Research article Special Issues

Energy supplier selection using Einstein aggregation operators in an interval-valued q-rung orthopair fuzzy hypersoft structure

  • Received: 01 September 2024 Revised: 17 October 2024 Accepted: 21 October 2024 Published: 04 November 2024
  • MSC : 03E72, 90B50

  • The selection of energy suppliers is important for sustainable energy management, as selecting the most appropriate suppliers reduces the environmental impact and improves resource optimization through sustainable practices. Our primary objective of this work was to develop a system for identifying energy suppliers by assessing various characteristics and their associated sub-attributes. Interval-valued q-rung orthopair fuzzy hypersoft sets (IVq-ROFHSS) originate by developing an association among interval-valued q-rung orthopair fuzzy sets and hypersoft sets. It is a crucial resource to handle unpredictable situations, mainly when presenting a component in a real-life scenario. IVq-ROFHSS is a new structure developed to manage the sub-parametric values of the alternatives. We developed the Einstein operational laws for IVq-ROFHSS and extended the Interval-valued q-rung ortho-pair fuzzy hypersoft Einstein weighted average (IVq-ROFHSEWA) and interval-valued q-rung ortho-pair fuzzy hypersoft Einstein weighted geometric (IVq-ROFHSEWG) operators. Moreover, we used the developed operators to formulate a multi-attribute group decision-making strategy to choose the ideal provider in sustainable energy management. The presented fuzzy robust approach reliably reiterated the challenged energy supplier selection in supply chain management to regular activities while alleviating overall expenses and promising stable reliability.

    Citation: Muhammad Saqlain, Xiao Long Xin, Rana Muhammad Zulqarnain, Imran Siddique, Sameh Askar, Ahmad M. Alshamrani. Energy supplier selection using Einstein aggregation operators in an interval-valued q-rung orthopair fuzzy hypersoft structure[J]. AIMS Mathematics, 2024, 9(11): 31317-31365. doi: 10.3934/math.20241510

    Related Papers:

    [1] Zhao Xiaoqing, Yi Yuan . Square-free numbers in the intersection of Lehmer set and Piatetski-Shapiro sequence. AIMS Mathematics, 2024, 9(12): 33591-33609. doi: 10.3934/math.20241603
    [2] Yanbo Song . On two sums related to the Lehmer problem over short intervals. AIMS Mathematics, 2021, 6(11): 11723-11732. doi: 10.3934/math.2021681
    [3] Bingzhou Chen, Jiagui Luo . On the Diophantine equations x2Dy2=1 and x2Dy2=4. AIMS Mathematics, 2019, 4(4): 1170-1180. doi: 10.3934/math.2019.4.1170
    [4] Jinyun Qi, Zhefeng Xu . Almost primes in generalized Piatetski-Shapiro sequences. AIMS Mathematics, 2022, 7(8): 14154-14162. doi: 10.3934/math.2022780
    [5] Yukai Shen . kth powers in a generalization of Piatetski-Shapiro sequences. AIMS Mathematics, 2023, 8(9): 22411-22418. doi: 10.3934/math.20231143
    [6] Zhenjiang Pan, Zhengang Wu . The inverses of tails of the generalized Riemann zeta function within the range of integers. AIMS Mathematics, 2023, 8(12): 28558-28568. doi: 10.3934/math.20231461
    [7] Mingxuan Zhong, Tianping Zhang . Partitions into three generalized D. H. Lehmer numbers. AIMS Mathematics, 2024, 9(2): 4021-4031. doi: 10.3934/math.2024196
    [8] Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937
    [9] Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo p. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638
    [10] Guangwei Hu, Huixue Lao, Huimin Pan . High power sums of Fourier coefficients of holomorphic cusp forms and their applications. AIMS Mathematics, 2024, 9(9): 25166-25183. doi: 10.3934/math.20241227
  • The selection of energy suppliers is important for sustainable energy management, as selecting the most appropriate suppliers reduces the environmental impact and improves resource optimization through sustainable practices. Our primary objective of this work was to develop a system for identifying energy suppliers by assessing various characteristics and their associated sub-attributes. Interval-valued q-rung orthopair fuzzy hypersoft sets (IVq-ROFHSS) originate by developing an association among interval-valued q-rung orthopair fuzzy sets and hypersoft sets. It is a crucial resource to handle unpredictable situations, mainly when presenting a component in a real-life scenario. IVq-ROFHSS is a new structure developed to manage the sub-parametric values of the alternatives. We developed the Einstein operational laws for IVq-ROFHSS and extended the Interval-valued q-rung ortho-pair fuzzy hypersoft Einstein weighted average (IVq-ROFHSEWA) and interval-valued q-rung ortho-pair fuzzy hypersoft Einstein weighted geometric (IVq-ROFHSEWG) operators. Moreover, we used the developed operators to formulate a multi-attribute group decision-making strategy to choose the ideal provider in sustainable energy management. The presented fuzzy robust approach reliably reiterated the challenged energy supplier selection in supply chain management to regular activities while alleviating overall expenses and promising stable reliability.



    Let q be a positive integer. For each integer a with 1a<q,(a,q)=1, we know that there exists one and only one ˉa with 1ˉa<q such that aˉa1(q). Let r(q) be the number of integers a with 1a<q for which a and ˉa are of opposite parity.

    D. H. Lehmer (see [1]) posed the problem to investigate a nontrivial estimation for r(q) when q is an odd prime. Zhang [2,3] gave some asymptotic formulas for r(q), one of which reads as follows:

    r(q)=12ϕ(q)+O(q12d2(q)log2q).

    Zhang [4] generalized the problem over short intervals and proved that

    aNaR(q)1=12Nϕ(q)q1+O(q12d2(q)log2q),

    where

    R(q):={a:1aq,(a,q)=1,2a+ˉa}.

    Let n2 be a fixed positive integer, q3 and c be two integers with (n,q)=(c,q)=1. Let 0<δ1,δ21. Lu and Yi [5] studied the Lehmer problem in the sense of short intervals as

    rn(δ1,δ2,c;q):=aδ1qˉaδ2qaˉacmodqna+ˉa1,

    and obtained an interesting asymptotic formula,

    rn(δ1,δ2,c;q)=(1n1)δ1δ2ϕ(q)+O(q12d6(q)log2q).

    Liu and Zhang [6] r-th residues and roots, and obtained two interesting mean value formulas. Guo and Yi [7] found the Lehmer problem also has good distribution properties on Beatty sequences. For fixed real numbers α and β, the associated non-homogeneous Beatty sequence is the sequence of integers defined by

    Bα,β:=(αn+β)n=1,

    where t denotes the integer part of any tR. Such sequences are also called generalized arithmetic progressions. If α is irrational, it follows from a classical exponential sum estimate of Vinogradov [8] that Bα,β contains infinitely many prime numbers; in fact, one has the asymptotic estimate

    #{ prime px:pBα,β}α1π(x) as x

    where π(x) is the prime counting function.

    We define type τ=τ(α) for any irrational number α by the following definition:

    τ:=sup{tR:lim infnntαn=0}.

    Based on the results obtained, we consider the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals in this paper. That is,

    rn(δ1,δ2,,δk,c,α,β;q):=x1δ1qxkδkqx1xkcmodqx1,xk1Bα,βnx1++xk1,(0<δ1,δ2,,δk1),

    and where k = 2, we get the result of [7].

    By using the properties of Beatty sequences and the estimates for hyper Kloosterman sums, we obtain the following result.

    Theorem 1.1. Let k2 be a fixed positive integer, qn3 and c be two integers with (n,q)=(c,q)=1, and δ1,δ2,,δk be real numbers satisfying 0<δ1,δ2,,δk1. Let α>1 be an irrational number of finite type. Then, we have the following asymptotic formula:

    rn(δ1,δ2,,δk,c,α,β;q)=(1n1)α(k1)δ1δ2δkϕk1(q)+O(qk11τ+1+ε),

    where ϕ() is the Euler function, ε is a sufficiently small positive number, and the implied constant only depends on n.

    Notation. In this paper, we denote by t and {t} the integral part and the fractional part of t, respectively. As is customary, we put

    e(t):=e2πit and {t}:=tt.

    The notation t is used to denote the distance from the real number t to the nearest integer; that is,

    t:=minnZ|tn|.

    Let χ0 be the principal character modulo q. The letter p always denotes a prime. Throughout the paper, ε always denotes an arbitrarily small positive constant, which may not be the same at different occurrences; the implied constants in symbols O, and may depend (where obvious) on the parameters α,n,ε but are absolute otherwise. For given functions F and G, the notations FG, GF and F=O(G) are all equivalent to the statement that the inequality |F|C|G| holds with some constant C>0.

    To complete the proof of the theorem, we need the following several definitions and lemmas.

    Definition 2.1. For an arbitrary set S, we use 1S to denote its indicator function:

    1S(n):={1ifnS,0ifnS.

    We use 1α,β to denote the characteristic function of numbers in a Beatty sequence:

    1α,β(n):={1ifnBα,β,0ifnBα,β.

    Lemma 2.2. Let a,q be integers, δ(0,1) be a real number, θ be a rational number. Let α be an irrational number of finite type τ and H=qε>0. We have

    aδqaBα,β1=α1δϕ(q)+O((ϕ(q))ττ+1+ε),

    and

    aδqaBα,βe(θa)=α1aδ1qe(θa)+O(θ1qε+qε).

    Taking

    H=θ1τ+1+ε,

    we have

    aδqaBα,βe(θa)=α1aδ1qe(θa)+O(θ(ττ+1+ε)).

    Proof. This is Lemma 2.4 and Lemma 2.5 of [7].

    Lemma 2.3. Let

    Kl(r1,r2,,rk;q)=x1q1xk1q1e(r1x1++rk1xk1+rk¯x1xk1p).

    Then

    Kl(r1,r2,,rk;q)qk12kω(q)(r1,rk,q)12(rk1,rk,q)12

    where (a,b,c) is the greatest common divisor of a,b and c.

    Proof. See [9].

    Lemma 2.4. Assume that U is a positive real number, K is a positive integer and that a and b are two real numbers. If

    a=sr+θr2,(r,s)=1,r1,|θ|1,

    then

    kKmin(U,1ak+b)(Kr+1)(U+rlogr).

    Proof. The proof is given in [10].

    We begin by the definition

    rn(δ1,δ2,,δk,c,α,β;q)=S1S2,

    where

    S1:=x1δ1qxkδkqx1xkcmodqx1,xk1Bα,β1,

    and

    S2:=x1δ1qxkδkqx1xkcmodqx1,xk1Bα,βnx1++xk1.

    By the Definition 2.1, Lemma 2.2 and congruence properties, we have

    S1=x1δ1qxkδkqx1xkcmodq1α,β(x1)1α,β(xk1)=1ϕ(q)x1δ1qxkδkqχmodqχ(x1)χ(xk)χ(¯c)1α,β(x1)1α,β(xk1)=S11+S12,

    where

    S11:=1ϕ(q)x1δ1qxkδkq1α,β(x1)1α,β(xk1),

    and

    S12:=1ϕ(q)χmodqχχ0χ(¯c)(x1δ1qxkδkqχ(x1)χ(xk)1α,β(x1)1α,β(xk1)).

    For S2, it follows that

    S2=1ϕ(q)x1δ1qxkδkqnx1++xkχmodqχ(x1)χ(xk)χ(¯c)1α,β(x1)1α,β(xk1)=S21+S22,

    where

    S21:=1ϕ(q)x1δ1qxkδkqnx1++xk1α,β(x1)1α,β(xk1),

    and

    S22:=1ϕ(q)χmodqχχ0χ(¯c)x1δ1qxkδkqnx1++xkχ(x1)χ(xk1)1α,β(x1)1α,β(xk1).

    From the classical bound

    aδq1=δϕ(q)+O(d(q))

    and Lemma 2.2, we have

    S11=1ϕ(q)(x1δ1q1α,β(x1))(xk1δk1q1α,β(xk1))(xkδkq1)=(δk+O(d(q)ϕ(q)))k1i=1(α1δiϕ(q)+O((ϕ(q))ττ+1+ε))=α(k1)ϕk1(q)k1i=1δi+O(qk11τ+1+ε). (3.1)

    From Lemma 2.2, we obtain

    S21=1ϕ(q)(x1δ1q1α,β(x1))(xk1δk1q1α,β(xk1))(xkδkqnxk+(x1++xk1)1)=1ϕ(q)(x1δ1q1α,β(x1))(xk1δk1q1α,β(xk1))(xkδkqxk(x1++xk1)modnd(xk,q)μ(d))=1ϕ(q)(x1δ1q1α,β(x1))(xk1δk1q1α,β(xk1))(dqμ(d)xkδkqdxkxk(x1++xk1)modn1)=1ϕ(q)(x1δ1q1α,β(x1))(xk1δk1q1α,β(xk1))(dqμ(d)(δkqnd+O(1)))=1ϕ(q)(δkϕ(q)n+O(d(q)))k1i=1(α1δiϕ(q)+O((ϕ(q))ττ+1+ε))=α(k1)n1ϕk1(q)k1i=1δi+O(qk11τ+1+ε). (3.2)

    By the properties of exponential sums,

    S22=1nϕ(q)χmodqχχ0χ(¯c)(x1δ1qxkδk1qχ(x1)χ(xk)1α,β(x1)1α,β(xk1))×(nl=1e(x1++xknl))=1nϕ(q)χmodqχχ0χ(¯c)nl=1k1i=1(xiδiq1α,β(xi)χ(xi)e(xinl))(xkδkqχ(xk)e(xknl)). (3.3)

    Let

    G(r,χ):=qh=1χ(h)e(rhq)

    be the Gauss sum, and we know that for χχ0,

    χ(xi)=1qqr=1G(r,χ)e(xirq)=1qq1r=1G(r,χ)e(xirq),

    and

    lnrq0

    for 1ln,1rq1 and (n,q)=1.

    Therefore,

    xkδkqχ(xk)e(xknl)=1qq1rk=1G(rk,χ)f(δk,l,rk;n,q)e(rkqlh)1, (3.4)

    where

    f(δ,l,r;n,p):=1e((lnrq)δq)

    and

    |f(δk,l,rk;n,q)|2.

    For xi(1ik1), using Lemma 2.2, we also have

    xiδiq1α,β(xi)χ(xi)e(xinl)=1qxiδiq1α,β(xi)q1ri=1G(ri,χ)e((lnriq)xi)=1qq1ri=1G(ri,χ)xiδiq1α,β(xi)e((lnriq)xi)=1qq1ri=1G(ri,χ)(α1aδiqe((lnriq)xi)+O(qεlnriq+qε))=1qαq1ri=1G(ri,χ)(f(δi,l,ri;n,q)e(riqln)1+O(qεlnriq+qε)). (3.5)

    Let

    S23=1nϕ(q)χmodqχχ0χ(¯c)nl=1k1i=1(1qαq1ri=1G(ri,χ)f(δi,l,ri;n,q)e(riqln)1)(1qq1rk=1G(rk,χ)f(δk,l,rk;n,q)e(rkqln)1)=1nϕ(q)qkαk1nl=1q1r1=1q1rk=1f(δ1,l,r1;n,q)f(δk,l,rk;n,q)(e(r1qln)1)(e(rkqln)1)×χmodqχχ0χ(¯c)G(r1,χ)G(rk,χ). (3.6)

    From the definition of Gauss sum and Lemma 2.3, we know that

    χmodqχ(¯c)G(r1,χ)G(rk,χ)=q1h1=1q1hk=1χmodqχ(¯c)χ(h1)χ(hk)e(r1h1++rkhkq)=ϕ(q)q1h1=1q1hk=1h1hkcmodqe(r1h1++rkhkq)=ϕ(q)q1h1=1q1hk=1e(r1h1+rk1hk1+rkc¯h1hk1q)=ϕ(q)Kl(r1,r2,,rkc;q)ϕ(q)qk12kω(q)(r1,rkc,q)12(rk1,rkc,q)12ϕ(q)qk12kω(q)(r1,q)(rk,q). (3.7)

    By Mobius inversion, we get

    G(r,χ0)=qh=1e(rhq)=μ(q(r,q))φ(q)φ(q/(r,q))(r,q),

    and

    χ0(¯c)G(r1,χ0)G(rk,χ0)(r1,q)(rk,q).

    Hence,

    χmodqχχ0χ(¯c)G(r1,χ)G(rk,χ)=χmodqχ(¯c)G(r1,χ)G(rk,χ)χ0(¯c)G(r1,χ0)G(rk,χ0)ϕ(q)qk12kω(q)(r1,q)(rk,q). (3.8)

    From (3.8) we may deduce the following result:

    S23kω(q)nqk+12αk1nl=1(q1r=1(r,q)|e(rqln)1|)kkω(q)nqk+12αk1nl=1(q1r=1(r,q)|sinπ(rqln)|)kkω(q)nqk+12αk1nl=1(q1r=1(r,q)rqln)k=kω(q)nqk+12αk1nl=1(dqd<qrq1(r,q)=ddrqln)k=kω(q)nqk+12αk1nl=1(dqd<qdmq1d(m,q)=11mdqln)k=kω(q)nqk+12αk1nl=1(dqd<qdkqμ(k)mq1kd1mkdqln)k.

    It is easy to see

    mkdqln=mknl(q/d)(q/d)n1(q/d)n,

    and we obtain

    S23kω(q)nϕ(q)qk+12αk1nl=1(dqd<qdkqmq1kdmin(qnd,1mkdqln))k.

    Let kd/q=h0/q0, where q01,(h0,q0)=1, and we will easily obtain q/(kd)q0q/d. By using Lemma 2.4, we have

    S23kω(q)nqk+12αk1nl=1(dqd<qdkq((q1)/(kd)q0+1)(qnd+q0logq0))kkω(q)nqk+12αk1nl=1(dqd<qdkq((q1)/(kd)q/(kd)+1)(qnd+qdlogqd))kkω(q)qk12αk1(dqd<qkqn+logq)kqk12d2k(q)(logq+n)k.

    Let

    S24:=q(k1)(ε)nϕ(q)χmodqχχ0χ(¯c)nl=1k1i=1(1qαq1ri=1G(ri,χ)1lnriq)(1qq1rk=1G(rk,χ)f(δk,l,rk;n,q)e(rkqln)1)

    and

    S25:=q(k1)(ε)nϕ(q)χmodqχχ0χ(¯c)nl=1k1i=1(1qαq1ri=1G(ri,χ))(1qq1rk=1G(rk,χ)f(δk,l,rk;n,q)e(rkqln)1).

    By the same argument of S23, it follows that

    S24qk12εd2k(q)(logq+n)k,
    S25qk32+ε(logq+n).

    Since nq13, we have

    S25S24S23qk12+εnkqk2+ε. (3.9)

    Taking n=1, we get

    S12qk12+ε. (3.10)

    With (3.1), (3.2), (3.9) and (3.10), the proof is complete.

    This paper considers the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals. And we give an asymptotic formula by the properties of Beatty sequences and the estimates for hyper Kloosterman sums.

    This work is supported by Natural Science Foundation No. 12271422 of China. The authors would like to express their gratitude to the referee for very helpful and detailed comments.

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] I. B. Turksen, Interval valued fuzzy sets based on normal forms, Fuzzy Set. Syst., 20 (1986), 191–210. https://doi.org/10.1016/0165-0114(86)90077-1 doi: 10.1016/0165-0114(86)90077-1
    [3] K. T. Atanassov, Intuitionistic fuzzy sets, In: Intuitionistic Fuzzy Sets, Studies in Fuzziness and Soft Computing, Physica, Heidelberg, 35 (1999), 1–137. https://doi.org/10.1007/978-3-7908-1870-3_1
    [4] K.T. Atanassov, Interval valued intuitionistic fuzzy sets, In: Intuitionistic Fuzzy Sets, Studies in Fuzziness and Soft Computing, Physica, Heidelberg, 35 (1999). https://doi.org/10.1007/978-3-7908-1870-3_2
    [5] R. R. Yager, Pythagorean membership grades in multi-criteria decision making, IEEE T. Fuzzy Syst., 22 (2013), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [6] X. Peng, Y. Yang, Fundamental properties of interval-valued Pythagorean fuzzy aggregation operators, Int. J. Intell. Syst., 31 (2016), 444–487. https://doi.org/10.1002/int.21790 doi: 10.1002/int.21790
    [7] R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2016), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [8] B. P. Joshi, A. Singh, P. K. Bhatt, K. S. Vaisla, Interval valued q-rung orthopair fuzzy sets and their properties, J. Intell. Fuzzy Syst., 35 (2018), 5225–5230. https://doi.org/10.3233/JIFS-169806 doi: 10.3233/JIFS-169806
    [9] D. Molodtsov, Soft set theory—first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [10] K. Hayat, M. I. Ali, B. Y. Cao, F. Karaaslan, New results on type-2 soft sets, Hacet. J. Math. Stat., 47 (2018), 855–876. https://doi.org/10.15672/HJMS.2017.484 doi: 10.15672/HJMS.2017.484
    [11] K. Hayat, T. Mahmood, Some applications of bipolar soft set: Characterizations of two isomorphic hemi-rings via BSI-h-ideals, British J. Math. Comput. Sci., 13 (2016), 1–21. https://doi.org/10.9734/BJMCS/2016/22028 doi: 10.9734/BJMCS/2016/22028
    [12] Y. Jiang, Y. Tang, Q. Chen, H. Liu, J. Tang, Interval-valued intuitionistic fuzzy soft sets and their properties, Comput. Math. Appl., 60 (2010), 906–918. https://doi.org/10.1016/j.camwa.2010.05.036 doi: 10.1016/j.camwa.2010.05.036
    [13] X. Peng, Y. Yang, J. Song, Pythagoren fuzzy soft set and its application, Comput. Eng., 41 (2015), 224–229.
    [14] R. M. Zulqarnain, I. Siddique, A. Iampan, D. Baleanu, Aggregation operators for Interval-valued Pythagorean fuzzy soft set with their application to solve multi-attribute group decision making problem, CMES-Comput. Model. Eng., 131 (2022), 1717–1750. https://doi.org/10.32604/cmes.2022.019408 doi: 10.32604/cmes.2022.019408
    [15] A. Hussain, M. I. Ali, T. Mahmood, M. Munir, q-Rung orthopair fuzzy soft average aggregation operators and their application in multicriteria decision-making, Int. J. Intell. Syst., 35 (2020), 571–599. https://doi.org/10.1002/int.22217 doi: 10.1002/int.22217
    [16] X. Yang, K. Hayat, M. S. Raja, N. Yaqoob, C. Jana, Aggregation and interaction aggregation soft operators on interval-valued q-rung orthopair fuzzy soft environment and application in automation company evaluation, IEEE Access, 10 (2022), 91424–91444. https://doi.org/10.1109/ACCESS.2022.3202211 doi: 10.1109/ACCESS.2022.3202211
    [17] F. Smarandache, Extension of soft set to hypersoft set, and then to plithogenic hypersoft set, Neutrosophic Sets Sy., 22 (2018), 168–170.
    [18] S. Debnath, Interval-valued intuitionistic hypersoft sets and their algorithmic approach in multi-criteria decision making, Neutrosophic Sets Sy., 48 (2022), 226–250.
    [19] R. M. Zulqarnain, X. L. Xin, M. Saeed, A development of Pythagorean fuzzy hypersoft set with basic operations and decision-making approach based on the correlation coefficient, Theory Appl. Hypersoft Set, 2021 (2021), 85–106.
    [20] R. Zulqarnain, I. Siddique, R. Ali, F. Jarad, A. Iampan, Aggregation operators for interval-valued pythagorean fuzzy hypersoft set with their application to solve MCDM problem, CMES-Comput. Model. Eng., 135 (2023), 619–651. https://doi.org/10.32604/cmes.2022.022767 doi: 10.32604/cmes.2022.022767
    [21] S. Khan, M. Gulistan, N. Kausar, S. Kousar, D. Pamucar, G. M. Addis, Analysis of cryptocurrency market by using q-rung orthopair fuzzy hypersoft set algorithm based on aggregation operator, Complexity, 2022 (2022). https://doi.org/10.1155/2022/7257449 doi: 10.1155/2022/7257449
    [22] R. M. Zulqarnain, I. Siddique, A. Mahboob, H. Ahmad, S. Askar, S. H. Gurmani, Optimizing construction company selection using einstein weighted aggregation operators for q-rung orthopair fuzzy hypersoft set, Sci. Rep., 13 (2023), 6511. https://doi.org/10.1038/s41598-023-32818-8 doi: 10.1038/s41598-023-32818-8
    [23] C. Samantra, S. Datta, S. S. Mahapatra, Application of fuzzy based VIKOR approach for multi-attribute group decision making (MAGDM): A case study in supplier selection, Decis. Mak. Manuf. Serv., 6 (2012), 25–39. https://doi.org/10.7494/dmms.2012.6.1.25 doi: 10.7494/dmms.2012.6.1.25
    [24] S. Zhang, Y. Hou, S. Zhang, M. Zhang, Fuzzy control model and simulation for nonlinear supply chain system with lead times, Complexity, 2017 (2017), 2017634. https://doi.org/10.1155/2017/2017634 doi: 10.1155/2017/2017634
    [25] S. Zhang, C. Zhang, S. Zhang, M. Zhang, Discrete switched model and fuzzy robust control of dynamic supply chain network, Complexity, 2018 (2018), 3495096. https://doi.org/10.1155/2018/3495096 doi: 10.1155/2018/3495096
    [26] C. Yu, Y. Shao, K. Wang, L. Zhang, A group decision making sustainable supplier selection approach using extended TOPSIS under interval-valued Pythagorean fuzzy environment, Expert Syst. Appl., 121 (2019), 1–17. https://doi.org/10.1016/j.eswa.2018.12.010 doi: 10.1016/j.eswa.2018.12.010
    [27] S. Zhang, P. Zhang, M. Zhang, Fuzzy emergency model and robust emergency strategy of supply chain system under random supply disruptions, Complexity, 2019 (2019), 3092514. https://doi.org/10.1155/2019/3092514 doi: 10.1155/2019/3092514
    [28] S. Zhang, S. Li, S. Zhang, M. Zhang, Decision of lead-time compression and stable operation of supply chain, Complexity, 2017 (2017), 7436764. https://doi.org/10.1155/2017/7436764 doi: 10.1155/2017/7436764
    [29] S. H. Gurmani, Z. Zhang, R. M. Zulqarnain, S. Askar, An interaction and feedback mechanism-based group decision-making for emergency medical supplies supplier selection using T-spherical fuzzy information, Sci. Rep., 13 (2023), 8726. https://doi.org/10.1038/s41598-023-35909-8 doi: 10.1038/s41598-023-35909-8
    [30] H. Wang, Sustainable circular supplier selection in the power battery industry using a linguistic T-spherical fuzzy MAGDM model based on the improved ARAS method, Sustainability, 14 (2022), 7816. https://doi.org/10.3390/su14137816 doi: 10.3390/su14137816
    [31] J. Wu, Y. Jin, M. Zhou, M. Cao, Y. Liu, A group consensus decision making based sustainable supplier selection method by combing DEMATEL and VIKOR, J. Intell. Fuzzy Syst., 42 (2022), 2595–2613. https://doi.org/10.3233/JIFS-211929 doi: 10.3233/JIFS-211929
    [32] Y. Diao, Q. Zhang, Optimization of management mode of small- and medium- sized enterprises based on decision tree model, J. Math., 2021 (2021), 2815086. https://doi.org/10.1155/2021/2815086 doi: 10.1155/2021/2815086
    [33] J. Wang, H. Gao, G. Wei, Y. Wei, Methods for multiple-attribute group decision making with q-rung interval-valued orthopair fuzzy information and their applications to the selection of green suppliers, Symmetry, 11 (2019), 56. https://doi.org/10.3390/sym11010056 doi: 10.3390/sym11010056
    [34] A. Ali, K. Ullah, A. Hussain, An approach to multi-attribute decision-making based on intuitionistic fuzzy soft information and Aczel-Alsina operational laws, J. Decis. Anal. Intell. Comput., 3 (2023), 80–89. https://doi.org/10.31181/jdaic10006062023a doi: 10.31181/jdaic10006062023a
    [35] R. M. Zulqarnain, X. L. Xin, H. Garg, W. A. Khan, Aggregation operators of pythagorean fuzzy soft sets with their application for green supplier chain management, J. Intell. Fuzzy Syst., 40 (2021), 5545–5563. https://doi.org/10.3233/JIFS-202781 doi: 10.3233/JIFS-202781
    [36] R. M. Zulqarnain, I. Siddique, S. Ahmad, A. Iampan, G. Jovanov, Đ. Vranješ, et al., Pythagorean fuzzy soft Einstein ordered weighted average operator in sustainable supplier selection problem, Math. Probl. Eng., 2021 (2021), 1–16. https://doi.org/10.1155/2021/2559979 doi: 10.1155/2021/2559979
    [37] S. Zhang, M. Zhang, Mitigation of bullwhip effect in closed‐loop supply chain based on fuzzy robust control approach, Complexity, 2020 (2020), 1085870. https://doi.org/10.1155/2020/1085870 doi: 10.1155/2020/1085870
    [38] A. Hussain, K. Ullah, T. Senapati, S. Moslem, Energy supplier selection by TOPSIS method based on multi-attribute decision-making by using novel idea of complex fuzzy rough information, Energy Strateg. Rev., 54 (2024), 101442. https://doi.org/10.1016/j.esr.2024.101442 doi: 10.1016/j.esr.2024.101442
    [39] W. Wang, X. Liu, Intuitionistic fuzzy information aggregation using Einstein operations, IEEE T. Fuzzy Syst., 20 (2012), 923–938. https://doi.org/10.1109/TFUZZ.2012.2189405 doi: 10.1109/TFUZZ.2012.2189405
    [40] W. Wang, X. Liu, Intuitionistic fuzzy geometric aggregation operators based on Einstein operations, Int. J. Intell. Syst., 26 (2011), 1049–1075. https://doi.org/10.1002/int.20498 doi: 10.1002/int.20498
    [41] P. Liu, Y. Li, Y. Chen, Some generalized Einstein aggregation operators based on the interval-valued intuitionistic fuzzy numbers and their application to group decision making, Sci. Iran., 22 (2015), 2684–2701. https://doi.org/10.1109/TFUZZ.2013.2248736 doi: 10.1109/TFUZZ.2013.2248736
    [42] W. Wang, X. Liu, Some interval-valued intuitionistic fuzzy geometric aggregation operators based on einstein operations, In 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery, IEEE, 2012,604–608. https://doi.org/10.1109/FSKD.2012.6234364
    [43] H. Garg, A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making, Int. J. Intell. Syst., 31 (2016), 886–920. https://doi.org/10.1002/int.21809 doi: 10.1002/int.21809
    [44] M. Asif, U. Ishtiaq, I. K. Argyros, Hamacher aggregation operators for Pythagorean fuzzy set and its application in multi-attribute decision-making problem, Spectrum Oper. Res., 2 (2025), 27–40. https://doi.org/10.31181/sor2120258 doi: 10.31181/sor2120258
    [45] K. Rahman, S. Abdullah, M. S. A. Khan, Some interval-valued Pythagorean fuzzy Einstein weighted averaging aggregation operators and their application to group decision making, J. Intell. Syst., 29 (2018), 393–408. https://doi.org/10.1515/jisys-2017-0212 doi: 10.1515/jisys-2017-0212
    [46] K. Rahman, A. Ali, S. Abdullah, Multiattribute group decision making based on interval-valued Pythagorean fuzzy Einstein geometric aggregation operators, Granular Comput., 5 (2020), 361–372. https://doi.org/10.1007/s41066-019-00154-w doi: 10.1007/s41066-019-00154-w
    [47] M. Deveci, I. Gokasar, D. Pamucar, D. M. Coffman, E. Papadonikolaki, Safe E-scooter operation alternative prioritization using a q-rung orthopair fuzzy Einstein based WASPAS approach, J. Clean. Prod., 347 (2022), 131239. https://doi.org/10.1016/j.jclepro.2022.131239 doi: 10.1016/j.jclepro.2022.131239
    [48] Y. Xu, A two-stage multi-criteria decision-making method with interval-valued q-Rung Orthopair fuzzy technology for selecting bike-sharing recycling supplier, Eng. Appl. Artif. Intell., 119 (2023), 105827. https://doi.org/10.1016/j.engappai.2023.105827 doi: 10.1016/j.engappai.2023.105827
    [49] R. M. Zulqarnain, I. Siddique, F. Jarad, Y. S. Hamed, K. M. Abualnaja, A. Iampan, Einstein aggregation operators for Pythagorean fuzzy soft sets with their application in multiattribute group decision-making, J. Funct. Space., 2022 (2022), 1–21. https://doi.org/10.1155/2022/1358675 doi: 10.1155/2022/1358675
    [50] R. M. Zulqarnain, H. K. U. Rehman, J. Awrejcewicz, R. Ali, I. Siddique, F. Jarad, et al., Extension of Einstein average aggregation operators to medical diagnostic approach under q-rung orthopair fuzzy soft set, IEEE Access, 10 (2022), 87923–87949. https://doi.org/10.1109/ACCESS.2022.3199069 doi: 10.1109/ACCESS.2022.3199069
    [51] R. M. Zulqarnain, R. Ali, J. Awrejcewicz, I. Siddique, F. Jarad, A. Iampan, Some Einstein geometric aggregation operators for Q-rung orthopair fuzzy soft set with their application in MCDM, IEEE Access, 10 (2022), 88469–88494. https://doi.org/10.1109/ACCESS.2022.3199071 doi: 10.1109/ACCESS.2022.3199071
    [52] R. M. Zulqarnain, H. Naveed, I. Siddique, J. C. R. Alcantud, Transportation decisions in supply chain management using interval-valued q-rung orthopair fuzzy soft information, Eng. Appl. Artif. Intell., 133 (2024), 108410. https://doi.org/10.1016/j.engappai.2024.108410 doi: 10.1016/j.engappai.2024.108410
    [53] P. Sunthrayuth, F. Jarad, J. Majdoubi, R. M. Zulqarnain, A. Iampan, I. Siddique, A novel multicriteria decision-making approach for einstein weighted average operator under Pythagorean fuzzy hypersoft environment, J. Math., 2022 (2022), 1951389. https://doi.org/10.1155/2022/1951389 doi: 10.1155/2022/1951389
    [54] R. M. Zulqarnain, I. Siddique, R. Ali, F. Jarad, A. Iampan, Einstein weighted geometric operator for Pythagorean fuzzy hypersoft with its application in material selection, Comput. Model. Eng. Sci., 135 (2023), 2557–2583. https://doi.org/10.32604/cmes.2023.023040 doi: 10.32604/cmes.2023.023040
    [55] M. Sajid, K. A. Khan, A. U. Rahman, S. A. Bajri, A. Alburaikan, H. A. E. W. Khalifa, A novel algorithmic multi-attribute decision-making framework for solar panel selection using modified aggregations of cubic intuitionistic fuzzy hypersoft set, Heliyon, 10 (2024). https://doi.org/10.1016/j.heliyon.2024.e36508 doi: 10.1016/j.heliyon.2024.e36508
    [56] B. Huang, J. Miao, Q. Li, A vetoed multi-objective grey target decision model with application in supplier choice, J. Grey Syst., 34 (2022).
    [57] M. Saqlain, Sustainable hydrogen production: a decision-making approach using VIKOR and intuitionistic hypersoft sets, J. Intell. Manag. Decis., 2 (2023), 130–138. https://doi.org/10.56578/jimd020303 doi: 10.56578/jimd020303
    [58] M. T. Hamid, M. Abid, Decision support system for mobile phone selection utilizing fuzzy hypersoft sets and machine learning, J. Intell. Manag. Decis., 3 (2024), 104–115. https://doi.org/10.56578/jimd030204 doi: 10.56578/jimd030204
    [59] M. Sarwar, T. Li, Fuzzy fixed point results and applications to ordinary fuzzy differential equations in complex valued metric spaces, Hacet. J. Math. Stat., 48 (2019), 1712–1728. https://doi.org/10.15672/HJMS.2018.633 doi: 10.15672/HJMS.2018.633
    [60] Y. Xia, J. Wang, B. Meng, X. Chen, Further results on fuzzy sampled-data stabilization of chaotic nonlinear systems, Appl. Math. Comput., 379 (2020), 125225. https://doi.org/10.1016/j.amc.2020.125225 doi: 10.1016/j.amc.2020.125225
    [61] M. Gao, L. Zhang, W. Qi, J. Cao, J. Cheng, Y. Kao, et al., SMC for semi-Markov jump TS fuzzy systems with time delay, Appl. Math. Comput., 374 (2020), 125001. https://doi.org/10.1016/j.amc.2019.125001 doi: 10.1016/j.amc.2019.125001
    [62] J. Ge, S. Zhang, Adaptive inventory control based on fuzzy neural network under uncertain environment, Complexity, 2020 (2020), 6190936. https://doi.org/10.1155/2020/6190936 doi: 10.1155/2020/6190936
    [63] N. Zhang, W. Qi, G. Pang, J. Cheng, K. Shi, Observer-based sliding mode control for fuzzy stochastic switching systems with deception attacks, Appl. Math. Comput., 427 (2022), 127153. https://doi.org/10.1016/j.amc.2022.127153 doi: 10.1016/j.amc.2022.127153
    [64] Q. Sun, J. Ren, F. Zhao, Sliding mode control of discrete-time interval type-2 fuzzy Markov jump systems with the preview target signal, Appl. Math. Comput., 435 (2022), 127479. https://doi.org/10.1016/j.amc.2022.127479 doi: 10.1016/j.amc.2022.127479
    [65] Z. X. Duan, J. L. Liang, Z. R. Xiang, H∞ control for continuous-discrete systems in TS fuzzy model with finite frequency specifications, Discrete Cont. Dyn.-S, 64 (2022), 1–18.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(755) PDF downloads(60) Cited by(2)

Figures and Tables

Figures(3)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog