The selection of energy suppliers is important for sustainable energy management, as selecting the most appropriate suppliers reduces the environmental impact and improves resource optimization through sustainable practices. Our primary objective of this work was to develop a system for identifying energy suppliers by assessing various characteristics and their associated sub-attributes. Interval-valued q-rung orthopair fuzzy hypersoft sets (IVq-ROFHSS) originate by developing an association among interval-valued q-rung orthopair fuzzy sets and hypersoft sets. It is a crucial resource to handle unpredictable situations, mainly when presenting a component in a real-life scenario. IVq-ROFHSS is a new structure developed to manage the sub-parametric values of the alternatives. We developed the Einstein operational laws for IVq-ROFHSS and extended the Interval-valued q-rung ortho-pair fuzzy hypersoft Einstein weighted average (IVq-ROFHSEWA) and interval-valued q-rung ortho-pair fuzzy hypersoft Einstein weighted geometric (IVq-ROFHSEWG) operators. Moreover, we used the developed operators to formulate a multi-attribute group decision-making strategy to choose the ideal provider in sustainable energy management. The presented fuzzy robust approach reliably reiterated the challenged energy supplier selection in supply chain management to regular activities while alleviating overall expenses and promising stable reliability.
Citation: Muhammad Saqlain, Xiao Long Xin, Rana Muhammad Zulqarnain, Imran Siddique, Sameh Askar, Ahmad M. Alshamrani. Energy supplier selection using Einstein aggregation operators in an interval-valued q-rung orthopair fuzzy hypersoft structure[J]. AIMS Mathematics, 2024, 9(11): 31317-31365. doi: 10.3934/math.20241510
[1] | Zhao Xiaoqing, Yi Yuan . Square-free numbers in the intersection of Lehmer set and Piatetski-Shapiro sequence. AIMS Mathematics, 2024, 9(12): 33591-33609. doi: 10.3934/math.20241603 |
[2] | Yanbo Song . On two sums related to the Lehmer problem over short intervals. AIMS Mathematics, 2021, 6(11): 11723-11732. doi: 10.3934/math.2021681 |
[3] | Bingzhou Chen, Jiagui Luo . On the Diophantine equations x2−Dy2=−1 and x2−Dy2=4. AIMS Mathematics, 2019, 4(4): 1170-1180. doi: 10.3934/math.2019.4.1170 |
[4] | Jinyun Qi, Zhefeng Xu . Almost primes in generalized Piatetski-Shapiro sequences. AIMS Mathematics, 2022, 7(8): 14154-14162. doi: 10.3934/math.2022780 |
[5] | Yukai Shen . kth powers in a generalization of Piatetski-Shapiro sequences. AIMS Mathematics, 2023, 8(9): 22411-22418. doi: 10.3934/math.20231143 |
[6] | Zhenjiang Pan, Zhengang Wu . The inverses of tails of the generalized Riemann zeta function within the range of integers. AIMS Mathematics, 2023, 8(12): 28558-28568. doi: 10.3934/math.20231461 |
[7] | Mingxuan Zhong, Tianping Zhang . Partitions into three generalized D. H. Lehmer numbers. AIMS Mathematics, 2024, 9(2): 4021-4031. doi: 10.3934/math.2024196 |
[8] | Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937 |
[9] | Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo p. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638 |
[10] | Guangwei Hu, Huixue Lao, Huimin Pan . High power sums of Fourier coefficients of holomorphic cusp forms and their applications. AIMS Mathematics, 2024, 9(9): 25166-25183. doi: 10.3934/math.20241227 |
The selection of energy suppliers is important for sustainable energy management, as selecting the most appropriate suppliers reduces the environmental impact and improves resource optimization through sustainable practices. Our primary objective of this work was to develop a system for identifying energy suppliers by assessing various characteristics and their associated sub-attributes. Interval-valued q-rung orthopair fuzzy hypersoft sets (IVq-ROFHSS) originate by developing an association among interval-valued q-rung orthopair fuzzy sets and hypersoft sets. It is a crucial resource to handle unpredictable situations, mainly when presenting a component in a real-life scenario. IVq-ROFHSS is a new structure developed to manage the sub-parametric values of the alternatives. We developed the Einstein operational laws for IVq-ROFHSS and extended the Interval-valued q-rung ortho-pair fuzzy hypersoft Einstein weighted average (IVq-ROFHSEWA) and interval-valued q-rung ortho-pair fuzzy hypersoft Einstein weighted geometric (IVq-ROFHSEWG) operators. Moreover, we used the developed operators to formulate a multi-attribute group decision-making strategy to choose the ideal provider in sustainable energy management. The presented fuzzy robust approach reliably reiterated the challenged energy supplier selection in supply chain management to regular activities while alleviating overall expenses and promising stable reliability.
Let q be a positive integer. For each integer a with 1⩽a<q,(a,q)=1, we know that there exists one and only one ˉa with 1⩽ˉa<q such that aˉa≡1(q). Let r(q) be the number of integers a with 1⩽a<q for which a and ˉa are of opposite parity.
D. H. Lehmer (see [1]) posed the problem to investigate a nontrivial estimation for r(q) when q is an odd prime. Zhang [2,3] gave some asymptotic formulas for r(q), one of which reads as follows:
r(q)=12ϕ(q)+O(q12d2(q)log2q). |
Zhang [4] generalized the problem over short intervals and proved that
∑a≤Na∈R(q)1=12Nϕ(q)q−1+O(q12d2(q)log2q), |
where
R(q):={a:1⩽a⩽q,(a,q)=1,2∤a+ˉa}. |
Let n⩾2 be a fixed positive integer, q⩾3 and c be two integers with (n,q)=(c,q)=1. Let 0<δ1,δ2≤1. Lu and Yi [5] studied the Lehmer problem in the sense of short intervals as
rn(δ1,δ2,c;q):=∑a⩽δ1q∑ˉa⩽δ2qaˉa≡cmodqn∤a+ˉa1, |
and obtained an interesting asymptotic formula,
rn(δ1,δ2,c;q)=(1−n−1)δ1δ2ϕ(q)+O(q12d6(q)log2q). |
Liu and Zhang [6] r-th residues and roots, and obtained two interesting mean value formulas. Guo and Yi [7] found the Lehmer problem also has good distribution properties on Beatty sequences. For fixed real numbers α and β, the associated non-homogeneous Beatty sequence is the sequence of integers defined by
Bα,β:=(⌊αn+β⌋)∞n=1, |
where ⌊t⌋ denotes the integer part of any t∈R. Such sequences are also called generalized arithmetic progressions. If α is irrational, it follows from a classical exponential sum estimate of Vinogradov [8] that Bα,β contains infinitely many prime numbers; in fact, one has the asymptotic estimate
#{ prime p⩽x:p∈Bα,β}∼α−1π(x) as x→∞ |
where π(x) is the prime counting function.
We define type τ=τ(α) for any irrational number α by the following definition:
τ:=sup{t∈R:lim infn→∞nt‖αn‖=0}. |
Based on the results obtained, we consider the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals in this paper. That is,
rn(δ1,δ2,⋯,δk,c,α,β;q):=∑x1⩽δ1q⋯∑xk⩽δkqx1⋯xk≡cmodqx1,⋯xk−1∈Bα,βn∤x1+⋯+xk1,(0<δ1,δ2,⋯,δk≤1), |
and where k = 2, we get the result of [7].
By using the properties of Beatty sequences and the estimates for hyper Kloosterman sums, we obtain the following result.
Theorem 1.1. Let k≥2 be a fixed positive integer, q≥n3 and c be two integers with (n,q)=(c,q)=1, and δ1,δ2,⋯,δk be real numbers satisfying 0<δ1,δ2,⋯,δk≤1. Let α>1 be an irrational number of finite type. Then, we have the following asymptotic formula:
rn(δ1,δ2,⋯,δk,c,α,β;q)=(1−n−1)α−(k−1)δ1δ2⋯δkϕk−1(q)+O(qk−1−1τ+1+ε), |
where ϕ(⋅) is the Euler function, ε is a sufficiently small positive number, and the implied constant only depends on n.
Notation. In this paper, we denote by ⌊t⌋ and {t} the integral part and the fractional part of t, respectively. As is customary, we put
e(t):=e2πit and {t}:=t−⌊t⌋. |
The notation ‖t‖ is used to denote the distance from the real number t to the nearest integer; that is,
‖t‖:=minn∈Z|t−n|. |
Let χ0 be the principal character modulo q. The letter p always denotes a prime. Throughout the paper, ε always denotes an arbitrarily small positive constant, which may not be the same at different occurrences; the implied constants in symbols O,≪ and ≫ may depend (where obvious) on the parameters α,n,ε but are absolute otherwise. For given functions F and G, the notations F≪G, G≫F and F=O(G) are all equivalent to the statement that the inequality |F|⩽C|G| holds with some constant C>0.
To complete the proof of the theorem, we need the following several definitions and lemmas.
Definition 2.1. For an arbitrary set S, we use 1S to denote its indicator function:
1S(n):={1ifn∈S,0ifn∉S. |
We use 1α,β to denote the characteristic function of numbers in a Beatty sequence:
1α,β(n):={1ifn∈Bα,β,0ifn∉Bα,β. |
Lemma 2.2. Let a,q be integers, δ∈(0,1) be a real number, θ be a rational number. Let α be an irrational number of finite type τ and H=qε>0. We have
∑a≤δqa∈Bα,β′1=α−1δϕ(q)+O((ϕ(q))ττ+1+ε), |
and
∑a⩽δqa∈Bα,βe(θa)=α−1∑a⩽δ1qe(θa)+O(‖θ‖−1q−ε+qε). |
Taking
H=‖θ‖−1τ+1+ε, |
we have
∑a⩽δqa∈Bα,βe(θa)=α−1∑a⩽δ1qe(θa)+O(‖θ‖−(ττ+1+ε)). |
Proof. This is Lemma 2.4 and Lemma 2.5 of [7].
Lemma 2.3. Let
Kl(r1,r2,⋯,rk;q)=∑x1⩽q−1⋯∑xk−1⩽q−1e(r1x1+⋯+rk−1xk−1+rk¯x1⋯xk−1p). |
Then
Kl(r1,r2,⋯,rk;q)≪qk−12kω(q)(r1,rk,q)12⋯(rk−1,rk,q)12 |
where (a,b,c) is the greatest common divisor of a,b and c.
Proof. See [9].
Lemma 2.4. Assume that U is a positive real number, K is a positive integer and that a and b are two real numbers. If
a=sr+θr2,(r,s)=1,r≥1,|θ|≤1, |
then
∑k⩽Kmin(U,1‖ak+b‖)≪(Kr+1)(U+rlogr). |
Proof. The proof is given in [10].
We begin by the definition
rn(δ1,δ2,⋯,δk,c,α,β;q)=S1−S2, |
where
S1:=∑x1⩽δ1q⋯∑xk⩽δkqx1⋯xk≡cmodqx1,⋯xk−1∈Bα,β1, |
and
S2:=∑x1⩽δ1q⋯∑xk⩽δkqx1⋯xk≡cmodqx1,⋯xk−1∈Bα,βn∣x1+⋯+xk1. |
By the Definition 2.1, Lemma 2.2 and congruence properties, we have
S1=∑x1⩽δ1q⋯∑xk⩽δkqx1⋯xk≡cmodq1α,β(x1)⋯1α,β(xk−1)=1ϕ(q)∑x1⩽δ1q⋯∑xk⩽δkq∑χmodqχ(x1)⋯χ(xk)χ(¯c)1α,β(x1)⋯1α,β(xk−1)=S11+S12, |
where
S11:=1ϕ(q)∑′x1⩽δ1q⋯∑′xk⩽δkq1α,β(x1)⋯1α,β(xk−1), |
and
S12:=1ϕ(q)∑χmodqχ≠χ0χ(¯c)(∑x1⩽δ1q⋯∑xk⩽δkqχ(x1)⋯χ(xk)1α,β(x1)⋯1α,β(xk−1)). |
For S2, it follows that
S2=1ϕ(q)∑x1⩽δ1q⋯∑xk⩽δkqn∣x1+⋯+xk∑χmodqχ(x1)⋯χ(xk)χ(¯c)1α,β(x1)⋯1α,β(xk−1)=S21+S22, |
where
S21:=1ϕ(q)∑′x1⩽δ1q⋯∑′xk⩽δkqn∣x1+⋯+xk1α,β(x1)⋯1α,β(xk−1), |
and
S22:=1ϕ(q)∑χmodqχ≠χ0χ(¯c)∑x1⩽δ1q⋯∑xk⩽δkqn∣x1+⋯+xkχ(x1)⋯χ(xk−1)1α,β(x1)⋯1α,β(xk−1). |
From the classical bound
∑a≤δq′1=δϕ(q)+O(d(q)) |
and Lemma 2.2, we have
S11=1ϕ(q)(∑′x1⩽δ1q1α,β(x1))⋯(∑′xk−1⩽δk−1q1α,β(xk−1))(∑′xk⩽δkq1)=(δk+O(d(q)ϕ(q)))k−1∏i=1(α−1δiϕ(q)+O((ϕ(q))ττ+1+ε))=α−(k−1)ϕk−1(q)k−1∏i=1δi+O(qk−1−1τ+1+ε). | (3.1) |
From Lemma 2.2, we obtain
S21=1ϕ(q)(∑′x1⩽δ1q1α,β(x1))⋯(∑′xk−1⩽δk−1q1α,β(xk−1))(∑′xk⩽δkqn∣xk+(x1+⋯+xk−1)1)=1ϕ(q)(∑′x1⩽δ1q1α,β(x1))⋯(∑′xk−1⩽δk−1q1α,β(xk−1))(∑xk⩽δkqxk≡−(x1+⋯+xk−1)modn∑d∣(xk,q)μ(d))=1ϕ(q)(∑′x1⩽δ1q1α,β(x1))⋯(∑′xk−1⩽δk−1q1α,β(xk−1))(∑d∣qμ(d)∑xk⩽δkqd∣xkxk≡−(x1+⋯+xk−1)modn1)=1ϕ(q)(∑′x1⩽δ1q1α,β(x1))⋯(∑′xk−1⩽δk−1q1α,β(xk−1))(∑d∣qμ(d)(δkqnd+O(1)))=1ϕ(q)(δkϕ(q)n+O(d(q)))k−1∏i=1(α−1δiϕ(q)+O((ϕ(q))ττ+1+ε))=α−(k−1)n−1ϕk−1(q)k−1∏i=1δi+O(qk−1−1τ+1+ε). | (3.2) |
By the properties of exponential sums,
S22=1nϕ(q)∑χmodqχ≠χ0χ(¯c)(∑x1⩽δ1q⋯∑xk⩽δk−1qχ(x1)⋯χ(xk)1α,β(x1)⋯1α,β(xk−1))×(n∑l=1e(x1+⋯+xknl))=1nϕ(q)∑χmodqχ≠χ0χ(¯c)n∑l=1k−1∏i=1(∑xi⩽δiq1α,β(xi)χ(xi)e(xinl))(∑xk⩽δkqχ(xk)e(xknl)). | (3.3) |
Let
G(r,χ):=q∑h=1χ(h)e(rhq) |
be the Gauss sum, and we know that for χ≠χ0,
χ(xi)=1qq∑r=1G(r,χ)e(−xirq)=1qq−1∑r=1G(r,χ)e(−xirq), |
and
ln−rq≠0 |
for 1⩽l⩽n,1⩽r⩽q−1 and (n,q)=1.
Therefore,
∑xk⩽δkqχ(xk)e(xknl)=1qq−1∑rk=1G(rk,χ)f(δk,l,rk;n,q)e(rkq−lh)−1, | (3.4) |
where
f(δ,l,r;n,p):=1−e((ln−rq)⌊δq⌋) |
and
|f(δk,l,rk;n,q)|⩽2. |
For xi(1⩽i⩽k−1), using Lemma 2.2, we also have
∑xi⩽δiq1α,β(xi)χ(xi)e(xinl)=1q∑xi⩽δiq1α,β(xi)q−1∑ri=1G(ri,χ)e((ln−riq)xi)=1qq−1∑ri=1G(ri,χ)∑xi⩽δiq1α,β(xi)e((ln−riq)xi)=1qq−1∑ri=1G(ri,χ)(α−1∑a⩽δiqe((ln−riq)xi)+O(q−ε‖ln−riq‖+qε))=1qαq−1∑ri=1G(ri,χ)(f(δi,l,ri;n,q)e(riq−ln)−1+O(q−ε‖ln−riq‖+qε)). | (3.5) |
Let
S23=1nϕ(q)∑χmodqχ≠χ0χ(¯c)n∑l=1k−1∏i=1(1qαq−1∑ri=1G(ri,χ)f(δi,l,ri;n,q)e(riq−ln)−1)(1qq−1∑rk=1G(rk,χ)f(δk,l,rk;n,q)e(rkq−ln)−1)=1nϕ(q)qkαk−1n∑l=1q−1∑r1=1⋯q−1∑rk=1f(δ1,l,r1;n,q)⋯f(δk,l,rk;n,q)(e(r1q−ln)−1)⋯(e(rkq−ln)−1)×∑χmodqχ≠χ0χ(¯c)G(r1,χ)⋯G(rk,χ). | (3.6) |
From the definition of Gauss sum and Lemma 2.3, we know that
∑χmodqχ(¯c)G(r1,χ)⋯G(rk,χ)=q−1∑h1=1⋯q−1∑hk=1∑χmodqχ(¯c)χ(h1)⋯χ(hk)e(r1h1+⋯+rkhkq)=ϕ(q)q−1∑h1=1⋯q−1∑hk=1h1⋯hk≡cmodqe(r1h1+⋯+rkhkq)=ϕ(q)q−1∑h1=1⋯q−1∑hk=1e(r1h1+⋯rk−1hk−1+rkc¯h1⋯hk−1q)=ϕ(q)Kl(r1,r2,⋯,rkc;q)≪ϕ(q)qk−12kω(q)(r1,rkc,q)12⋯(rk−1,rkc,q)12≪ϕ(q)qk−12kω(q)(r1,q)⋯(rk,q). | (3.7) |
By Mobius inversion, we get
G(r,χ0)=q∑h=1′e(rhq)=μ(q(r,q))φ(q)φ(q/(r,q))≪(r,q), |
and
χ0(¯c)G(r1,χ0)⋯G(rk,χ0)≪(r1,q)⋯(rk,q). |
Hence,
∑χmodqχ≠χ0χ(¯c)G(r1,χ)⋯G(rk,χ)=∑χmodqχ(¯c)G(r1,χ)⋯G(rk,χ)−χ0(¯c)G(r1,χ0)⋯G(rk,χ0)≪ϕ(q)qk−12kω(q)(r1,q)⋯(rk,q). | (3.8) |
From (3.8) we may deduce the following result:
S23≪kω(q)nqk+12αk−1n∑l=1(q−1∑r=1(r,q)|e(rq−ln)−1|)k≪kω(q)nqk+12αk−1n∑l=1(q−1∑r=1(r,q)|sinπ(rq−ln)|)k≪kω(q)nqk+12αk−1n∑l=1(q−1∑r=1(r,q)‖rq−ln‖)k=kω(q)nqk+12αk−1n∑l=1(∑d∣qd<q∑r≤q−1(r,q)=dd‖rq−ln‖)k=kω(q)nqk+12αk−1n∑l=1(∑d∣qd<qd∑m≤q−1d(m,q)=11‖mdq−ln‖)k=kω(q)nqk+12αk−1n∑l=1(∑d∣qd<qd∑k∣qμ(k)∑m≤q−1kd1‖mkdq−ln‖)k. |
It is easy to see
‖mkdq−ln‖=‖mkn−l(q/d)(q/d)n‖≥1(q/d)n, |
and we obtain
S23≪kω(q)nϕ(q)qk+12αk−1n∑l=1(∑d∣qd<qd∑k∣q∑m≤q−1kdmin(qnd,1‖mkdq−ln‖))k. |
Let kd/q=h0/q0, where q0≥1,(h0,q0)=1, and we will easily obtain q/(kd)≤q0≤q/d. By using Lemma 2.4, we have
S23≪kω(q)nqk+12αk−1n∑l=1(∑d∣qd<qd∑k∣q((q−1)/(kd)q0+1)(qnd+q0logq0))k≪kω(q)nqk+12αk−1n∑l=1(∑d∣qd<qd∑k∣q((q−1)/(kd)q/(kd)+1)(qnd+qdlogqd))k≪kω(q)qk−12αk−1(∑d∣qd<q∑k∣qn+logq)k≪qk−12d2k(q)(logq+n)k. |
Let
S24:=q(k−1)(−ε)nϕ(q)∑χmodqχ≠χ0χ(¯c)n∑l=1k−1∏i=1(1qαq−1∑ri=1G(ri,χ)1‖ln−riq‖)(1qq−1∑rk=1G(rk,χ)f(δk,l,rk;n,q)e(rkq−ln)−1) |
and
S25:=q(k−1)(ε)nϕ(q)∑χmodqχ≠χ0χ(¯c)n∑l=1k−1∏i=1(1qαq−1∑ri=1G(ri,χ))(1qq−1∑rk=1G(rk,χ)f(δk,l,rk;n,q)e(rkq−ln)−1). |
By the same argument of S23, it follows that
S24≪qk−12−εd2k(q)(logq+n)k, |
S25≪qk−32+ε(logq+n). |
Since n≪q13, we have
S25≪S24≪S23≪qk−12+εnk≪qk−2+ε. | (3.9) |
Taking n=1, we get
S12≪qk−12+ε. | (3.10) |
With (3.1), (3.2), (3.9) and (3.10), the proof is complete.
This paper considers the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals. And we give an asymptotic formula by the properties of Beatty sequences and the estimates for hyper Kloosterman sums.
This work is supported by Natural Science Foundation No. 12271422 of China. The authors would like to express their gratitude to the referee for very helpful and detailed comments.
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] |
L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
![]() |
[2] |
I. B. Turksen, Interval valued fuzzy sets based on normal forms, Fuzzy Set. Syst., 20 (1986), 191–210. https://doi.org/10.1016/0165-0114(86)90077-1 doi: 10.1016/0165-0114(86)90077-1
![]() |
[3] | K. T. Atanassov, Intuitionistic fuzzy sets, In: Intuitionistic Fuzzy Sets, Studies in Fuzziness and Soft Computing, Physica, Heidelberg, 35 (1999), 1–137. https://doi.org/10.1007/978-3-7908-1870-3_1 |
[4] | K.T. Atanassov, Interval valued intuitionistic fuzzy sets, In: Intuitionistic Fuzzy Sets, Studies in Fuzziness and Soft Computing, Physica, Heidelberg, 35 (1999). https://doi.org/10.1007/978-3-7908-1870-3_2 |
[5] |
R. R. Yager, Pythagorean membership grades in multi-criteria decision making, IEEE T. Fuzzy Syst., 22 (2013), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
![]() |
[6] |
X. Peng, Y. Yang, Fundamental properties of interval-valued Pythagorean fuzzy aggregation operators, Int. J. Intell. Syst., 31 (2016), 444–487. https://doi.org/10.1002/int.21790 doi: 10.1002/int.21790
![]() |
[7] |
R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2016), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
![]() |
[8] |
B. P. Joshi, A. Singh, P. K. Bhatt, K. S. Vaisla, Interval valued q-rung orthopair fuzzy sets and their properties, J. Intell. Fuzzy Syst., 35 (2018), 5225–5230. https://doi.org/10.3233/JIFS-169806 doi: 10.3233/JIFS-169806
![]() |
[9] |
D. Molodtsov, Soft set theory—first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
![]() |
[10] |
K. Hayat, M. I. Ali, B. Y. Cao, F. Karaaslan, New results on type-2 soft sets, Hacet. J. Math. Stat., 47 (2018), 855–876. https://doi.org/10.15672/HJMS.2017.484 doi: 10.15672/HJMS.2017.484
![]() |
[11] |
K. Hayat, T. Mahmood, Some applications of bipolar soft set: Characterizations of two isomorphic hemi-rings via BSI-h-ideals, British J. Math. Comput. Sci., 13 (2016), 1–21. https://doi.org/10.9734/BJMCS/2016/22028 doi: 10.9734/BJMCS/2016/22028
![]() |
[12] |
Y. Jiang, Y. Tang, Q. Chen, H. Liu, J. Tang, Interval-valued intuitionistic fuzzy soft sets and their properties, Comput. Math. Appl., 60 (2010), 906–918. https://doi.org/10.1016/j.camwa.2010.05.036 doi: 10.1016/j.camwa.2010.05.036
![]() |
[13] | X. Peng, Y. Yang, J. Song, Pythagoren fuzzy soft set and its application, Comput. Eng., 41 (2015), 224–229. |
[14] |
R. M. Zulqarnain, I. Siddique, A. Iampan, D. Baleanu, Aggregation operators for Interval-valued Pythagorean fuzzy soft set with their application to solve multi-attribute group decision making problem, CMES-Comput. Model. Eng., 131 (2022), 1717–1750. https://doi.org/10.32604/cmes.2022.019408 doi: 10.32604/cmes.2022.019408
![]() |
[15] |
A. Hussain, M. I. Ali, T. Mahmood, M. Munir, q-Rung orthopair fuzzy soft average aggregation operators and their application in multicriteria decision-making, Int. J. Intell. Syst., 35 (2020), 571–599. https://doi.org/10.1002/int.22217 doi: 10.1002/int.22217
![]() |
[16] |
X. Yang, K. Hayat, M. S. Raja, N. Yaqoob, C. Jana, Aggregation and interaction aggregation soft operators on interval-valued q-rung orthopair fuzzy soft environment and application in automation company evaluation, IEEE Access, 10 (2022), 91424–91444. https://doi.org/10.1109/ACCESS.2022.3202211 doi: 10.1109/ACCESS.2022.3202211
![]() |
[17] | F. Smarandache, Extension of soft set to hypersoft set, and then to plithogenic hypersoft set, Neutrosophic Sets Sy., 22 (2018), 168–170. |
[18] | S. Debnath, Interval-valued intuitionistic hypersoft sets and their algorithmic approach in multi-criteria decision making, Neutrosophic Sets Sy., 48 (2022), 226–250. |
[19] | R. M. Zulqarnain, X. L. Xin, M. Saeed, A development of Pythagorean fuzzy hypersoft set with basic operations and decision-making approach based on the correlation coefficient, Theory Appl. Hypersoft Set, 2021 (2021), 85–106. |
[20] |
R. Zulqarnain, I. Siddique, R. Ali, F. Jarad, A. Iampan, Aggregation operators for interval-valued pythagorean fuzzy hypersoft set with their application to solve MCDM problem, CMES-Comput. Model. Eng., 135 (2023), 619–651. https://doi.org/10.32604/cmes.2022.022767 doi: 10.32604/cmes.2022.022767
![]() |
[21] |
S. Khan, M. Gulistan, N. Kausar, S. Kousar, D. Pamucar, G. M. Addis, Analysis of cryptocurrency market by using q-rung orthopair fuzzy hypersoft set algorithm based on aggregation operator, Complexity, 2022 (2022). https://doi.org/10.1155/2022/7257449 doi: 10.1155/2022/7257449
![]() |
[22] |
R. M. Zulqarnain, I. Siddique, A. Mahboob, H. Ahmad, S. Askar, S. H. Gurmani, Optimizing construction company selection using einstein weighted aggregation operators for q-rung orthopair fuzzy hypersoft set, Sci. Rep., 13 (2023), 6511. https://doi.org/10.1038/s41598-023-32818-8 doi: 10.1038/s41598-023-32818-8
![]() |
[23] |
C. Samantra, S. Datta, S. S. Mahapatra, Application of fuzzy based VIKOR approach for multi-attribute group decision making (MAGDM): A case study in supplier selection, Decis. Mak. Manuf. Serv., 6 (2012), 25–39. https://doi.org/10.7494/dmms.2012.6.1.25 doi: 10.7494/dmms.2012.6.1.25
![]() |
[24] |
S. Zhang, Y. Hou, S. Zhang, M. Zhang, Fuzzy control model and simulation for nonlinear supply chain system with lead times, Complexity, 2017 (2017), 2017634. https://doi.org/10.1155/2017/2017634 doi: 10.1155/2017/2017634
![]() |
[25] |
S. Zhang, C. Zhang, S. Zhang, M. Zhang, Discrete switched model and fuzzy robust control of dynamic supply chain network, Complexity, 2018 (2018), 3495096. https://doi.org/10.1155/2018/3495096 doi: 10.1155/2018/3495096
![]() |
[26] |
C. Yu, Y. Shao, K. Wang, L. Zhang, A group decision making sustainable supplier selection approach using extended TOPSIS under interval-valued Pythagorean fuzzy environment, Expert Syst. Appl., 121 (2019), 1–17. https://doi.org/10.1016/j.eswa.2018.12.010 doi: 10.1016/j.eswa.2018.12.010
![]() |
[27] |
S. Zhang, P. Zhang, M. Zhang, Fuzzy emergency model and robust emergency strategy of supply chain system under random supply disruptions, Complexity, 2019 (2019), 3092514. https://doi.org/10.1155/2019/3092514 doi: 10.1155/2019/3092514
![]() |
[28] |
S. Zhang, S. Li, S. Zhang, M. Zhang, Decision of lead-time compression and stable operation of supply chain, Complexity, 2017 (2017), 7436764. https://doi.org/10.1155/2017/7436764 doi: 10.1155/2017/7436764
![]() |
[29] |
S. H. Gurmani, Z. Zhang, R. M. Zulqarnain, S. Askar, An interaction and feedback mechanism-based group decision-making for emergency medical supplies supplier selection using T-spherical fuzzy information, Sci. Rep., 13 (2023), 8726. https://doi.org/10.1038/s41598-023-35909-8 doi: 10.1038/s41598-023-35909-8
![]() |
[30] |
H. Wang, Sustainable circular supplier selection in the power battery industry using a linguistic T-spherical fuzzy MAGDM model based on the improved ARAS method, Sustainability, 14 (2022), 7816. https://doi.org/10.3390/su14137816 doi: 10.3390/su14137816
![]() |
[31] |
J. Wu, Y. Jin, M. Zhou, M. Cao, Y. Liu, A group consensus decision making based sustainable supplier selection method by combing DEMATEL and VIKOR, J. Intell. Fuzzy Syst., 42 (2022), 2595–2613. https://doi.org/10.3233/JIFS-211929 doi: 10.3233/JIFS-211929
![]() |
[32] |
Y. Diao, Q. Zhang, Optimization of management mode of small- and medium- sized enterprises based on decision tree model, J. Math., 2021 (2021), 2815086. https://doi.org/10.1155/2021/2815086 doi: 10.1155/2021/2815086
![]() |
[33] |
J. Wang, H. Gao, G. Wei, Y. Wei, Methods for multiple-attribute group decision making with q-rung interval-valued orthopair fuzzy information and their applications to the selection of green suppliers, Symmetry, 11 (2019), 56. https://doi.org/10.3390/sym11010056 doi: 10.3390/sym11010056
![]() |
[34] |
A. Ali, K. Ullah, A. Hussain, An approach to multi-attribute decision-making based on intuitionistic fuzzy soft information and Aczel-Alsina operational laws, J. Decis. Anal. Intell. Comput., 3 (2023), 80–89. https://doi.org/10.31181/jdaic10006062023a doi: 10.31181/jdaic10006062023a
![]() |
[35] |
R. M. Zulqarnain, X. L. Xin, H. Garg, W. A. Khan, Aggregation operators of pythagorean fuzzy soft sets with their application for green supplier chain management, J. Intell. Fuzzy Syst., 40 (2021), 5545–5563. https://doi.org/10.3233/JIFS-202781 doi: 10.3233/JIFS-202781
![]() |
[36] |
R. M. Zulqarnain, I. Siddique, S. Ahmad, A. Iampan, G. Jovanov, Đ. Vranješ, et al., Pythagorean fuzzy soft Einstein ordered weighted average operator in sustainable supplier selection problem, Math. Probl. Eng., 2021 (2021), 1–16. https://doi.org/10.1155/2021/2559979 doi: 10.1155/2021/2559979
![]() |
[37] |
S. Zhang, M. Zhang, Mitigation of bullwhip effect in closed‐loop supply chain based on fuzzy robust control approach, Complexity, 2020 (2020), 1085870. https://doi.org/10.1155/2020/1085870 doi: 10.1155/2020/1085870
![]() |
[38] |
A. Hussain, K. Ullah, T. Senapati, S. Moslem, Energy supplier selection by TOPSIS method based on multi-attribute decision-making by using novel idea of complex fuzzy rough information, Energy Strateg. Rev., 54 (2024), 101442. https://doi.org/10.1016/j.esr.2024.101442 doi: 10.1016/j.esr.2024.101442
![]() |
[39] |
W. Wang, X. Liu, Intuitionistic fuzzy information aggregation using Einstein operations, IEEE T. Fuzzy Syst., 20 (2012), 923–938. https://doi.org/10.1109/TFUZZ.2012.2189405 doi: 10.1109/TFUZZ.2012.2189405
![]() |
[40] |
W. Wang, X. Liu, Intuitionistic fuzzy geometric aggregation operators based on Einstein operations, Int. J. Intell. Syst., 26 (2011), 1049–1075. https://doi.org/10.1002/int.20498 doi: 10.1002/int.20498
![]() |
[41] |
P. Liu, Y. Li, Y. Chen, Some generalized Einstein aggregation operators based on the interval-valued intuitionistic fuzzy numbers and their application to group decision making, Sci. Iran., 22 (2015), 2684–2701. https://doi.org/10.1109/TFUZZ.2013.2248736 doi: 10.1109/TFUZZ.2013.2248736
![]() |
[42] | W. Wang, X. Liu, Some interval-valued intuitionistic fuzzy geometric aggregation operators based on einstein operations, In 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery, IEEE, 2012,604–608. https://doi.org/10.1109/FSKD.2012.6234364 |
[43] |
H. Garg, A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making, Int. J. Intell. Syst., 31 (2016), 886–920. https://doi.org/10.1002/int.21809 doi: 10.1002/int.21809
![]() |
[44] |
M. Asif, U. Ishtiaq, I. K. Argyros, Hamacher aggregation operators for Pythagorean fuzzy set and its application in multi-attribute decision-making problem, Spectrum Oper. Res., 2 (2025), 27–40. https://doi.org/10.31181/sor2120258 doi: 10.31181/sor2120258
![]() |
[45] |
K. Rahman, S. Abdullah, M. S. A. Khan, Some interval-valued Pythagorean fuzzy Einstein weighted averaging aggregation operators and their application to group decision making, J. Intell. Syst., 29 (2018), 393–408. https://doi.org/10.1515/jisys-2017-0212 doi: 10.1515/jisys-2017-0212
![]() |
[46] |
K. Rahman, A. Ali, S. Abdullah, Multiattribute group decision making based on interval-valued Pythagorean fuzzy Einstein geometric aggregation operators, Granular Comput., 5 (2020), 361–372. https://doi.org/10.1007/s41066-019-00154-w doi: 10.1007/s41066-019-00154-w
![]() |
[47] |
M. Deveci, I. Gokasar, D. Pamucar, D. M. Coffman, E. Papadonikolaki, Safe E-scooter operation alternative prioritization using a q-rung orthopair fuzzy Einstein based WASPAS approach, J. Clean. Prod., 347 (2022), 131239. https://doi.org/10.1016/j.jclepro.2022.131239 doi: 10.1016/j.jclepro.2022.131239
![]() |
[48] |
Y. Xu, A two-stage multi-criteria decision-making method with interval-valued q-Rung Orthopair fuzzy technology for selecting bike-sharing recycling supplier, Eng. Appl. Artif. Intell., 119 (2023), 105827. https://doi.org/10.1016/j.engappai.2023.105827 doi: 10.1016/j.engappai.2023.105827
![]() |
[49] |
R. M. Zulqarnain, I. Siddique, F. Jarad, Y. S. Hamed, K. M. Abualnaja, A. Iampan, Einstein aggregation operators for Pythagorean fuzzy soft sets with their application in multiattribute group decision-making, J. Funct. Space., 2022 (2022), 1–21. https://doi.org/10.1155/2022/1358675 doi: 10.1155/2022/1358675
![]() |
[50] |
R. M. Zulqarnain, H. K. U. Rehman, J. Awrejcewicz, R. Ali, I. Siddique, F. Jarad, et al., Extension of Einstein average aggregation operators to medical diagnostic approach under q-rung orthopair fuzzy soft set, IEEE Access, 10 (2022), 87923–87949. https://doi.org/10.1109/ACCESS.2022.3199069 doi: 10.1109/ACCESS.2022.3199069
![]() |
[51] |
R. M. Zulqarnain, R. Ali, J. Awrejcewicz, I. Siddique, F. Jarad, A. Iampan, Some Einstein geometric aggregation operators for Q-rung orthopair fuzzy soft set with their application in MCDM, IEEE Access, 10 (2022), 88469–88494. https://doi.org/10.1109/ACCESS.2022.3199071 doi: 10.1109/ACCESS.2022.3199071
![]() |
[52] |
R. M. Zulqarnain, H. Naveed, I. Siddique, J. C. R. Alcantud, Transportation decisions in supply chain management using interval-valued q-rung orthopair fuzzy soft information, Eng. Appl. Artif. Intell., 133 (2024), 108410. https://doi.org/10.1016/j.engappai.2024.108410 doi: 10.1016/j.engappai.2024.108410
![]() |
[53] |
P. Sunthrayuth, F. Jarad, J. Majdoubi, R. M. Zulqarnain, A. Iampan, I. Siddique, A novel multicriteria decision-making approach for einstein weighted average operator under Pythagorean fuzzy hypersoft environment, J. Math., 2022 (2022), 1951389. https://doi.org/10.1155/2022/1951389 doi: 10.1155/2022/1951389
![]() |
[54] |
R. M. Zulqarnain, I. Siddique, R. Ali, F. Jarad, A. Iampan, Einstein weighted geometric operator for Pythagorean fuzzy hypersoft with its application in material selection, Comput. Model. Eng. Sci., 135 (2023), 2557–2583. https://doi.org/10.32604/cmes.2023.023040 doi: 10.32604/cmes.2023.023040
![]() |
[55] |
M. Sajid, K. A. Khan, A. U. Rahman, S. A. Bajri, A. Alburaikan, H. A. E. W. Khalifa, A novel algorithmic multi-attribute decision-making framework for solar panel selection using modified aggregations of cubic intuitionistic fuzzy hypersoft set, Heliyon, 10 (2024). https://doi.org/10.1016/j.heliyon.2024.e36508 doi: 10.1016/j.heliyon.2024.e36508
![]() |
[56] | B. Huang, J. Miao, Q. Li, A vetoed multi-objective grey target decision model with application in supplier choice, J. Grey Syst., 34 (2022). |
[57] |
M. Saqlain, Sustainable hydrogen production: a decision-making approach using VIKOR and intuitionistic hypersoft sets, J. Intell. Manag. Decis., 2 (2023), 130–138. https://doi.org/10.56578/jimd020303 doi: 10.56578/jimd020303
![]() |
[58] |
M. T. Hamid, M. Abid, Decision support system for mobile phone selection utilizing fuzzy hypersoft sets and machine learning, J. Intell. Manag. Decis., 3 (2024), 104–115. https://doi.org/10.56578/jimd030204 doi: 10.56578/jimd030204
![]() |
[59] |
M. Sarwar, T. Li, Fuzzy fixed point results and applications to ordinary fuzzy differential equations in complex valued metric spaces, Hacet. J. Math. Stat., 48 (2019), 1712–1728. https://doi.org/10.15672/HJMS.2018.633 doi: 10.15672/HJMS.2018.633
![]() |
[60] |
Y. Xia, J. Wang, B. Meng, X. Chen, Further results on fuzzy sampled-data stabilization of chaotic nonlinear systems, Appl. Math. Comput., 379 (2020), 125225. https://doi.org/10.1016/j.amc.2020.125225 doi: 10.1016/j.amc.2020.125225
![]() |
[61] |
M. Gao, L. Zhang, W. Qi, J. Cao, J. Cheng, Y. Kao, et al., SMC for semi-Markov jump TS fuzzy systems with time delay, Appl. Math. Comput., 374 (2020), 125001. https://doi.org/10.1016/j.amc.2019.125001 doi: 10.1016/j.amc.2019.125001
![]() |
[62] |
J. Ge, S. Zhang, Adaptive inventory control based on fuzzy neural network under uncertain environment, Complexity, 2020 (2020), 6190936. https://doi.org/10.1155/2020/6190936 doi: 10.1155/2020/6190936
![]() |
[63] |
N. Zhang, W. Qi, G. Pang, J. Cheng, K. Shi, Observer-based sliding mode control for fuzzy stochastic switching systems with deception attacks, Appl. Math. Comput., 427 (2022), 127153. https://doi.org/10.1016/j.amc.2022.127153 doi: 10.1016/j.amc.2022.127153
![]() |
[64] |
Q. Sun, J. Ren, F. Zhao, Sliding mode control of discrete-time interval type-2 fuzzy Markov jump systems with the preview target signal, Appl. Math. Comput., 435 (2022), 127479. https://doi.org/10.1016/j.amc.2022.127479 doi: 10.1016/j.amc.2022.127479
![]() |
[65] | Z. X. Duan, J. L. Liang, Z. R. Xiang, H∞ control for continuous-discrete systems in TS fuzzy model with finite frequency specifications, Discrete Cont. Dyn.-S, 64 (2022), 1–18. |