    is represented as $ \mathcal{P} (\mathcal{S}) = \left((\underline{\eth }, \underline{ \mathcal{B} }), (\overline{\eth }, \overline{\mathcal{B} })\right) $ and is known as q-ROHFRV.

    Definition 10. [3] Let $ \mathcal{P} (\mathcal{S} _{1}) = (\underline{\mathcal{P} }(\mathcal{S} _{1}), \overline{ \mathcal{P} }(\mathcal{S} _{1})) $ and $ \mathcal{P} (\mathcal{S} _{2}) = (\underline{\mathcal{P} } (\mathcal{S} _{2}), \overline{\mathcal{P} }(\mathcal{S} _{2})) $ be two q-ROHFRSs. Then

    (1) $ \mathcal{P} (\mathcal{S} _{1})\cup $ $ \mathcal{P} (\mathcal{S} _{2}) = \{(\underline{\mathcal{P} } (\mathcal{S} _{1})\cup \underline{\mathcal{P} }(\mathcal{S} _{2})), (\overline{\mathcal{P} } (\mathcal{S} _{1})\cup \overline{\mathcal{P} }(\mathcal{S} _{2}))\} $

    (2) $ \mathcal{P} (\mathcal{S} _{1})\cap $ $ \mathcal{P} (\mathcal{S} _{2}) = \{(\underline{\mathcal{P} } (\mathcal{S} _{1})\cap \underline{\mathcal{P} }(\mathcal{S} _{2})), (\overline{\mathcal{P} } (\mathcal{S} _{1})\cap \overline{\mathcal{P} }(\mathcal{S} _{2}))\}. $

    Definition 11. [3] Let $ \mathcal{P} (\mathcal{S} _{1}) = (\underline{\mathcal{P} }(\mathcal{S} _{1}), \overline{ \mathcal{P} }(\mathcal{S} _{1})) $ and $ \mathcal{P} (\mathcal{S} _{2}) = (\underline{\mathcal{P} } (\mathcal{S} _{2}), \overline{\mathcal{P} }(\mathcal{S} _{2})) $ be two q-ROHFRSs. Then

    (1) $ \mathcal{P} (\mathcal{S} _{1})\oplus $ $ \mathcal{P} (\mathcal{S} _{2}) = \{(\underline{ \mathcal{P} }(\mathcal{S} _{1})\oplus \underline{\mathcal{P} }(\mathcal{S} _{2})), (\overline{ \mathcal{P} }(\mathcal{S} _{1})\oplus \overline{\mathcal{P} }(\mathcal{S} _{2}))\} $

    (2) $ \mathcal{P} (\mathcal{S} _{1})\otimes $ $ \mathcal{P} (\mathcal{S} _{2}) = \{(\underline{ \mathcal{P} }(\mathcal{S} _{1})\otimes \underline{\mathcal{P} }(\mathcal{S} _{2})), (\overline{\mathcal{P} }(\mathcal{S} _{1})\otimes \overline{\mathcal{P} }(\mathcal{S} _{2}))\} $

    (3) $ \mathcal{P} (\mathcal{S} _{1})\subseteq $ $ \mathcal{P} (\mathcal{S} _{2}) = \{(\underline{ \mathcal{P} }(\mathcal{S} _{1})\subseteq \underline{\mathcal{P} }(\mathcal{S} _{2})) $ and $ (\overline{\mathcal{P} }(\mathcal{S} _{1})\subseteq \overline{\mathcal{P} }(\mathcal{S} _{2}))\} $

    (4) $ \gamma \mathcal{P} (\mathcal{S} _{1}) = (\gamma \underline{\mathcal{P} }(\mathcal{S} _{1}), $ $ \gamma \overline{\mathcal{P} }(\mathcal{S} _{1})) $ for $ \gamma \geq 1 $

    (5) $ (\mathcal{P} (\mathcal{S} _{1}))^{\gamma } = ((\underline{\mathcal{P} }(\mathcal{S} _{1}))^{\gamma }, $ $ (\overline{\mathcal{P} }(\mathcal{S} _{1}))^{\gamma }) $ for $ \gamma \geq 1 $

    (6) $ \mathcal{P} (\mathcal{S} _{1})^{c} = (\underline{\mathcal{P} }(\mathcal{S} _{1})^{c}, $ $ \overline{\mathcal{P} }(\mathcal{S} _{1})^{c}) $ where $ \underline{\mathcal{P} }(\mathcal{S} _{1})^{c} $ and $ \overline{\mathcal{P} }(\mathcal{S} _{1})^{c} $ shows the complement of q-rung fuzzy rough approximation operators $ \underline{\mathcal{P} }(\mathcal{S} _{1}) $ and $ \overline{\mathcal{P} }(\mathcal{S} _{1}), $that is $ \underline{\mathcal{P} } (\mathcal{S} _{1})^{c} = \left(\mathcal{B} _{h_{\underline{\mathcal{P} }(\mathcal{S})}}, \eth _{h_{\underline{\mathcal{P} }(\mathcal{S})}}\right). $

    (7) $ \mathcal{P} (\mathcal{S} _{1}) = $ $ \mathcal{P} (\mathcal{S} _{2}) $ iff $ \underline{\mathcal{P} } (\mathcal{S} _{1}) = \underline{\mathcal{P} }(\mathcal{S} _{2}) $ and $ \overline{\mathcal{P} } (\mathcal{S} _{1}) = \overline{\mathcal{P} }(\mathcal{S} _{2}). $

    For the comparison/ranking of two or more q-ROHFRVs, we will utilize the score function. Superior the score value of q-ROHFRV greater that value is, and smaller the score value inferior that q-ROHFRV is. We will use the accuracy function when the score values are equal.

    Definition 12. [4] The score function for q-ROHFRV $ \mathcal{P} (\mathcal{S}) = (\underline{\mathcal{P} }(\mathcal{S}), \overline{\mathcal{P} }(\mathcal{S})) = ((\underline{ \eth }, \underline{\mathcal{B} }), (\overline{\eth }, \overline{\mathcal{B} })) $ is given as;

    $ (P(S))=14(2+1MHμi_ðhP_(S){μi_}+1NH¯μiðh¯P(S){¯μi}1MHνi_BhP_(S)(νi_)1MH¯νiBh¯P(S)(¯νi)), $

    The accuracy function for q-ROHFRV $ \mathcal{P} (\mathcal{S}) = (\underline{\mathcal{P} } (\mathcal{S}), \overline{\mathcal{P} }(\mathcal{S})) = ((\underline{\eth }, \underline{ \mathcal{B} }), (\overline{\eth }, \overline{\mathcal{B} })) $ is given as;

    $ ACP(S)=14(1MHμiðh¯P(S)(¯μi)+1MHμiðh¯P(S)(¯μi)+1MHνi_BhP_(S)(νi_)+1MH¯νiBh¯P(S)(¯νi)), $

    where $ M_{\mathcal{H} } $ and $ N_{\mathcal{H} } $ represent the number of elements in $ \eth _{h_{g}} $ and $ \mathcal{B} _{h_{g}} $ respectively.

    Definition 13. Suppose $ \mathcal{P} (\mathcal{S} _{1}) = (\underline{\mathcal{P} }(\mathcal{S} _{1}), \overline{\mathcal{P} }(\mathcal{S} _{1})) $ and $ \mathcal{P} (\mathcal{S} _{2}) = (\underline{ \mathcal{P} }(\mathcal{S} _{2}), \overline{\mathcal{P} }(\mathcal{S} _{2})) $ are two q-ROHFRVs. Then

    (1) If $ \Game (\mathcal{P} (\mathcal{S} _{1})) > \Game (\mathcal{P} (\mathcal{S} _{2})), $ then $ \mathcal{P} (\mathcal{S} _{1}) > \mathcal{P} (\mathcal{S} _{2}), $

    (2) If $ \Game (\mathcal{P} (\mathcal{S} _{1}))\prec \Game (\mathcal{P} (\mathcal{S} _{2})), $ then $ \mathcal{P} (\mathcal{S} _{1})\prec \mathcal{P} (\mathcal{S} _{2}), $

    (3) If $ \Game (\mathcal{P} (\mathcal{S} _{1})) = \Game (\mathcal{P} (\mathcal{S} _{2})), $ then

    (a) If $ \bf{AC}\mathcal{P} (\mathcal{S} _{1}) > \bf{AC}\mathcal{P} (\mathcal{S} _{2}) $ then $ \mathcal{P} (\mathcal{S} _{1}) > \mathcal{P} (\mathcal{S} _{2}), $

    (b) If $ \bf{AC}\mathcal{P} (\mathcal{S} _{1})\prec \bf{AC}\mathcal{P} (\mathcal{S} _{2}) $ then $ \mathcal{P} (\mathcal{S} _{1})\prec \mathcal{P} (\mathcal{S} _{2}), $

    (c) If $ \bf{AC}\mathcal{P} (\mathcal{S} _{1}) = \bf{AC}\mathcal{P} (\mathcal{S} _{2}) $ then $ \mathcal{P} (\mathcal{S} _{1}) = \mathcal{P} (\mathcal{S} _{2}). $

    Herein, we introduce new idea of q-ROHF rough aggregation operators by embedding the notions of rough sets and $ q $-ROHF aggregation operators to get aggregation concepts of $ q $-ROHFRWA operators. Some essential features of these concepts are discussed.

    Definition 14. Consider the collection $ \mathcal{P} (\mathcal{S} _{i}) = (\underline{\mathcal{P} } (\mathcal{S} _{i}), \overline{\mathcal{P} }(\mathcal{S} _{i})) $ $ (i = 1, 2, 3, ..., n) $ of q-ROHFRVs along weight vector $ w = \left(w_{1}, w_{2}, ...w_{n}\right) ^{T} $ such that $ \sum_{i = 1}^{n}w_{i} = 1 $ and $ 0\leq $ $ w_{i}\leq 1. $ The q-ROHFRWA operator is determined as

    $ qROHFRWA(P(S1),P(S2),...,P(Sn))=(ni=1wiP_(Si),ni=1wi¯P(Si)). $

    Theorem 1. Let $ \mathcal{P} (\mathcal{S} _{i}) = (\underline{\mathcal{P} }(\mathcal{S} _{i}), \overline{\mathcal{P} }(\mathcal{S} _{i})) $ $ (i = 1, 2, 3, ...n) $ be the collection of $ q $-ROHFRVs along weight vector $ w = \left(w_{1}, w_{2}, ...w_{n}\right) ^{T}. $Then the $ q $-ROHFRWA operator is defined as;

    $ qROHFRWA(P(S1),P(S2),...P(Sn))=(ni=1wiP_(Si),ni=1wi¯P(Si))=[μi_ðhP_(S)q(1ni=1(1(μi_)q)wi),νi_BhP_(S)ni=1(νi_)wi¯μiðh¯P(S)q(1ni=1(1(¯μi)q)wi),¯νiBh¯P(S)ni=1(¯νi)wi] $

    Proof. Utilizing mathematical induction to find the the desired proof. Using the operational law, it follows that

    $ P(S1)P(S2)=[P_(S1)P_(S2),¯P(S1)¯P(S2)] $

    and

    $ γP(S1)=(γP_(S1),γ¯P(S1)) $

    If $ n = 2 $, then

    $ qROHFRWA(P(S1),P(S2))=(2i=1wiP_(Si),2i=1wi¯P(Si))=((μi_ðhP_(S)q(12i=1(1(μi_)q)wi),νi_BhP_(S)2i=1(νi_)wi)(¯μiðh¯P(S)q(12i=1(1(¯μi)q)wi),¯νiBh¯P(S)2i=1(¯νi)wi)) $

    The result is true for $ n = 2. $ Let it is true for $ n = k, $ that is,

    $ qROHFRWA(P(S1),P(S2),...P(Sk))=(ki=1wiP_(Si),ki=1wi¯P(Si))=((μi_ðhP_(S)q(1ki=1(1(μi_)q)wi),νi_BhP_(S)ki=1(νi_)wi)(¯μiðh¯P(S)q(1ki=1(1(¯μi)q)wi),¯νiBh¯P(S)ki=1(¯νi)wi)) $

    Now, we have to show that it is true for $ n = k+1 $, we have

    $ qROHFRWA(P(S1),P(S2),...P(Sk+1))=((ki=1wiP_(Si)wk+1P_(Sk+1)),(ki=1wi¯P(Si)wk+1¯P(Sk+1)))=((μi_ðhP_(S)q(1k+1i=1(1(μi_)q)wi),νi_BhP_(S)k+1i=1(νi_)wi)(¯μiðh¯P(S)q(1k+1i=1(1(¯μi)q)wi),¯νiBh¯P(S)k+1i=1(¯νi)wi)). $

    Thus the required result is true for $ n = k+1 $. Hence, the result is true for all $ n\geq 1. $ From the above analysis $ \underline{\mathcal{P} }(\mathcal{S}) $ and $ \overline{\mathcal{P} } (\mathcal{S}) $ are q-ROHFRVs. So, $ \sum_{i = 1}^{k}w_{i}\underline{\mathcal{P} } \left(\mathcal{S} _{i}\right) $ and $ \sum_{i = 1}^{k}w_{i}\overline{\mathcal{P} } \left(\mathcal{S} _{i}\right) $ are also q-ROHFRVs. Therefore, q-ROHFRWA $ \left(\mathcal{P} (\mathcal{S} _{1}), \mathcal{P} (\mathcal{S} _{2}), ...\mathcal{P} (\mathcal{S} _{n})\right) $ is a q-ROHFRV under q-ROHF approximation space $ \left(\aleph, \mathcal{P} \right). $

    Theorem 2. Consider the collection $ \mathcal{P} (\mathcal{S} _{i}) = (\underline{\mathcal{P} }(\mathcal{S} _{i}), \overline{\mathcal{P} }(\mathcal{S} _{i})) $ $ (i = 1, 2, 3, ..., n) $of q-ROHFRVs with weight vectors $ w = \left(w_{1}, w_{2}, ...w_{n}\right) ^{T} $such that $ \sum_{i = 1}^{n}w_{i} = 1 $ and $ 0\leq $ $ w_{i}\leq 1. $ Then q-ROHFRWAoperator satisfy the following properties:

    (1) Idempotency: If $ \mathcal{P} (\mathcal{S} _{i}) = \mathcal{G}(\mathcal{S}) $ for $ \left(i = 1, 2, 3, ..., n\right), $ where $ \mathcal{G}(\mathcal{S}) = \left(\underline{\mathcal{G} }(\mathcal{S}), \overline{\mathcal{G} }(\mathcal{S})\right) = \left((\underline{b}, \underline{d}), (\overline{b}, \overline{d})\right). $ Then

    $ qROHFRWA(P(S1),P(S2),...P(Sn))=G(S). $

    (2) Boundedness: Let $ \left(\mathcal{P} (\mathcal{S})\right) ^{-} = \left(\underset{i}{\min }\underline{\mathcal{P} }\left(\mathcal{S} _{i}\right), \underset{i}{\max }\overline{\mathcal{P} }(\mathcal{S} _{i})\right) $ and $ \left(\mathcal{P}(\mathcal{S})\right) ^{+} = $ $ \left(\underset{i}{\max }\underline{\mathcal{P} }\left(\mathcal{S} _{i}\right), \underset{i}{\min }\overline{\mathcal{P} }(\mathcal{S} _{i})\right). $ Then

    $ (P(S))qROHFRWA(P(S1),P(S2),...,P(Sn))(P(S))+. $

    (3) Monotonicity: Suppose $ \mathcal{G}(\mathcal{S}) = \left(\underline{\mathcal{G} }(\mathcal{S} _{i}), \overline{\mathcal{G} }(\mathcal{S} _{i})\right) (i = i, 2, ..., n) $ be another collectionof q-ROHFRVs such that $ \underline{\mathcal{G} }(\mathcal{S} _{i})\leq\underline{\mathcal{P} }\left(\mathcal{S} _{i}\right) $ and $ \overline{\mathcal{G} }(\mathcal{S} _{i})\leq \overline{\mathcal{P} }(\mathcal{S} _{i}) $. Then

    $ qROHFRWA(G(S1),G(S2),...,G(Sn))qROHFRWA(P(S1),P(S2),...P(Sn)). $

    (4) Shiftinvariance: Consider another q-ROHFRV $ \mathcal{G}(\mathcal{S}) = \left(\underline{\mathcal{G} }(\mathcal{S}), \overline{\mathcal{G} }(\mathcal{S})\right) = \left((\underline{b}, \underline{d}), (\overline{b}, \overline{d})\right). $ Then

    $ qROHFRWA(P(S1)G(S),P(S2)G(S),...,P(Sn)G(S))=qROHFRWA(P(S1),P(S2),...P(Sn))G(S). $

    (5) Homogeneity: For any real number $ \gamma > 0; $

    $ qROHFRWA(γP(S1),γP(S2),...,γP(Sn))=γqROHFRWA(P(S1),P(S2),...,P(Sn)). $

    (6) Commutativity:Suppose $ \mathcal{P} ^{^{\prime }}(\mathcal{S}_{i}) = \left(\underline{\mathcal{P} ^{^{\prime }}}\left(\mathcal{S} _{i}\right), \overline{\mathcal{P} ^{^{\prime }}}(\mathcal{S} _{i})\right) $ and $ \mathcal{P}(\mathcal{S} _{i}) = (\underline{\mathcal{P} }(\mathcal{S} _{i}), \overline{\mathcal{P} }(\mathcal{S} _{i})), $ $ (i = 1, 2, 3, ..., n) $ is a collection of q-ROHFRVs. Then

    $ qROHFRWA(P(S1),P(S2),...,P(Sn))=qROHFRWA(P(S1),P(S2),...,P(Sn)). $

    Proof. (1) Idempotency: As $ \mathcal{P} (\mathcal{S} _{i}) = \mathcal{G} (\mathcal{S}) $ (for all $ i = 1, 2, 3, ..., n $) where $ \mathcal{G} (\mathcal{S} _{i}) = \left(\underline{\mathcal{G} }(\mathcal{S}), \overline{\mathcal{G} }(\mathcal{S})\right) = \left((\underline{b_{i}}, \underline{d}_{i}), (\overline{b_{i}}, \overline{d}_{i})\right) $

    $ qROHFRWA(P(S1),P(S2),...,P(Sn))=(ni=1wiP_(Si),ni=1wi¯P(Si))=[μi_ðhP_(S)q(1ni=1(1(μi_)q)wi),νi_BhP_(S)ni=1(νi_)wi¯μiðh¯P(S)q(1ni=1(1(¯μi)q)wi),¯νiBh¯P(S)ni=1(¯νi)wi] $

    for all $ i, $ $ \mathcal{P} (\mathcal{S} _{i}) = \mathcal{G} (\mathcal{S}) = $ $ \left(\underline{\mathcal{G} }(\mathcal{S}), \overline{\mathcal{G} }(\mathcal{S})\right) = \left((\underline{b_{i}}, \underline{d_{i}}), (\overline{d}_{i}, \overline{e_{i}})\right). $ Therefore,

    $ =[bi_ðhP_(S)q(1ni=1(1(bi_)q)wi),di_BhP_(S)ni=1(di_)wi¯biðh¯P(S)q(1ni=1(1(¯bi)q)wi),¯diBh¯P(S)ni=1(¯di)wi]=[(1(1bi_),bi_),(1(1¯di),¯bi)]=(G_(S),¯G(S))=G(S). $

    Hence q-ROHFRWA$ \left(\mathcal{P} (\mathcal{S} _{1}), \mathcal{P} (\mathcal{S} _{2}), ...\mathcal{P} (\mathcal{S} _{n})\right) = \mathcal{G} (\mathcal{S}). $

    (2) Boundedness: As

    $ (P_(S))=[(mini{μi_},maxi{νi_}),(mini{¯μi},maxi{¯νi})](P_(S))+=[(maxi{μi_},mini{νi_}),(maxi{¯μi},mini{¯νi})] $

    and $ \mathcal{P} (\mathcal{S} _{i}) = \left[ \left(\underline{\eth _{i}}, \underline{ \mathcal{B} _{i}}\right), \left(\overline{\eth _{i}}, \overline{\mathcal{B} }_{i}\right) \right]. $ To prove that

    $ (P(S))qROHFRWA(P(S1),P(S2),...,P(Sn))(P(S))+. $

    Since for each $ i = 1, 2, 3, ..., n, $ it follows that

    $ mini{μi_}{μi_}maxi{μi_}1maxi{μi_}1{μi_}1{μi_}ni=1(1maxi{μi_})wini=1(1{μi_})wini=1(1mini{μi_})wi(1maxi{μi_})ni=1(1{μi_})wi(1mini{μi_})1(1mini{μi_})1ni=1(1{μi_})wi1(1maxi{μi_}) $

    Hence

    $ mini{μi_}1ni=1(1{μi_})wimaxi{μi_} $ (3.1)

    Next for each $ i = 1, 2, 3, ..., n $, we have

    $ mini{νi_}{νi_}maxi{νi_}ni=1(mini{νi_})wini=1(νi_)wini=1(maxi{νi_})wi. $

    This imples that

    $ mini{νi_}ni=1{νi_}wimaxi{νi_}. $ (3.2)

    Likewise, we can present that

    $ mini{¯μi}ni=1{¯μi}wimaxi{¯μi} $ (3.3)

    and

    $ mini{¯νi}ni=1{¯νi}wimaxi{¯νi}. $ (3.4)

    So from Equations $ \left(3.1\right), \left(3.2\right), \left(3.3\right) $ and $ \left(3.4\right) $ we have

    $ (P_(S))=[(mini{μi_},maxi{νi_}),(mini{¯μi},maxi{¯νi})]. $

    (3) Monotonicity: Since $ \mathcal{G} (\mathcal{S}) = \left(\underline{\mathcal{G} }(\mathcal{S} _{i}), \overline{\mathcal{G} }(\mathcal{S} _{i})\right) = \left(\left(\underline{b}, \underline{d}\right), \left(\overline{b}, \overline{d}\right) \right) $ and $ \mathcal{P} (\mathcal{S} _{i}) = \left(\underline{\mathcal{P} }\left(\mathcal{S} _{i}\right), \overline{\mathcal{P} } (\mathcal{S} _{i})\right) $ to show that $ \underline{\mathcal{G} } (\mathcal{S} _{i})\leq \underline{\mathcal{P} }\left(\mathcal{S} _{i}\right) $ and $ \overline{\mathcal{G} }(\mathcal{S} _{i})\leq \overline{\mathcal{P} }(\mathcal{S} _{i}) $ (for $ i = 1, 2, 3, ..., n $), so

    $ bi_μi_1bi_1μi_ni=1(1μi_)wini=1(1bi_)wi1ni=1(1bi_)wi1ni=1(1μi_)wi $ (3.5)

    next

    $ d_iνi_ni=1d_wiini=1νi_wi. $ (3.6)

    Likewise, we can show that

    $ 1ni=1(1¯bi)wi1ni=1(1¯μi)wi $ (3.7)
    $ ni=1(¯bij)wini=1(¯νij)wi $ (3.8)

    Hence from Equations $ \left(3.5\right) $, $ \left(3.6\right) $, $ \left(3.7\right) $ and $ \left(3.8\right) $, we get $ \underline{ \mathcal{G} }(\mathcal{S} _{i})\leq \underline{\mathcal{P} }\left(\mathcal{S} _{i}\right) $ and $ \overline{\mathcal{G} }(\mathcal{S} _{i})\leq \overline{ \mathcal{P} }(\mathcal{S} _{i}). $ Therefore,

    $ qROHFRWA(G(S1),G(S2),...,G(Sn))qROHFRWA(P(S1),P(S2),...P(Sn)). $

    (4) Shiftinvariance: As $ \mathcal{G} (\mathcal{S}) = \left(\underline{\mathcal{G} }(\mathcal{S}), \overline{\mathcal{G} }(\mathcal{S})\right) = \left((\underline{b_{i}}, \underline{d_{i}}), (\overline{b}_{i}, \overline{d}_{i})\right) $ is a q-ROHFRV and $ \mathcal{P} (\mathcal{S} _{i}) = \left(\underline{\mathcal{P} }\left(\mathcal{S} _{i}\right), \overline{\mathcal{P} }(\mathcal{S} _{i})\right) = \left[ \left(\underline{\eth _{i}}, \underline{\mathcal{B} _{i}}\right), \left(\overline{\eth _{i}}, \overline{\mathcal{B} }_{i}\right) \right] $ is the collection of q-ROHFRVs, so

    $ P(S1)G(S)=[P_(S1)G_(S),¯P(Si)¯G(S)]. $

    As

    $ ((1(1μi_)(1di_),νi_di_),(1(1¯μi)(1¯di),¯νi¯di)). $

    Thus, $ q $-ROHFRV $ \mathcal{G} (\mathcal{S}) = \left(\underline{\mathcal{G} } (\mathcal{S}), \overline{\mathcal{G} }(\mathcal{S})\right) = \left((\underline{b_{i}}, \underline{d_{i}}), (\overline{b_{i}}, \overline{d} _{i})\right). $ It follows that

    $ qROHFRWA(P(S1)G(S),P(S2)G(S),...,P(Sn)G(S))=[ni=1wiP_(Si)G(S),ni=1wi(P_(Si)G(S))]=[{μi_ðhP_(S)q(1ni=1(1(μi_)q)wi(1bi_)wi),νi_BhP_(S)ni=1(νi_)wid_wii},{¯μiðh¯P(S)q(1ni=1(1(¯μi)q)wi)(1¯bi)wi,¯νiBh¯P(S)d_ini=1(¯νi)wi}] $
    $ =[{μi_ðhP_(S)q(1(1b_)ni=1(1(μi_)q)wi),νi_BhP_(S)d_ni=1(νi_)wi},{¯μiðh¯P(S)q(1¯b)(1i=1n(1(¯μi)q)wi),¯νiBh¯P(S)¯dni=1(¯νi)wi}] $
    $ =[{(μi_ðhP_(S)q(1ni=1(1(μi_)q)wi),νi_BhP_(S)ni=1(νi_)wi)(bi_,d_i)},{(¯μiðh¯P(S)q(1ni=1(1(¯μi)q)wi),¯νiBh¯P(S)ni=1(¯νi)wi)(¯bi,¯di)}] $
    $ =[(μi_ðhP_(S)q(1ni=1(1(μi_)q)wi),νi_BhP_(S)ni=1(νi_)wi),(¯μiðh¯P(S)q(1ni=1(1(¯μi)q)wi),¯νiBh¯P(S)ni=1(¯νi)wi)][(bi_,di_),(¯bi,¯di)]=qROHFRWA(P(S1),P(S2),...,P(Sn))G(S). $

    (5) Homogeneity: For real number $ \gamma > 0 $ and $ \mathcal{P} (\mathcal{S} _{i}) = \left(\underline{\mathcal{P} }\left(\mathcal{S} _{i}\right), \overline{\mathcal{P} }(\mathcal{S} _{i})\right) $ be a q-ROHFRVs. Consider

    $ γP(Si)=(γP_(Si),γ¯P(Si))=[{μi_ðhP_(S)(q(1(1μi_q)γ)),νi_BhP_(S)(νi_γ)},{¯μiðh¯P(S)(q(1(1¯μiq)γ)),¯νiBhP_(S)(¯νγi)}] $

    Now

    $ qROHFRWA(γP(S1),γP(S2),...,γP(Sn))=[(μi_ðhP_(S)q(1ni=1(1(μi_)q)γ),νi_BhP_(S)ni=1(νi_)γ),(¯μiðh¯P(S)q(1ni=1(1(¯μi)q)γ),¯νiBhP_(S)ni=1(¯νi)γ)]=γqROHFRWA(P(S1),P(S2),...,P(Sn)). $

    (6) Commutativity: Suppose

    $ qROHFRWA(P(S1),P(S2),...,P(Sn))=[ni=1γiP_(Si),ni=1γi¯P(Si)]=[(μi_ðhP_(S)q(1ni=1(1(μi_)q)γi),νi_BhP_(S)ni=1(νi_)γi),(¯μiðh¯P(S)q(1ni=1(1(¯μi)q)γi),¯νiBhP_(S)ni=1(¯νi)γi)], $

    Let $ \left(\mathcal{P} ^{^{\prime }}(\mathcal{S} _{1}), \mathcal{P} ^{^{\prime }}(\mathcal{S} _{2}), ..., \mathcal{P} ^{^{\prime }}(\mathcal{S} _{n})\right) $ be a permutation of $ \left(\mathcal{P} (\mathcal{S} _{1}), \mathcal{P} (\mathcal{S} _{2}), ..., \mathcal{P} (\mathcal{S} _{n})\right). $ Then we have $ \mathcal{P} (\mathcal{S} _{i}) = \mathcal{P} ^{^{\prime }}(\mathcal{S} _{i})(i = 1, 2, 3, ..., n) $

    $ =[(μi_ðhP_(S)q(1ni=1(1(μi_)q)γi),νi_BhP_(S)ni=1(νi_)γi),(¯μiðh¯P(S)q(1ni=1(1(¯μi)q)γi),¯νiBhP_(S)ni=1(¯νi)γi)],=[ni=1γiP_(Si),ni=1γi¯P(Si)]=qROHFRWA(P(S1),P(S2),...,P(Sn)). $

    Proved.

    Here, we developed an algorithm for addressing uncertainty in multi-attribute group decision making (MAGDM) under q-rung orthopair hesitant fuzzy rough information. Consider a DM problem with $ \left\{ \flat _{1}, \flat _{2}, ..., \flat _{n}\right\} $ a set of $ n $ alternatives and a set of attributes $ \left\{ c_{1}, c_{2}, ..., c_{n}\right\} $ with $ (w_{1}, w_{2}, ..., w_{n})^{T} $ the weights, that is, $ w_{i}\in \lbrack 0, 1] $, $ \sum_{i = 1}^{n}w_{i} = 1. $ To test the reliability of kth alternative $ \flat _{i} $ under the the attribute $ c_{i}, $ let be a set of decision makers (DMs) $ \left\{ \mathring{D}_{1}, \mathring{D}_{2}, ..., \mathring{D}_{\hat{\jmath} }\right\} $ and $ (\varrho _{1}, \varrho _{2}, ..., \varrho _{i})^{T} $ be DMs weights such that $ \varrho _{i}\in \lbrack 0, 1] $, $ \sum_{i = 1}^{n}\varrho _{i} = 1 $. The expert evaluation matrix is described as:

    $ M=[¯P(Sˆȷij)]m×n=[(¯P(S11),P_(S11))(¯P(S12),P_(S12))(¯P(S1j),P_(S1j))(¯P(S21),P_(S21))(¯P(S22),P_(S22))(¯P(S2j),P_(S2j))(¯P(S31),P_(S31))(¯P(S32),P_(S32))(¯P(S3j),P_(S3j))(¯P(Si1),P_(Si1))(¯P(Si2),P_(Si2))(¯P(Sij),P_(Sij))], $

    where $ \overline{\mathcal{P} }(\mathcal{S} _{ij}) = \left\{ \langle \flat, \eth _{h_{\overline{\mathcal{P} }(\mathcal{S})}}(\flat), \mathcal{B} _{h_{\overline{\mathcal{P} } (\mathcal{S})}}(\flat)\rangle |\flat \in \aleph \right\} $ and $ \underline{\mathcal{P} }(\mathcal{S}) = \left\{ \langle \flat, \eth _{h_{ \underline{\mathcal{P} }(\mathcal{S})}}(\flat), \mathcal{B} _{h_{\underline{\mathcal{P} } (\mathcal{S})}}(\flat)\rangle |\flat \in \aleph \right\} $ such that $ 0\leq \left(\max (\eth _{h_{\overline{\mathcal{P} }(\mathcal{S})}}(\flat))\right) ^{q}+\left(\min (\mathcal{B} _{h_{\overline{\mathcal{P} }(\mathcal{S})}}(\flat))\right) ^{q}\leq 1 $ and $ 0\leq \left(\min (\eth _{h_{\underline{\mathcal{P} }(\mathcal{S})}}(\flat)\right) ^{q}+\left(\max (\mathcal{B} _{h_{\underline{\mathcal{P} }(\mathcal{S})}}(\flat))\right) ^{q}\leq 1 $ are the q-ROHF rough values. The main steps for MAGDM are as follows:

    Step-1 Construct the experts evaluation matrices as:

    $ (E)ˆȷ=[(¯P(Sˆȷ11),P_(Sˆȷ11))(¯P(Sˆȷ12),P_(Sˆȷ12))(¯P(Sˆȷ1j),P_(Sˆȷ1j))(¯P(Sˆȷ21),P_(Sˆȷ21))(¯P(Sˆȷ22),P_(Sˆȷ22))(¯P(Sˆȷ2j),P_(Sˆȷ2j))(¯P(Sˆȷ31),P_(Sˆȷ31))(¯P(Sˆȷ32),P_(Sˆȷ32))(¯P(Sˆȷ3j),P_(Sˆȷ3j))(¯P(Sˆȷi1),P_(Sˆȷi1))(¯P(Sˆȷi2),P_(Sˆȷi2))(¯P(Sˆȷij),P_(Sˆȷij))] $

    where $ \hat{\jmath} $ represents the number of expert.

    Step-2 Evaluate the normalized experts matices $ \left(N\right) ^{ \hat{\jmath}}, $ as

    $ (N)ˆȷ={P(Sij)=(P_(Sij),¯P(Sij))=((μij_,νij_),(¯μij,¯νij))ifForbenefit(P(Sij))c=((P_(Sij))c,(¯P(Sij))c)=((νij_,μij_),(¯νij,¯μij))ifForcost $

    Step-3 Compute the collected q-rung orthopair hesitant fuzzy rough information of decision makers using the q-ROHFRWA aggregation operators.

    $ qROHFRWA(P(S1),P(S2),...P(Sn))=(ni=1wiP_(Si),ni=1wi¯P(Si))=[μi_ðhP_(S)q(1ni=1(1(μi_)q)wi),νi_BhP_(S)ni=1(νi_)wi¯μiðh¯P(S)q(1ni=1(1(¯μi)q)wi),¯νiBh¯P(S)ni=1(¯νi)wi] $

    Step-4 Determine the $ q $-ROHFR positive ideal solutions $ I^{+} $ and the $ q $-ROHFR negative ideal solutions $ I^{-} $as follows:

    $ I+=(ϖ+1,ϖ+2,ϖ+3,...,ϖ+n)=(maxiϖi1,maxiϖi2,maxiϖi3,...,maxiϖin.),I+=(ϖ1,ϖ2,ϖ3,...,ϖn)=(miniϖi1,miniϖi2,miniϖi3,...,miniϖin.) $

    Step-5 Our next goal is to calculate the $ q $-ROHFR group utility measure $ S_{i}(i = 1, 2, 3, 3, ..., n) $ and the regret measure $ R_{i}(i = 1, 2, 3, 3, ..., n) $ of all alternatives $ L = \left(A _{1}, A _{2}, A _{3}, ..., A _{n}\right) $ by using the following formulas.

    $ Si=nj=1wjd(ϖij,ϖ+j)d(ϖ+j,ϖj),i=1,2,3,3,...m.Ri=maxwjd(ϖij,ϖ+j)d(ϖ+j,ϖj),i=1,2,3,3,...m $

    Step-6 Now, we identify the $ S $ and $ R $ maximum and minimum values as follows:

    $ S#=miniSi,S=maxiSi,R#=miniRi,R=maxiRi,i=1,2,3,...n, $

    Finally, to evaluate the ranking measure $ Q_{i} $ for the alternative $ L = \left(A _{1}, A _{2}, A _{3}, ..., A _{n}\right) $, we combine the feature of the group utility $ S_{i} $ and individual regret $ R_{i} $ as follows:

    $ Qi=τSiS#SS#+(1τ)RiR#RR#,Ri,i=1,2,3,3,...n, $

    where $ \tau $ is the strategy weight of most of the parameters (maximum group utility) and plays a crucial role in the evaluation of the compromise solution. The value is taken from the uni interval [0, 1], but 0.5 is generally taken.

    Step-7 Further, with respect to group utility measure $ S_{i} $, individual regret measure $ R_{i} $ and ranking measure $ Q_{i} $, the alternatives are ranked in descending order. Here, we get three ranking lists that are useful in determining the compromise solution.

    In this section, we propose the numerical application related to agriculture robotics to improve the ability and capability of agriculture and presented to verifying the reliability, superiority and scientific correctness of the established aggregation operators.

    Farming is the practice of cultivating crops and raising livestock. It entails both raising livestock and cultivating crops for agricultural goods. Farming has been practised for thousands of years. Agriculture is a way of life rather than a profession. Without this, we would be unable to survive in this environment, and it was also essential for the birth of human civilization. Agriculture is the most advantageous, helpful, and dignified activity available to mankind. Human beings are born farmers who take great pleasure in nurturing their farm, whether in their home gardens or out in the fields. Inside houses, plants are cultivated in little mud pots; however, in the fields, individuals may grow any kind of plant or crop. Our nation is now being dismantled under the pretence of economic advancement, industrialisation, and the development of housing projects. and we will be required to pay much more for our daily nutritional requirements. With increasing population, people need more food to survive word population rate grows rapidly. Farmers have to use agriculture robots for improving the yield of crops. Robotics in agriculture is an example of innovation that transcends invention. Agriculture is a business, and it is anticipated to expand into a high-tech enterprise in the contemporary era. Agricultural capabilities of farmers are increasingly growing in accordance with technological advancements. Robotics and automation are now helping to improve yields of crops. Robots may be used for harvesting, weeding, trimming, sowing, spraying, sorting, and packing in agriculture. The agriculture robots are called agri-robots or agribots. An vital purpose for Agribots will be performed in agriculture in the future. In this area, we will concentrate on a specific application: the employment of robots in horticulture. Horticulture is the agricultural practice of cultivating material, food, decorative, and comforting plants. A Terra Sentia is a new generation robot which is the smallest robot having $ 12.5 $ inches height and $ 12.5 $ inches width with weight of $ 30 $ pounds. It looks like a lawnmower, with high-resolution cameras on each side, and it navigates a field by scanning it with laser pulses. There are several ways to visualize a field in terms of stem diameters, fruit-producing plants, and general health and size of the plants. Additionally, it may be employed in plant breeding research. The robot has been used in a variety of areas, including maize, wheat, strawberries, citrus, cotton, soybean, sorghum, and almond grapes. We will examine the agricultural productivity of robots. The attributes of robotic farming are described below:

    $ (c_{1}) $ Automation of manual tasks: When farmers adopt automation, they increase their production by spending less time on routine tasks and more time on improvements.

    $ (c_{2}) $ High-quality production and reduced production costs: There are certain farming factors which have an influence on the improvement of the quality of products for example, (soil, climate, ripening period, fertilizer etc). The level of maturity and dryness are important in the production of agriculture (barley, wheat, rice etc.). Agriculture has made a significant contribution to cost reduction via the use of robots. We must maintain certain uncontrollable factors that reduce production costs, such as weather conditions, seed purchases from various brands, and chemical consumption.

    $ (c_{3}) $ Completing a challenging task: Using automation to complete the challenging activity in an easy and plain way, scientists, researchers, technologists, and farmers all agreed that the use of automation will simplify and streamline the process.

    $ (c_{4}) $ Consistent role to complete a task/placement perfection and accuracy: In order to play a systematic role, the farm must be operated by artificial intelligence (automate the complete agricultural process) from sowing through harvesting. In the field, plant placement is extremely important. The accuracy will contribute to perfection. The automation of nursing operations includes grafting, propagation, and spacing.

    The evaluation procedure for selection of robotic agri-farming: suppose an organization wants to assess the procedure of selecting a robotic agri-farming. They invite a panel of experts to analyze an appropriate robotic farming. Let $ \left\{ A_{1}, A_{2}, A_{3}, A_{4}\right\} $ be four alternatives for robotic farming, and the penal select ideal one. Let $ \left\{ c _{1}, c _{2}, c _{3}, c _{4}\right\} $ be the attributes of each alternative based on the influencing factors determined as follows: automation of manual tasks $ \left(c _{1}\right) $, high-quality production and reduced production costs $ \left(c _{2}\right) $, completing a challenging task $ \left(c_{3}\right) $ and consistent role to complete a task/placement perfection and accuracy $ \left(c_{4}\right) $ of robotic agri-farming. Because of the uncertainty, the DMs' selection information is presented as q-ROHFR information. The considered attribute weight vector is $ w = \left(0.18, 0.25, 0.31, 0.26\right) ^{T} $ and DM experts weight vector is $ w = \left(0.23, 0.38, 0.39\right) ^{T}. $ The following computations are carried out in order to evaluate the MCDM problem utilizing the defined approach for evaluating alternatives:

    Step-1 The information of three professional experts are evaluated in Table-2 to Table-4 using q-ROHFRVs.

    Table 2(a).  Expert-1 information.
    $c_{1}$ $c_{2}$
    $A_{1}$ $\left({(0.10,0.20,0.50),(0.30,0.40)},{(0.30,0.80,0.90),(0.40,0.60)} \right)$ $\left({(0.5,0.7,0.9),(0.5,0.6,0.8)},{(0.3,0.5,0.6),(0.7,0.9)} \right)$
    $A_{2}$ $\left({(0.50,0.60,0.70),(0.70,0.90)},{(0.30,0.50,0.70),(0.60,0.70)} \right)$ $\left({(0.2,0.4,0.5),(0.5)},{(0.6,0.7),(0.3,0.5,0.9)} \right)$
    $A_{3}$ $\left({(0.40,0.50,0.60),(0.60,0.70,0.80)},{(0.70,0.80),(0.10,0.40,0.70)} \right)$ $\left({(0.1),(0.5,0.6)},{(0.4,0.6,0.7),(0.5,0.7)} \right)$
    $A_{4}$ $\left({(0.6,0.7,0.9),(0.3,0.4,0.6)},{(0.2,0.7),(0.7,0.8,0.9)} \right)$ $\left({(0.3,0.4,0.5),(0.4,0.7,0.9)},{(0.1,0.2),(0.2,0.3)} \right)$

     | Show Table
    DownLoad: CSV
    Table 2(b).  Expert-1 information.
    $c_{3}$ $c_{4}$
    $A_{1}$ $\left({(0.2,0.3,0.4),(0.3,0.4,0.7)},{(0.1,0.5),(0.3,0.5)} \right)$ $\left({(0.5,0.6),(0.4,0.5,0.7)},{(0.6,0.8,0.9),(0.6,0.7,0.9)} \right)$
    $A_{2}$ $\left({(0.4,0.5,0.8),(0.4,0.5,0.7)},{(0.2,0.5),(0.4,0.5)} \right)$ $\left({(0.4,0.6,0.8),(0.3,0.5)},{(0.7),(0.1,0.3,0.4)} \right)$
    $A _{3}$ $\left({(0.3,0.6,0.7),(0.5,0.7,0.8)},{(0.5,0.9),(0.5,0.8)} \right)$ $\left({(0.3,0.6),(0.5,0.6,0.8)},{(0.1,0.3,0.7),(0.3,0.4)} \right)$
    $A _{4}$ $\left({(0.3,0.4,0.5),(0.7,0.8,0.9)},{(0.6,0.7),(0.4,0.7)} \right)$ $\left({(0.2,0.3,0.4),(0.5,0.6,0.9)},{(0.3,0.4),(0.7,0.8)} \right)$

     | Show Table
    DownLoad: CSV
    Table 3(a).  Expert-2 information.
    $c_{1}$ $c_{2}$
    $A _{1}$ $\left(({0.2,0.3,0.4},{0.2,0.5}),({0.4,0.6},{0.2,0.5}) \right)$ $\left(({0.4,0.5,0.6},{0.3,0.7,0.8}),({0.2,0.7,0.8},{0.2,0.8,0.9}) \right)$
    $A _{2}$ $\left(({0.1,0.3,0.4},{0.5,0.8}),({0.5,0.6},{0.8,0.9}) \right)$ $\left(({0.3,0.4,0.6},{0.7,0.8}),({0.1,0.5},{0.3,0.7,0.8}) \right)$
    $A _{3}$ $ \left(({0.6,0.7,0.8},{0.3,0.4}),({0.3,0.8,0.9},{0.2,0.5,0.7}) \right)$ $\left(({0.3,0.4,0.5},{0.4,0.7,0.9}),({0.4,0.6,0.7},{0.7,0.8,0.9}) \right)$
    $A _{4}$ $\left(({0.1,0.2,0.3},{0.5,0.7}),({0.2,0.4},{0.7,0.8}) \right)$ $\left(({0.5,0.7,0.8},{0.3,0.5,0.7}),({0.3,0.4,0.6},{0.4,0.5,0.7}) \right)$

     | Show Table
    DownLoad: CSV
    Table 3(b).  Expert-2 information.
    $c_{3}$ $c_{4}$
    $A _{1}$ $\left(({0.2,0.4},{0.3,0.5}),({0.4,0.7,0.8},{0.2,0.6}) \right)$ $\left(({0.1,0.2},{0.4,0.6}),({0.2,0.5},{0.7,0.9}) \right)$
    $A _{2} $ $\left(({0.3,0.5,0.7},{0.2,0.6}),({0.6,0.7,0.8},{0.2,0.8}) \right)$ $\left(({0.2,0.3},{0.4,0.6,0.7}),({0.1,0.3,0.5},{0.2,0.3,0.5}) \right)$
    $A _{3} $ $\left(({0.5,0.6,0.7},{0.3,0.5}),({0.7,0.8,0.9},{0.2,0.3,0.5}) \right)$ $\left(({0.2,0.7,0.8},{0.2,0.7}),({0.1,0.2},{0.5,0.6,0.7}) \right)$
    $A _{4}$ $\left(({0.6,0.7,0.9},{0.2,0.5}),({0.6,0.9},{0.2,0.5}) \right)$ $\left(({0.3,0.5},{0.4,0.6,0.7}),({0.2,0.3,0.6},{0.4,0.5,0.7}) \right)$

     | Show Table
    DownLoad: CSV
    Table 4(a).  Expert-3 information.
    $c_{1}$ $c_{2}$
    $A _{1}$ $\left(({0.4,0.7,0.9},{0.3,0.6,0.8}),({0.2,0.3,0.8},{0.7,0.8,0.9}) \right)$ $\left(({0.4,0.7,0.8},{0.7,0.8}),({0.3,0.5,0.6},{0.7,0.8}) \right)$
    $A _{2}$ $\left(({0.1,0.3,0.4},{0.5,0.6,0.9}),({0.2,0.3,0.7},{0.2,0.6,0.8}) \right)$ $\left(({0.2,0.3,0.7},{0.3,0.8,0.9}),({0.1,0.5,0.8},{0.2,0.7,0.8}) \right)$
    $A _{3}$ $\left(({0.2,0.3,0.5},{0.4,0.8,0.9}),({0.1,0.8,0.9},{0.4,0.7}) \right)$ $\left(({0.2,0.3,0.8},{0.2,0.8}),({0.5,0.8,0.9},{0.2,0.9}) \right)$
    $A _{4}$ $\left(({0.1,0.5,0.7},{0.5,0.8}),({0.3,0.5,0.7},{0.4,0.9}) \right)$ $\left(({0.2,0.3},{0.5,0.6}),({0.3,0.8,0.9},{0.7,0.8,0.9}) \right)$

     | Show Table
    DownLoad: CSV
    Table 4(b).  Expert-3 information.
    $c_{3}$ $c_{4}$
    $A _{1}$ $\left(({0.2,0.3,0.8},{0.5,0.6,0.7}),({0.3,0.5,0.6},{0.2,0.8,0.9}) \right)$ $\left(({0.2,0.3,0.7},{0.2,0.3,0.7}),({0.2,0.3,0.8},{0.5,0.7}) \right)$
    $A _{2}$ $ \left(({0.1,0.3,0.6},{0.4,0.6,0.8}),({0.6,0.7,0.9},{0.3,0.8,0.9}) \right)$ $ \left(({0.1,0.2,0.3},{0.2,0.5}),({0.3,0.4,0.6},{0.1,0.2}) \right)$
    A _{3}$ $ \left(({0.1,0.2,0.3},{0.3,0.5,0.9}),({0.2,0.3,0.4},{0.2,0.4,0.6}) \right)$ $ \left(({0.2,0.8,0.9},{0.1,0.2}),({0.2,0.4,0.5},{0.7,0.8}) \right)$
    $A _{4}$ $ \left(({0.2,0.3,0.7},{0.8,0.9}),({0.2,0.3,0.8},{0.1,0.2,0.3}) \right)$ $ \left(({0.2,0.3,0.8},{0.2,0.3}),({0.3,0.5,0.8},{0.4,0.5}) \right)$

     | Show Table
    DownLoad: CSV

    Step-2 All the experts information are benefit type. So in this case, we do not need to normalize the q-ROHFRVs.

    Step-3 Cumulative the collective information of three professional expert using q-ROHFRWA aggregation operator is evaluated in Table-5;

    Table 5(a).  Collective aggregated q-ROHFR information.
    $c_{1}$ $c_{2}$
    $A _{1}$ $\left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.2402, 0.5445, 0.7558\right\}, \\ \left\{ 0.2572, 0.5100, 0.8403\right\} \end{array} \right), \\ \left({0.3239,0.6173,0.7607},{0.2748,0.6263,0.9597} \right) \end{array} \right)$ $\left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.4280, 0.6443, 0.6630\right\}, \\ \left\{ 0.4695, 0.7117, 0.9500\right\} \end{array} \right), \\ \left({0.2706,0.5993,0.7281},{0.3823,0.7758,0.9378} \right) \end{array} \right)$
    $A _{2}$ $\left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.3141, 0.4201, 0.3675\right\}, \\ \left\{ 0.5214, 0.6935, 0.9211\right\} \end{array} \right), \\ \left({0.3880,0.5004,0.6121},{0.4361,0.8113,0.9597} \right) \end{array} \right)$ $\left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.2481, 0.3678, 0.6295\right\}, \\ \left\{ 0.4656, 0.8421, 0.9597\right\} \end{array} \right), \\ \left({0.3807,0.4606,0.6249},{0.2561,0.6479,0.8220} \right) \end{array} \right)$
    $A _{3}$ $\left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.4716, 0.5668, 0.6816\right\}, \\ \left\{ 0.3936, 0.5962, 0.9211\right\} \end{array} \right), \\ \left({0.4670,0.7515,0.9194},{0.2235,0.5416,0.8045} \right) \end{array} \right)$ $\left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.2391, 0.3276, 0.6554\right\}, \\ \left\{ 0.3213, 0.8005, 0.9608\right\} \end{array} \right), \\ \left({0.4453,0.7036,0.8086},{0.3975,0.8123,0.9608} \right) \end{array} \right)$
    $A _{4}$ $\left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.3807, 0.5202, 0.6726\right\}, \\ \left\{ 0.4446, 0.6484, 0.8891\right\} \end{array} \right), \\ \left({0.2491,0.4204,0.5326},{0.5627,0.8376,0.9761} \right) \end{array} \right)$ $\left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.3880, 0.5532, 0.6396\right\}, \\ \left\{ 0.3912, 0.5800, 0.8523\right\} \end{array} \right), \\ \left({0.2762,0.6417,0.7634},{0.4242,0.5340,0.8381} \right) \end{array} \right)$

     | Show Table
    DownLoad: CSV
    Table 5(b).  Collective aggregated q-ROHFR information.
    $c_{3}$ $c_{4}
    A _{1}$ $\left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.2000, 0.3455, 0.6345\right\}, \\ \left\{ 0.3661, 0.5100, 0.8016\right\} \end{array} \right) \bf{, } \\ \left({0.3283,0.5993,0.6738},{0.2195,0.6437,0.9597} \right) \end{array} \right)$ $\left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.3228, 0.4068, 0.5780\right\} \bf{, } \\ \left\{ 0.2329, 0.5359, 0.9212\right\} \end{array} \right), \\ \left({0.3921,0.5873,0.7607},{0.5925,0.7701,0.9761} \right) \end{array} \right)$
    $A _{2}$ $\left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.2950, 0.4448, 0.6998\right\}, \\ \left\{ 0.3074, 0.5754, 0.8445\right\} \end{array} \right), \\ \left({0.6105,0.7212,0.8155},{0.2748,0.7180,0.9597} \right) \end{array} \right)$ $\left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.2644, 0.4064, 0.5441\right\}, \\ \left\{ 0.2857, 0.5359, 0.8732\right\} \end{array} \right), \\ \left({0.4674,0.3288,0.5137},{0.1301,0.2561,0.6224} \right) \end{array} \right)$
    $A _{3}$ $\left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.3880, 0.5279, 0.7000\right\}, \\ \left\{ 0.4946, 0.6794, 0.9500\right\} \end{array} \right), \\ \left({0.5603,0.7618,0.8142},{0.1884,0.3209,0.4805} \right) \end{array} \right)$ $\left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.2315, 0.7310, 0.8155\right\}, \\ \left\{ 0.1884, 0.4145, 0.9500\right\} \end{array} \right), \\ \left({0.1552,0.3256,0.5170},{0.5069,0.6115,0.8732} \right) \end{array} \right)$
    $A _{4}$ $\left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.4593, 0.5532, 0.7930\right\}, \\ \left\{ 0.4581, 0.7006, 0.9761\right\} \end{array} \right), \\ \left({0.4064,0.5657,0.8142},{0.1790,0.3779,0.6253} \right) \end{array} \right)$ $\left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.2481, 0.4030, 0.6345\right\}, \\ \left\{ 0.3213, 0.4579, 0.8523\right\} \end{array} \right), \\ \left({0.2706,0.4212,0.6774},{0.4549,0.5571,0.8732} \right) \end{array} \right)$

     | Show Table
    DownLoad: CSV

    Step-4 The $ q $-ROHFR positive ideal solutions $ I^{+} $ and the $ q $ -ROHFR negative ideal solutions $ I^{-} $ are calculated in Table-6:

    Table 6.  Ideal solutions.
    Criteria $I^{+}$ $I^{-}$
    $c_{1}$ $\left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.3807, 0.5202, 0.6726\right\}, \\ \left\{ 0.4446, 0.6484, 0.8891\right\} \end{array} \right), \\ \left({0.2491,0.4204,0.5326},{0.5627,0.8376,0.9761} \right) \end{array} \right)$ $\left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.3141, 0.4201, 0.3675\right\}, \\ \left\{ 0.5214, 0.6935, 0.9211\right\} \end{array} \right), \\ \left({0.3880,0.5004,0.6121},{0.4361,0.8113,0.9597} \right) \end{array} \right)$
    $c_{2}$ $\left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.2481, 0.3678, 0.6295\right\}, \\ \left\{ 0.4656, 0.8421, 0.9597\right\} \end{array} \right), \\ \left({0.3807,0.4606,0.6249},{0.2561,0.6479,0.8220} \right) \end{array} \right)$ $\left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.2391, 0.3276, 0.6554\right\}, \\ \left\{ 0.3213, 0.8005, 0.9608\right\} \end{array} \right), \\ \left({0.4453,0.7036,0.8086},{0.3975,0.8123,0.9608} \right) \end{array} \right)$
    $c_{3}$ $\left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.4593, 0.5532, 0.7930\right\}, \\ \left\{ 0.4581, 0.7006, 0.9761\right\} \end{array} \right), \\ \left({0.4064,0.5657,0.8142},{0.1790,0.3779,0.6253} \right) \end{array} \right)$ $\left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.2950, 0.4448, 0.6998\right\}, \\ \left\{ 0.3074, 0.5754, 0.8445\right\} \end{array} \right), \\ \left({0.6105,0.7212,0.8155},{0.2748,0.7180,0.9597} \right) \end{array} \right)$
    $c_{4}$ $\left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.2644, 0.4064, 0.5441\right\}, \\ \left\{ 0.2857, 0.5359, 0.8732\right\} \end{array} \right), \\ \left({0.4674,0.3288,0.5137},{0.1301,0.2561,0.6224} \right) \end{array} \right)$ $ \left(\begin{array}{c} \left(\begin{array}{c} \left\{ 0.3228, 0.4068, 0.5780\right\} \bf{, } \\ \left\{ 0.2329, 0.5359, 0.9212\right\} \end{array} \right), \\ \left({0.3921,0.5873,0.7607},{0.5925,0.7701,0.9761} \right) \end{array} \right)$

     | Show Table
    DownLoad: CSV

    Step-5 The $ q $-ROHFR group utility measure $ S_{i}(i = 1, 2, 3, 4) $ and the regret measure $ R_{i}(i = 1, 2, 3, 3, 4) $ of consider alternatives are evaluated in Table-7.

    Table 7.  $S_{i}, {\rm{ }}R_{i}, Q_{i}\; {\rm{ for\; each\; alternatives}}$.
    alternatives $S_{i}$ $R_{i}$ $Q_{i}$
    $A _{1}$ $1.0520$ $0.3599$ $0.9918$
    $A _{2}$ $0.4900$ $0.3099$ $0.5000$
    $A _{3}$ $1.3689$ $0.4050$ $1.2319$
    $A _{4}$ $0.7422$ $0.3421$ $0.6588$

     | Show Table
    DownLoad: CSV

    Step-6 & 7 Alternative ranking with respect to group utility measure $ S_{i} $, individual regret measure $ R_{i} $ and ranking measure $ Q_{i} $ is given in Table-8.

    Table 8.  Ranking of alternative based on $S_{i}, {\rm{ }}R_{i}, {\rm{ }} Q_{i}$.
    alternatives Ranking position by $S_{i}$ Ranking position by $R_{i}$ Ranking position by $Q_{i}$
    A _{1}$ $2$ $2$ $2$
    $A _{2}$ $4$ $4$ $4$
    $A _{3}$ $1$ $1$ $1$
    $A _{4}$ $3$ $3$ $3$

     | Show Table
    DownLoad: CSV

    In this section, we intend to aggregate decision making information using q-ROHFR weighted average aggregation operators.

    The decision making methodology is thoroughly outlined as follows:

    Step-1 Construct the experts evaluation matrices in the form of $ q $ -ROHFRVs.

    Step-2 Computed the collected information of decision makers against their weight vector and get the aggregated decision matrix utilizing $ q $ -ROHFRWA aggregation operator.

    $ qROHFRWA(P(S1),P(S2),...P(Sn))=(ni=1wiP_(Si),ni=1wi¯P(Si))=[μi_ðhP_(S)q(1ni=1(1(μi_)q)wi),νi_BhP_(S)ni=1(νi_)wi¯μiðh¯P(S)q(1ni=1(1(¯μi)q)wi),¯νiBh¯P(S)ni=1(¯νi)wi] $

    Step-3 Evaluate the aggregated q-ROHFRVs for each considered alternative with respect to the given list of criteria/attributes by utilizing the proposed aggregation information.

    Step-4 Find the ranking of alternatives based on score function as,

    $ (P(S))=14(2+1MHμiðhP_(S)(μi_)+1NHμiðh¯P(S)(¯μi)1MHνi_BhP_(S)(νi_)1MH¯νiBh¯P(S)(¯νi)), $

    Step-5 Rank all the alternative scores in descending order. The alternative having larger value will be superior/best.

    Here, we apply our proposed weighted average operator to MAGDM problem to determined the best agriculture robots from the list of four reborts under four attributes given in above numerical example.

    Step-1 The collective expert information utilizing the q-ROHFRWA aggregation operator is given in Table-5:

    Step-2 Aggregation information of the alternative under the given list of attributes are evaluated using proposed aggregation operators as follows;

    Aggregation information using $ q $-ROHFRWA operator presented in Table-9:

    Table 9.  Aggregated information using $q{\rm{-ROHFRWA}}$.
    $A _{1}$ $\left(({0.7104,0.8112,0.8931},{0.3022,0.5443,0.7961}),({0.7397,0.8775,0.9408},{0.3305,0.6940,0.8864}) \right)$
    $A _{2}$ $\left(({0.6701,0.7732,0.8724},{0.3456,0.6056,0.8199}),({0.8202,0.8277,0.8949},{0.2181,0.5111,0.7816}) \right)$
    $A _{3}$ $\left(({0.7030,0.9075,0.9504},{0.3050,0.5818,0.8738}),({0.75920.8800,0.9351},{0.2928,0.5132,0.6773}) \right)$
    $A _{4}$ $\left(({0.7264,0.8142,0.9152},{0.3774,0.5674,0.8395}),({0.6954,0.8271,0.9299},{0.3344,0.5108,0.7683}) \right)$

     | Show Table
    DownLoad: CSV

    Step-3 & 4 Score values of all alternatives under established aggregation operators presented in Table-10.

    Table 10.  Ranking of alternative.
    Proposed operators Score values of alternatives Ranking
    $A _{1}$ $A _{2}$ $A _{3}$ $A _{4}$
    q -ROHFRWA 0.6183 0.6314 0.6576 0.6259 $A _{3} > A _{2} > A _{4} > A _{1}$

     | Show Table
    DownLoad: CSV

    In this research work, q-rung orthopair hesitant fuzzy rough rough set is presented as a new hybrid structure of the q-rung orthopair fuzzy set, the hesitant fuzzy set, and the rough set.The incorporation of rough set theory makes this approach more flexible and effective for modelling fuzzy systems and vital decision making under uncertainty. The algebraic t-norm and t-conorm are used to introduce a list of aggregation operators such as q-ROHFR weighted averaging operators. Additionally, the essential characteristics of evolved operators are described in detail. A decision-making algorithm was developed to solve real-world decision-making problems concerning agri-farming involving imprecise and insufficient information. The suggested technique is ideal for determining the most appropriate kind of robotic agri-farming from a variety of possible types of agri-farming. Numerical examples highlighted the potential applications of the MCDM technique. To demonstrate the capability, superiority, and reliability of the suggested approaches, a comparative study of the final ranking and best choice in robotic agri-farming determined by the proposed techniques and the q-ROHFR-VKOR method is also provided. The established approach can be used to effectively tackle DM challenges. In terms of future study, the innovative notion of q-ROHFRSs might be extended to establish the Yager and Dombi t-norm and t-conorm using the generalised aggregation information.

    The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: 22UQU4310396DSR03.

    The authors declare that they have no conflicts of interest.

    [1] Berg D, Marek K, Ross GW, Poewe W (2012). Defining At-Risk Populations for Parkinson's disease: Lessons from Ongoing Studies. Movement Disord 27: 656-665. doi: 10.1002/mds.24985
    [2] Spiegel J, Storch A, Jost WH (2006). Early diagnosis of Parkinson's disease. J Neurol 253 Suppl4(S4): IV2-7.
    [3] Shi C, Pamer EG (2011). Monocyte recruitment during infection and inflammation. Nat Rev Immunol 11: 762-774. doi: 10.1038/nri3070
    [4] van der Goes A, Boorsmaa W, Hoekstraa K, et al. (2005). Determination of the sequential degradation of myelin proteins by macrophages. J Neuroimmunol 161: 12-20. doi: 10.1016/j.jneuroim.2004.12.010
    [5] Hoehn M, Yahr M (1967). Parkinsonism: onset, progression and mortality. Neurology 17: 427-42. doi: 10.1212/WNL.17.5.427
    [6] Rosas AL, Nosanchuk JD, Casadevall (2001) Passive Immunization with Melanin-Binding Monoclonal Antibodies Prolongs Survival of Mice with Lethal Cryptococcus neoformans Infection. Infect Immun 69: 3410-3412. doi: 10.1128/IAI.69.5.3410-3412.2001
    [7] Dadachova E, Moadel T, Schweitzer AD, et al. (2006) Radiolabeled Melanin-Binding Peptides Are Safe and Effective in Treatment of Human Pigmented Melanoma in a Mouse Model of Disease. Cancer Biother Radio 21: 117-129. doi: 10.1089/cbr.2006.21.117
    [8] Lee V M-Y, Goedert M, Trojanowski JQ (2001) Neurodegenerative Tauopathies. Annu Rev Neurosci 24: 1121-1159. doi: 10.1146/annurev.neuro.24.1.1121
    [9] Burgoyne RD (2007). Neuronal Calcium Sensor Proteins: Generating Diversity in Neuronal Ca2+Signalling. Nat Rev Neurosci 8: 182-193
    [10] Doran JF, Jackson P, Kynoch PA, et al. (1983). Isolation of PGP 9. 5, a new human neurone-specific protein detected by high-resolution two-dimensional electrophoresis. J Neurochem 40: 1542-1547
    [11] Maraganore DM, Lesnick TG, Elbaz A, et al. (2004). UCHL1 is a Parkinson's disease susceptibility gene. Ann Neurol 55: 512-21. doi: 10.1002/ana.20017
    [12] Leroy E, Boyer R, Auburger G, et al. (1998). The ubiquitin pathway in Parkinson's disease. Nature 395: 451-2. doi: 10.1038/26652
    [13] Harhangi BS, Farrer MJ, Lincoln S, etal. (1999). The Ile93Met mutation in the ubiquitin carboxy-terminal-hydrolase-L1 gene is not observed in European cases with familial Parkinson's disease. Neurosci Lett 270: 1-4. doi: 10.1016/S0304-3940(99)00465-6
    [14] Joly S, Francke M, Ulbricht E, Beck S, et al. (2009) Cooperative Phagocytes: Resident Microglia and Bone Marrow Immigrants Remove Dead Photoreceptors in Retinal Lesions. Am J Pathol 174:2310-2323. doi: 10.2353/ajpath.2009.090023
    [15] Peng T, Li C, Li X, et al. (2014). Correlation between Serum RANTES Levels and the Severity of Parkinson's Disease. Oxid Med Cell Longev 2014: 1-4.
    [16] Scalzo P, Silva de Miranda A, Guerra Amaral DC et al. (2011). Serum levels of chemokines in Parkinson's disease. Neuroimmunomodulat 23: 240-4
  • This article has been cited by:

    1. Shahzaib Ashraf, Muhammad Shakir Chohan, Shakoor Muhammad, Faisal Khan, Circular Intuitionistic Fuzzy TODIM Approach for Material Selection for Cryogenic Storage Tank for Liquid Nitrogen Transportation, 2023, 11, 2169-3536, 98458, 10.1109/ACCESS.2023.3312568
    2. Zeyuan Wang, Qiang Cai, Guiwu Wei, Enhanced TODIM based on VIKOR method for multi-attribute decision making with Type-2 neutrosophic number and applications to green supplier selection, 2023, 1432-7643, 10.1007/s00500-023-08768-8
    3. Mery Ellen Brandt de Oliveira, Francisco Rodrigues Lima Junior, José Marcelo Almeida Prado Cestari , Hesitant Fuzzy Vikor e suas extensões: uma revisão sistemática de literatura, 2024, 15, 2178-9010, e4287, 10.7769/gesec.v15i10.4287
    4. Irfan Ullah, Fazal Ghani, Saleem Abdullah, Faisal Khan, Saifullah Khan, A Promising Approach For Decision Modeling With CODAS Method for the Confidence Levels 2-Tuple Linguistic Complex q-Rung Orthopair Fuzzy Information, 2023, 11, 2169-3536, 83414, 10.1109/ACCESS.2023.3286540
    5. Dinesh Kumar Tripathi, Santosh K. Nigam, Fausto Cavallaro, Pratibha Rani, Arunodaya Raj Mishra, Ibrahim M. Hezam, A Novel CRITIC-RS-VIKOR Group Method with Intuitionistic Fuzzy Information for Renewable Energy Sources Assessment, 2023, 32, 0926-2644, 1437, 10.1007/s10726-023-09849-7
    6. Benting Wan, Jiao Zhang, Harish Garg, Weikang Huang, Q-rung orthopair hesitant fuzzy preference relations and its group decision-making application, 2024, 10, 2199-4536, 1005, 10.1007/s40747-023-01130-3
    7. Zihang Jia, Junsheng Qiao, Minghao Chen, Multi-level discrimination index for intuitionistic fuzzy coverings and its applications in feature selection, 2025, 263, 09574174, 125735, 10.1016/j.eswa.2024.125735
    8. Shahzaib Ashraf, Chiranjibe Jana, Valentina E. Balas, Witold Pedrycz, 2025, 9780443339974, 157, 10.1016/B978-0-44-333997-4.00014-9
    9. Qingyuan Li, Xiaodong Sun, Sustainability Evaluation of Sports Industry Policy Using Circular Picture Fuzzy MAGDM With MACROS Method, 2025, 13, 2169-3536, 81618, 10.1109/ACCESS.2025.3567638
    10. Yan Song, Xinyun Li, Performance enhancement of the VIKOR algorithm and validation of its effectiveness, 2025, 1350-4851, 1, 10.1080/13504851.2025.2510586
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5771) PDF downloads(1141) Cited by(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog