Citation: Antonio Conti, Massimo Alessio. Proteomics for Cerebrospinal Fluid Biomarker Identification in Parkinsons Disease: Methods and Critical Aspects[J]. AIMS Medical Science, 2015, 2(1): 1-6. doi: 10.3934/medsci.2015.1.1
[1] | Francesca Romana Lugeri, Piero Farabollini, Francesco De Pascale, Nicola Lugeri . PPGIS applied to environmental communication and hazards for a community-based approach: a dualism in the Southern Italy "calanchi" landscape. AIMS Geosciences, 2021, 7(3): 490-506. doi: 10.3934/geosci.2021028 |
[2] | Francesca Romana Lugeri, Piero Farabollini, Nicola Lugeri . Landscape analysis as a tool for risk reduction. AIMS Geosciences, 2019, 5(3): 617-630. doi: 10.3934/geosci.2019.3.617 |
[3] | Nicola Gabellieri, Ettore Sarzotti . Forest planning, rural practices, and woodland cover in an 18th-century Alpine Valley (Val di Fiemme, Italy): A geohistorical and GIS-based approach to the history of environmental resources. AIMS Geosciences, 2024, 10(4): 767-791. doi: 10.3934/geosci.2024038 |
[4] | Alessia Nannoni, Federica Meloni, Marco Benvenuti, Jacopo Cabassi, Francesco Ciani, Pilario Costagliola, Silvia Fornasaro, Pierfranco Lattanzi, Marta Lazzaroni, Barbara Nisi, Guia Morelli, Valentina Rimondi, Orlando Vaselli . Environmental impact of past Hg mining activities in the Monte Amiata district, Italy: A summary of recent studies. AIMS Geosciences, 2022, 8(4): 525-551. doi: 10.3934/geosci.2022029 |
[5] | Lorenzo Brocada . Sociopolitical conflicts on the establishment of protected natural areas: The case of Portofino National Park (Genoa, North-West Italy). AIMS Geosciences, 2023, 9(4): 713-733. doi: 10.3934/geosci.2023038 |
[6] | Gianni Petino, Donatella Privitera . Uncovering the local foodscapes. Exploring the Etna volcano case study, Italy. AIMS Geosciences, 2023, 9(2): 392-408. doi: 10.3934/geosci.2023021 |
[7] | Gianni Petino, Gaetano Chinnici, Donatella Privitera . Heritage and carob trees: Where the monumental and landscape intersect. AIMS Geosciences, 2024, 10(3): 623-640. doi: 10.3934/geosci.2024032 |
[8] | Rahman Mashrur, Nigar Neema Meher . A GIS Based Integrated Approach to Measure the Spatial Equity of Community Facilities of Bangladesh. AIMS Geosciences, 2015, 1(1): 21-40. doi: 10.3934/geosci.2015.1.21 |
[9] | Emil Drápela . Prevention of damage to sandstone rocks in protected areas of nature in northern Bohemia. AIMS Geosciences, 2021, 7(1): 56-73. doi: 10.3934/geosci.2021003 |
[10] | Konstantinos X Soulis, Evangelos E Nikitakis, Aikaterini N Katsogiannou, Dionissios P Kalivas . Examination of empirical and Machine Learning methods for regression of missing or invalid solar radiation data using routine meteorological data as predictors. AIMS Geosciences, 2024, 10(4): 939-964. doi: 10.3934/geosci.2024044 |
Let $ T $ be a linear operator. Given a function $ a $, the commutator $ [T, a] $ is defined by
$ [T, a](f): = T(af)-aT(f). $ |
There is an increasing interest to the study of $ T $ being a pseudo-differential operator because of its theory plays an important role in many aspects of harmonic analysis and it has had quite a success in linear setting. As one of the most meaningful branches, the study of bilinear pseudo-differential operators was motivated not only as generalizations of the theory of linear ones but also its natural appearance and important applications. This topic is continuously attracting many researchers.
Let $ a $ be a Lipschitz function and $ 1 < p < \infty $. The estimates of the form
$ ‖[T,a](f)‖Lp≲‖a‖Lip1‖f‖Lp,forallf∈Lp(Rn) $ | (1.1) |
have been studied extensively. In particular, Calderón proved that (1.1) holds when $ T $ is a pseudo-differential operator whose kernel is homogeneous of degree of $ -n-1 $ in [7]. Coifman and Meyer showed (1.1) when $ T = T_{\sigma} $ and $ \sigma $ is a symbol in the Hörmander class $ S_{1, 0}^{1} $ go back to [10,11], this result was later extended by Auscher and Taylor in [4] to $ \sigma \in \mathcal{B}S_{1, 1}^{1} $, where the class $ \mathcal{B}S_{1, 1}^{1} $, which contains $ S_{1, 0}^{1} $ modulo symbols associated to smoothing operators, consists of symbols whose Fourier transforms in the first $ n $-dimensional variable are appropriately compactly supported. The method in the proofs of [10,11] was mainly showed that, for each Lipschitz continuous functions $ a $ on $ \mathbb{R}^{n} $, $ [T, a] $ is a Calderón-Zygmund singular integral whose kernel constants are controlled by $ \|a\|_{\mathrm{Lip}^{1}} $. For another thing, Auscher and Taylor proved (1.1) in two different ways: one method is based on the paraproducts while the other is based on the Calderón-Zygmund singular integral operator approach that relies on the $ T(1) $ theorem. Fore a more systematic study of these (and even more general) spaces, we refer the readers to see [38,39].
Given a bilinear operator $ T $ and a function $ a $, the following two kinds commutators are respectively defined by
$ [T, a]_{1}(f, g) = T(af, g)-aT(f, g) $ |
and
$ [T, a]_{2}(f, g) = T(f, ag)-aT(f, g). $ |
In 2014, Bényi and Oh proved that (1.1) is also valid to this bilinear setting in [6]. More precisely, given a bilinear pseudo-differential operator $ T_{\sigma} $ with $ \sigma $ in the bilinear Hörmander class $ BS_{1, 0}^{1} $ and a Lipschitz function $ a $ on $ \mathbb{R}^{n} $, it was proved in [6] that $ [T, a]_{1} $ and $ [T, a]_{2} $ are bilinear Calderón-Zygmund operators. The main aim of this paper is to study (1.1) of $ [T_{\sigma}, a]_{j}(j = 1, 2) $ on the products of weighted Lebesgue spaces and variable exponent Lebesgue spaces with $ \sigma \in\mathcal{B}BS_{1, 1}^{1} $. Before stating our main results, we need to recall some definitions and notations. We say that a function $ a $ defined on $ \mathbb{R}^{n} $ is Lipschitz continuous if
$ \|a\|_{\mathrm{Lip}^{1}}: = \sup\limits_{x, y\in \mathbb{R}^{n}} \frac{|a(x)-a(y)|}{|x-y|} < \infty. $ |
Let $ \delta\geq 0 $, $ \rho > 0 $ and $ m\in \mathbb{R} $. An infinitely differentiable function $ \sigma:\mathbb{R}^{n}\times \mathbb{R}^{n} \times\mathbb{R}^{n}\rightarrow \mathbb{C} $ belongs to the bilinear Hörmander class $ BS_{\rho, \delta}^{m} $ if for all multi-indices $ \alpha, \beta, \gamma \in \mathbb{N}_{0}^{n} $ there exists a positive constant $ C_{\alpha, \beta, \gamma} $ such that
$ |\partial_{x}^{\alpha}\partial_{\xi}^{^{\beta}}\partial_{\eta}^{^{\gamma}}\sigma(x, \xi, \eta)|\leq C (1+|\xi|+|\eta|)^{m+\delta|\alpha|-\rho(|\beta|+|\gamma|)}. $ |
Given a $ \sigma (x, \xi, \eta)\in BS_{\rho, \delta}^{m} $, the bilinear pseudo-differential operator associated to $ \sigma $ is defined by
$ T_{\sigma}(f, g)(x) = \int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}\sigma(x, \xi, \eta)\hat{f}(\xi)\hat{g}(\eta)e^{2\pi ix\cdot(\xi+\eta)}\mathrm{d}\xi \mathrm{d}\eta, \; {\rm for \; all}\; x\in \mathbb{R}^{n}, f, g\in{\mathcal{S}(\mathbb{R}^{n})}. $ |
In 1980, Meyer [34] firstly introduced the linear $ BS_{1, 1}^{m} $, and corresponding boundedness of $ [T_{\sigma}, a]_{j}(j = 1, 2) $ is obtained by Bényi-Oh in [6], that is, given $ m \in \mathbb{R} $ and $ r > 0 $, an infinitely differentiable function $ \sigma:\mathbb{R}^{n} \times \mathbb{R}^{n} \times\mathbb{R}^{n} \rightarrow \mathbb{C} $ belongs to $ \mathcal{B}_{r}BS_{1.1}^{m} $ if
$ \sigma\in{B}S_{1, 1}^{m}, {supp}(\hat{\sigma}^{1})\subset\{(\tau, \xi, \eta)\in\mathbb{R}^{3n}:|\tau|\leq r(|\xi|+|\eta|)\}, $ |
where $ \hat{\sigma}^{1} $ denotes the Fourier transform of $ \sigma $ with respect to its first variable in $ \mathbb{R}^{n} $, that is, $ \hat{\sigma}^{1}(\tau, \xi, \eta) = \widehat{\sigma(\cdot, \xi, \eta)}(\tau), $ for all $ \tau, \xi, \eta\in\mathbb{R}^{n} $. The class $ \mathcal{B}BS_{1, 1}^{m} $ is defined as
$ \mathcal{B}BS_{1, 1}^{m} = \bigcup\limits_{r\in(0, \frac{1}{7})}\mathcal{B}_{r}BS_{1, 1}^{m}. $ |
Recently, many authors are interested in bilinear operators, which is a natural generalization of linear case. With the further research, Árpád Bényi and Virginia Naibo proved that boundedness for the commutators of bilinear pseudo-differential operators and Lipschitz functions with $ \sigma \in\mathcal{B}BS_{1, 1}^{1} $ on the Lebesgue spaces in [5]. In 2018, Tao and Li proved that the boundedness of the commutators of bilinear pseudo-differential operators was also true on the classical and generalized Morrey spaces in [40]. Motivated by the results mentioned above, a natural and interesting problem is to consider whether or not (1.1) is true on the weighted Lebesgue spaces and variable exponent Lebesgue spaces with $ \sigma \in\mathcal{B}BS_{1, 1}^{1} $. The purpose of this paper is to give an surely answer. And also, the endpoint estimate is obtained on $ L^{\infty}\times L^{\infty} $. Our proofs are based on the pointwise estimates of the sharp maximal function proved in the next section.
Many results involving bilinear pseudo-differential operators theory have been obtained in parallel with the linear ones but some new interesting phenomena have also been observed. One aspect developed rapidly is the one related to the compactness of the bilinear pseudo-differential operators, especially, the properties of compactness for the commutators of bilinear pseudo-differential operators and Lipschitz functions. As the commutators $ [T_{\sigma}, a]_{j} $ $ (j = 1, 2) $ are bilinear Calderón-Zygmund operators if $ \sigma \in \mathcal{B}BS_{1, 1}^{1} $, similar to the proof of [15] (Theorem A and Theorem 2.12), we can obtain easily that $ [T_{\sigma}, a]_{j} $ and $ [[T_{\sigma}, a]_{j}, b]_{i} $ $ (i, j = 1, 2) $ are compact operators on the Lebesgue spaces and the Morrey spaces. For the sake of convenience, there are no further details below.
Suppose that $ \sigma\in\mathcal{B}BS_{1, 1}^{1} $. Let $ K $ and $ K_{j} $ denote the kernel of $ T_{\sigma} $ and $ [T_{\sigma}, a]_{j}\; (j = 1, 2) $, respectively. We have
$ K(x, y, z) = \int\int e^{i\xi\cdot(x-y)}e^{i\eta\cdot(x-z)}\sigma(x, \xi, \eta)\mathrm{d} \xi\mathrm{d}\eta, $ |
$ K_{1}(x, y, z) = (a(y)-a(x))K(x, y, z), \; \; K_{2}(x, y, z) = (a(z)-a(x))K(x, y, z). $ |
Then the following consequences are true.
Theorem A. [6] If $ x\neq y $ or $ x\neq z $, then we have
(1) $ \mid\partial_{x}^{\alpha}\partial_{y}^{\beta}\partial_{z}^{\gamma}K(x, y, z)\mid\lesssim(|x-y|+|x-z|)^{-2n-1-|\alpha|-|\beta|-|\gamma|} $;
(2) $ |K_{j}(x, y, z)|\lesssim\|a\|_{\mathrm{Lip^{1}}}(|x-y|+|x-z|+|y-z|)^{-2n}. $
The statement of our main theorems will be presented in follows.
Theroem 1.1. Let $ q' > 1 $, $ \sigma \in \mathcal{B}BS_{1, 1}^{1} $ and $ a $ be a Lipschitz function on $ \mathbb{R}^{n} $. Suppose for fixed $ 1\leq r_{1}, r_{2}\leq q^{\prime} $ with $ 1/r = 1/r_{1}+1/r_{2} $, $ [T_{\sigma}, a]_{j}(j = 1, 2) $ is bounded from $ L^{r_{1}}\times L^{r_{2}} $ into $ L^{r, \infty} $ with norm controlled by $ \|a\|_{\mathrm{Lip^{1}}} $. If $ 0 < \delta < 1/2 $, then
$ M_{\delta}^{\sharp}([T_{\sigma}, a]_{j}(f, g))(x)\leq C\|a\|_{\mathrm{Lip^{1}}}M_{q^{\prime}}(f)(x)M_{q^{\prime}}(g)(x), \; \; j = 1, 2 $ |
for all $ f, g $ of bounded measurable functions with compact support.
Theorem 1.2. Let $ q' > 1 $, $ \sigma \in \mathcal{B}BS_{1, 1}^{1} $ and $ a $ be a Lipschitz function on $ \mathbb{R}^{n} $. Suppose for fixed $ 1\leq r_{1}, r_{2}\leq q^{\prime} $ with $ 1/r = 1/r_{1}+1/r_{2} $, $ [T_{\sigma}, a]_{j}(j = 1, 2) $ is bounded from $ L^{r_{1}}\times L^{r_{2}} $ into $ L^{r, \infty} $ with norm controlled by $ \|a\|_{\mathrm{Lip^{1}}} $. If $ b\in \mathrm{BMO} $, $ 0 < \delta < 1/2 $, $ \delta < \varepsilon < \infty $, $ q^{\prime} < s < \infty $, then
$ M_{\delta}^{\sharp}([[T_{\sigma}, a]_{j}, b]_{i})(x)\leq C\|b\|_{\mathrm{BMO}}\left((M_{\varepsilon}([T_{\sigma}, a]_{j}(f, g))(x)+\|a\|_{\mathrm{Lip^{1}}}(M_{s}(f)(x))(M_{s}(g)(x))\right), $ |
where $ i, j = 1, 2 $ and above inequality is valid for all $ f, g $ of bounded measurable functions with compact support.
Theorem 1.3. Let $ q' > 1 $, $ \sigma \in \mathcal{B}BS_{1, 1}^{1} $ and $ a $ be a Lipschitz function on $ \mathbb{R}^{n} $. Suppose for fixed $ 1\leq r_{1}, r_{2}\leq q^{\prime} $ with $ 1/r = 1/r_{1}+1/r_{2} $, $ [T_{\sigma}, a]_{j}(j = 1, 2) $ is bounded from $ L^{r_{1}}\times L^{r_{2}} $ into $ L^{r, \infty} $ with norm controlled by $ \|a\|_{\mathrm{Lip^{1}}} $. If $ (\omega_{1}, \omega_{2})\in (A_{p_{1}/q^{\prime}}, A_{p_{2}/q^{\prime}}) $ and $ \omega = \omega_{1}^{\frac{p}{p_{1}}}\omega_{2}^{\frac{p}{p_{2}}} $, then for $ q^{\prime} < p_{1}, p_{2} < \infty $ with $ 1/p = 1/p_{1}+1/p_{2} $, $ [T_{\sigma}, a]_{j}(j = 1, 2) $ is bounded from $ L^{p_{1}}(\omega)\times L^{p_{2}}(\omega) $ into $ L^{p}(\omega) $.
Theorem 1.4. Let $ q' > 1 $, $ \sigma \in \mathcal{B}BS_{1, 1}^{1} $ and $ a $ be a Lipschitz function on $ \mathbb{R}^{n} $. Suppose for fixed $ 1\leq r_{1}, r_{2}\leq q^{\prime} $ with $ 1/r = 1/r_{1}+1/r_{2} $, $ [T_{\sigma}, a]_{j}(j = 1, 2) $ is bounded from $ L^{r_{1}}\times L^{r_{2}} $ into $ L^{r, \infty} $ with norm controlled by $ \|a\|_{\mathrm{Lip^{1}}} $. If $ b\in \mathrm{BMO} $, $ (\omega_{1}, \omega_{2})\in (A_{p_{1}/q^{\prime}}, A_{p_{2}/q^{\prime}}) $ and $ \omega = \omega_{1}^{\frac{p}{p_{1}}}\omega_{2}^{\frac{p}{p_{2}}} $, then for $ q^{\prime} < p_{1}, p_{2} < \infty $ with $ 1/p = 1/p_{1}+1/p_{2} $, $ [[T_{\sigma}, a]_{j}, b]_{i}(i, j = 1, 2) $ is bounded from $ L^{p_{1}}(\omega)\times L^{p_{2}}(\omega) $ into $ L^{p}(\omega) $.
Theorem 1.5. Let $ p(\cdot), \; p_{1}(\cdot), \; p_{2}(\cdot)\in \mathcal{B}(\mathbb{R}^{n}) $ with $ 1/p(\cdot) = 1/p_{1}(\cdot)+1/p_{2}(\cdot) $, and $ q_{0}^{j} $ be given as in Lemma 4.4 for $ p_{j}(\cdot) $, j = 1, 2. Suppose that $ \sigma \in \mathcal{B}BS_{1, 1}^{1} $, $ a $ is a Lipschitz function on $ \mathbb{R}^{n} $ and $ 1 < q^{\prime}\leq \min \{q_{0}^{1}, q_{0}^{2}\} $. If for fixed $ 1\leq r_{1}, r_{2}\leq q^{\prime} $ with $ 1/r = 1/r_{1}+1/r_{2} $, $ [T_{\sigma}, a]_{j}(j = 1, 2) $ is bounded from $ L^{r_{1}}\times L^{r_{2}} $ into $ L^{r, \infty} $ with norm controlled by $ \|a\|_{\mathrm{Lip^{1}}} $, then $ [T_{\sigma}, a]_{j}(j = 1, 2) $ is bounded from $ L^{p_{1}(\cdot)}(\mathbb{R}^{n})\times L^{p_{2}(\cdot)}(\mathbb{R}^{n}) $ into $ L^{p(\cdot)}(\mathbb{R}^{n}) $.
Theorem 1.6. Let $ p(\cdot), \; p_{1}(\cdot), \; p_{2}(\cdot)\in \mathcal{B}(\mathbb{R}^{n}) $ with $ 1/p(\cdot) = 1/p_{1}(\cdot)+1/p_{2}(\cdot) $, and $ q_{0}^{j} $ be given as in Lemma 4.4 for $ p_{j}(\cdot) $, j = 1, 2. Suppose that $ \sigma \in \mathcal{B}BS_{1, 1}^{1} $, $ a $ is a Lipschitz function on $ \mathbb{R}^{n} $ and $ 1 < q^{\prime}\leq \min \{q_{0}^{1}, q_{0}^{2}\} $. If for fixed $ 1\leq r_{1}, r_{2}\leq q^{\prime} $ with $ 1/r = 1/r_{1}+1/r_{2} $, $ [T_{\sigma}, a]_{j}(j = 1, 2) $ is bounded from $ L^{r_{1}}\times L^{r_{2}} $ into $ L^{r, \infty} $ with norm controlled by $ \|a\|_{\mathrm{Lip^{1}}} $, and $ b\in \mathrm{BMO} $, then $ [[T_{\sigma}, a]_{j}, b]_{i}(i, j = 1, 2) $ is bounded from $ L^{p_{1}(\cdot)}(\mathbb{R}^{n})\times L^{p_{2}(\cdot)}(\mathbb{R}^{n}) $ into $ L^{p(\cdot)}(\mathbb{R}^{n}) $.
Theorem 1.7. Let $ \sigma \in \mathcal{B}BS_{1, 1}^{1} $ and $ a $ be a Lipschitz function. Suppose for fixed $ 1\leq r_{1}, r_{2}\leq q^{\prime} $ with $ 1/r = 1/r_{1}+1/r_{2} $, $ [T_{\sigma}, a]_{j}(j = 1, 2) $ is bounded from $ L^{r_{1}}\times L^{r_{2}} $ into $ L^{r, \infty} $ with norm controlled by $ \|a\|_{\mathrm{Lip^{1}}} $. Then $ [T_{\sigma}, a]_{j}(j = 1, 2) $ is bounded from $ L^{\infty}\times L^{\infty} $ into $ {\rm{BMO} }$.
We use the following notation: For $ 1\leq p\leq \infty $, $ p^{\prime} $ is the conjugate index of $ p $, that is, $ 1/p+1/p^{\prime} = 1 $. $ B(x, R) $ denotes the ball centered at $ x $ with radius $ R > 0 $ and $ f_{B} = \frac{1}{|B(x, R)|}\int_{B(x, R)}f(y)\mathrm{d}y $. The paper is organized as follows. The pointwise estimates of the sharp maximal functions are presented in Section 2. The weighted boundedness is given in Section 3. The proofs of the boundedness on the product of variable exponent Lebesgue spaces are showed in Section 4. The endpoint estimate is proved in Section 5.
In this section, we shall prove Theorems 1.1 and 1.2. In order to do this, let's recall some definitions.
Given a function $ f\in L_{\mathrm{loc}}(\mathbb{R}^{n}) $, the sharp maximal function is defined by
$ M^{\sharp}(f)(x) = \sup\limits _{x\in B}\frac{1}{|B|}\int_{B}|f(y)-f_{B}|\mathrm{d}y\approx\sup\limits _{x\in B}\inf\limits_{a\in \mathbb{C}}\frac{1}{|B|}\int_{B}|f(y)-a|\mathrm{d}x, $ |
where the supremum is taken over all balls $ B $ containing $ x $. Let $ 0 < \delta < \infty $. We denote by $ M^{\sharp}_{\delta} $ the operator
$ M^{\sharp}_{\delta}(f) = [M^{\sharp}(|f|^{\delta})]^{1/\delta}. $ |
Similarly, we use $ M_{\delta} $ to denote the operator $ M^{\delta}(f) = [M(|f|^{\delta})]^{1/\delta} $, where $ M $ is the Hardy-Littlewood maximal function defined by
$ Mf(x) = \sup\limits _{x\in B}\frac{1}{|B|}\int_{B}f(y)\mathrm{d}y. $ |
The operator $ M^{\sharp}_{\delta} $ was appeared implicitly in a paper by John [20] and was introduced by Strömberg [37]. The sharp maximal function $ M^{\sharp} $ and $ M^{\sharp}_{\delta} $ not only have close relation to BMO, but also are important tools to obtain pointwise inequalities regarding many operators in harmonic analysis (see [3,12,21,25,26,36]).
To prove the Theorems 1.1 and 1.2, we need the following Kolmogorov's inequality and the inequality regarding the $ \mathrm{BMO} $ functions.
Lemma 2.1. [19,28] Let $ 0 < p < q < \infty $. Then there is a constant $ C = C_{p, q} > 0 $, such that
$ |Q|^{-1/p}\|f\|_{L^{p}(Q)}\leq C |Q|^{-1/q}\|f\|_{L^{q, \infty}(Q)} $ |
for all measurable functions $ f $.
Lemma 2.2. [27] Let $ f\in \mathrm{BMO}(\mathbb{R}^{n}) $. Suppose $ 1\leq p < \infty $, $ r_{1} > 0 $, $ r_{2} > 0 $ and $ x\in \mathbb{R}^{n} $. Then
$ \left(\frac{1}{|B(x, r_{1})|}\int_{B(x, r_{1})}|f(y)-f_{B(x, r_{2})}|^{p}\mathrm{d}y\right)^{1/p}\leq C \left(1+\left|\ln\frac{r_{1}}{r_{2}}\right|\right)\|f\|_{\mathrm{BMO}}, $ |
where $ C $ is a positive constant independent of $ f $, $ x $, $ r_{1} $ and $ r_{2} $.
Lemma 2.3. [5] If $ \sigma \in \mathcal{B}BS_{1, 1}^{1} $ and $ a $ is a Lipschitz function on $ \mathbb{R}^{n} $, then the commutators $ [T_{\sigma}, a]_{j}, j = 1, 2 $ are bilinear Calderón-Zygmund operators. In particular, $ [T_{\sigma}, a]_{j}, j = 1, 2 $ are bounded from $ L^{p_{1}}\times L^{p_{2}} $ into $ L^{p} $ for $ \frac{1}{p} = \frac{1}{p_{1}}+\frac{1}{p_{2}} $ and $ 1 < p_{1}, \; p_{2} < \infty $ and verify appropriate end-point boundedness properties. Moreover, the corresponding norms of the operators are controlled by $ \|a\|_{\mathrm{Lip}^{1}} $.
Proof of Theorem 1.1. Let $ f, g $ be bounded measurable functions with compact support. Then for any ball $ B = B(x_{0}, r_{B}) $ containing $ x $, we decompose $ f $ and $ g $ as follows:
$ f = f\chi_{16B}+ f\chi_{(16B)^{c}}: = f^{1}+f^{2}, \; \; g = g\chi_{16B}+g\chi_{(16B)^{c}}: = g^{1}+g^{2}. $ |
Choose a $ z_{0}\in 3B\backslash2B $. Then
$ (1|B|||[Tσ,a]j(f,g)(z)|δ−|[Tσ,a]j(f2,g2)(z0)|δ|dz)1/δ≤C(1|B||[Tσ,a]j(f,g)(z)−[Tσ,a]j(f2,g2)(z0)|δdz)1/δ≤C(1|B||[Tσ,a]j(f1,g1)(z)|δdz)1/δ+C(1|B|∫B|[Tσ,a]j(f2,g1)(z)|δdz)1/δ+C(1|B||[Tσ,a]j(f1,g2)(z)|δdz)1/δ+C(1|B|∫B|[Tσ,a]j(f2,g2)(z)−[Tσ,a]j(f2,g2)(z0)|δdz)1/δ:=4∑s=1Is. $ |
For any $ 0 < \delta < r < \infty $, it follows from Lemma 2.1 that
$ I1≤C|B|−1/δ‖[Tσ,a]j(f1,g1)‖Lδ(B)≤C|B|−1/r‖[Tσ,a]j(f1,g1)‖Lr,∞(B)≤C‖a‖Lip1(1|16B|∫16B|f(y1)|r1dy1)1r1(1|16B|∫16B|g(y2)|r2dy2)1r2≤C‖a‖Lip1Mr1(f)(x)Mr2(g)(x)≤C‖a‖Lip1Mq′(f)(x)Mq′(g)(x). $ |
If $ z\in{B}, \; y_{1}\in{(16B)}^{c}, \; y_{2}\in{16B} $, noticing that $ |z-y_{1}|+|z-y_{2}|+|y_{1}-y_{2}|\sim|z-y_{1}|+|z-y_{2}|\geq{|z-y_{1}|} $, then we have by Theorem A,
$ I2≤C(1|B|∫B(∫(16B)c∫16B|K(z,y1,y2)|f(y1)||g(y2)dy2dy1)δdz)1/δ≤C(1|B|∫B(∫(16B)c(∫16B|g(y2)dy2)‖a‖Lip1f(y1)|z−y1|2ndy1)δdz)1/δ≤C(∫16B|g(y2)dy2)‖a‖Lip1∞∑k=4∫2k+1B∖2kBf(y1)|x0−y1|2ndy1≤C‖a‖Lip1(1|16B|∫16B|g(y2)dy2)∞∑k=42−kn1|2k+1B|∫2k+1B|f(y1)|dy1≤C‖a‖Lip1M(f)(x)M(g)(x)∞∑k=42−kn≤C‖a‖Lip1Mq′(f)(x)Mq′(g)(x). $ |
By the similar way, we can get that
$ I_{3}\leq C\|a\|_{\mathrm{Lip^{1}}}M_{q^{\prime}}(f)(x)M_{q^{\prime}}(g)(x). $ |
As $ z\in B $ and $ y_{1}, \; y_{2}\in (16B)^{c} $, then $ |y_{1}-z_{0}|\geq 2|z-z_{0}| $, $ |y_{2}-z_{0}|\geq 2|z-z_{0}| $ and $ r_{B}\leq |z-z_{0}|\leq 4 r_{B} $. It follows from Hölder's inequality that
$ I4≤C(1|B|∫B(∫Rn∫Rn|K(z,y1,y2)−K(z0,y1,y2)||f2(y1)||g2(y2)|dy1dy2)δdz)1/δ≤C(1|B|∫B(∞∑k1=1∞∑k2=1∫2k2|z−z0|≤|y2−z0|≤2k2+1|z−z0|∫2k1|z−z0|≤|y1−z0|≤2k1+1|z−z0|×|K(z,y1,y2)−K(z0,y1,y2)||f(y1)||g(y2)|dy1dy2)δdz)1/δ≤C(1|B|∫B(∞∑k1=1∞∑k2=1∫2k2|z−z0|≤|y2−z0|≤2k2+1|z−z0||g(y2)|×(∫2k1|z−z0|≤|y1−z0|≤2k1+1|z−z0||K(z,y1,y2)−K(z0,y1,y2)||f(y1)|qdy1)1q×(∫2k1+4B|f(y1)|q′dy1)1q′dy2)δdz)1δ≤C(1|B|∫B(∞∑k1=1∞∑k2=1(∫2k1+4B|f(y1)|q′dy1)1q′(∫2k2+4B|g(y2)|q′dy2)1q′×(∫2k2|z−z0|≤|y2−z0|≤2k2+1|z−z0|∫2k1|z−z0|≤|y1−z0|≤2k1+1|z−z0||K(z,y1,y2) $ |
$−K(z0,y1,y2)|qdy1dy2)1q)δdz)1δ≤C‖a‖Lip1(1|B|∫B(∞∑k1=1∞∑k2=1(1|2k1+4B|∫2k1+4B|f(y1)|q′dy1)1q′×(1|2k1+4B|∫2k2+4B|g(y2)|q′dy2)1q′×|2k1+4B|1/q′|2k2+4B|1/q′|z−z0|−2nq′Ck12−k1nq′Ck22−k2nq′)δdz)1/δ≤C‖a‖Lip1Mq′(f)(x)Mq′(g)(x)(∞∑k1=1Ck1)(∞∑k2=1Ck2)≤C‖a‖Lip1Mq′(f)(x)Mq′(g)(x),$ | (2.1) |
where we use the fact of a weaker size condition of standard m-linear Calderón-Zygmund kernel than its classical size condition given in [31], that is: For any $ k_{1}, \cdots, k_{m}\in \mathbb{N}_{+} $, there are positive constant $ C_{k_{i}} $, $ i = 1, \cdots, m $, such that
$ (∫2km|y0−y′0|≤|ym−y0|≤2km+1|z0−z′0|⋯∫2k1|y0−y′0|≤|y1−y0|≤2k1+1|z0−z′0||K(y0,y1⋯ym)−K(y′0,y1⋯ym)|qdy1⋯dym)1q≤C|y0−y′0|−mnq′m∏i=1Cki2−nq′ki, $ | (2.2) |
where $ \sum\limits_{k_{i} = 1}^{\infty}C_{k_{i}} < \infty, \; \; i = 1, 2 $, $ 1 < q < \infty $. Together with the commutators $ [T_{\sigma}, a]_{j}, j = 1, 2 $ are bilinear Calderón-Zygmund operators and Theorem A, then we obtain the fact that
$ (∫2k2|y0−y′0|≤|y2−y0|≤2k2+1|z0−z′0|∫2k1|y0−y′0|≤|y1−y0|≤2k1+1|z0−z′0||K(y0,y1,y2)−K(y′0,y1,y2)|qdy1dy2)1q≤C‖a‖Lip1|y0−y′0|−2nq′2∏i=1Cki2−nq′ki. $ | (2.3) |
Thus, we have
$ M♯δ([Tσ,a]j(f,g))(x)≈supx∈Binfa∈C(1|B|∫B|[Tσ,a]j(f,g)(z)|δ−a|dz)1/δ≤supx∈B(1|B|∫B||[Tσ,a]j(f,g)(z)|δ−|[Tσ,a]j(f2,g2)(z0)|δ|dz)1/δ≤C‖a‖Lip1Mq′(f)(x)Mq′(g)(x). $ |
Thus we finish the proof of Theorem 1.1.
Proof of Theorem 1.2. Without loss of generality, we consider the case $ i = 1 $, the proof of the case $ i = 2 $ is similar. Let $ f_{1} $, $ f_{2} $ be bounded measurable functions with compact support. As in the proof of Theorem 1.1, we write $ f $ and $ g $ as
$ f = f\chi_{16B}+ f\chi_{(16B)^{c}}: = f^{1}+f^{2}, \; \; g = g\chi_{16B}+g\chi_{(16B)^{c}}: = g^{1}+g^{2}. $ |
Then
$ [[Tσ,a]j,b]1(f,g)(z)=(b(z)−b16B)[Tσ,a]j(f,g)(z)−[Tσ,a]j((b−b16B)f,g)(z)=(b(z)−b16B)[Tσ,a]j(f,g)(z)−[Tσ,a]j((b−b16B)f1,g1)(z)−[Tσ,a]j((b−b16B)f1,g2)(z)−[Tσ,a]j((b−b16B)f2,g1)(z)−[Tσ,a]j((b−b16B)f2,g2)(z), $ |
where $ b_{16B} = \frac{1}{|16B|}\int_{16B} b(z)\mathrm{d}z $. Therefore, for any fixed $ z_{0}\in 3B\backslash2B $, we have
$ (1|B|∫B|[[Tσ,a]j,b]1(f,g)(z)+[Tσ,a]j((b−b16B)f2,g2)(z0)|δdz)1δ≤C(1|B|∫B|(b(z)−b16B)[Tσ,a]j(f,g)(z)|δdz)1δ+C(1|B|∫B|[Tσ,a]j((b−b16B)f1,g1))(z)|δdz)1δ+C(1|B|∫B|[Tσ,a]j((b−b16B)f1,g2)(z)|δdz)1δ+C(1|B|∫B|[Tσ,a]j((b−b16B)f2,g1)(z)|δdz)1δ+C(1|B|∫B|[Tσ,a]j((b−b16B)f2,g2)(z)−[Tσ,a]j((b−b16B)f2,g2)(z0)|δdz)1δ:=5∑t=1IIt. $ |
Since $ 0 < \delta < 1/2 $ and $ \delta < \varepsilon < \infty $, there exists an $ l $ such that $ 1 < l < \min\{\frac{\varepsilon}{\delta}, \frac{1}{1-\delta}\} $. Then $ \delta l < \varepsilon $ and $ \delta l^{\prime} > 1 $. By Hölder's inequality, we have
$ II1≤C(1|B|∫B|(b(z)−b16B|δl′dz)1δl′(1|B|∫B|[Tσ,a]j(f,g)(z)|δldz)1δl≤C‖b‖BMO(1|B|∫B|[Tσ,a]j(f,g)(z)|εdz)1ε≤C‖b‖BMOMε([Tσ,a]j(f,g))(x). $ |
Since $ q^{\prime} < s < \infty $, denoting $ t = s/q^{\prime} $, then $ 1 < t < \infty $. Noticing that $ 0 < \delta < r < \infty $, it follows from Lemmas 2.1 and 2.3 that
$ II2≤C|B|−1/δ‖[Tσ,a]j((b−b16B)f1,g1)‖Lδ(B)≤C|B|−1/r‖[Tσ,a]j((b−b16B)f1,g1)‖Lr,∞(B)≤C‖a‖Lip1(1|16B|∫16B|b(y1)−b16B|r1|f(y1)|r1dy1)1r1(1|16B|∫16B|g(y2)|r2dy2)1r2≤C‖a‖Lip1(1|16B|∫16B|b(y1)−b16B|r1t′dy1)1r1t′(1|16B|∫16B|f(y1)|r1tdy2)1r1t×(1|16B|∫16B|g(y2)|r2dy2)1r2≤C‖a‖Lip1‖b‖BMO(1|16B|∫16B|f(y1)|sdy2)1s×(1|16B|∫16B|g(y2)|sdy2)1s≤C‖a‖Lip1‖b‖BMOMs(f)(x)Ms(g)(x). $ |
By Theorem A, as $ z\in{B}, \; y_{1}\in{(16B)}, \; y_{2}\in{16B}^{c} $, noticing that $ |z-y_{1}|+|z-y_{2}|+|y_{1}-y_{2}|\sim|z-y_{1}|+|z-y_{2}|\geq{|z-y_{2}|} $, then we have
$ II3≤C(1|B|∫B(∫(16B)c∫(16B)|K(z,y1,y2)||b(y1−b16B)||f(y1)||g(y2)|dy1dy2)δdz)1/δ≤C‖a‖Lip1(1|B|∫B(∫(16B)c(∫(16B)|b(y1−b16B)||f(y1)|dy1)f(y2)|z−y2|2ndy2)δdz)1/δ≤C‖a‖Lip1(∫(16B)|b(y1−b16B)||f(y1)|dy1)∞∑k=4∫2k+1B∖2kBf(y2)|z0−y2|2ndy2≤C‖a‖Lip1(∫(16B)|b(y1−b16B)|qdy1)1/q(∫(16B)|f(y1)|q′dy1)1/q′×∞∑k=42−kn1|2k+1B|∫2k+1B|g(y2)|dy2≤C‖a‖Lip1‖b‖BMOMq′(f)(x)M(g)(x)∞∑k=42−kn≤C‖a‖Lip1‖b‖BMOMs(f)(x)Ms(g)(x). $ |
Similar to estimate $ II_{3} $, by Lemma 2.2, we can get that
$ II4≤C‖a‖Lip1(∫(16B)|g(y2)|dy2)∞∑k=4∫2k+1B∖2kB|b(y1b16B)||f(y1)||x0−yq|2ndy1≤C‖a‖Lip1M(g)(x)∞∑k=42−kn1|2k+1B|∫2k+1B|b(y1−b16B)||f(y1)|dy1 $ |
$ ≤C‖a‖Lip1M(g)(x)∞∑k=42−kn(1|2k+1B||b(y1−b16B)|qdy1)1/q×(1|2k+1B|∫2k+1B|f(y1)|q′dy1)1q′≤C‖a‖Lip1‖b‖BMOMq′(f)(x)M(g)(x)∞∑k=42−kn≤C‖a‖Lip1‖b‖BMOMs(f)(x)Ms(g)(x). $ |
As $ z\in B $ and $ y_{1}, y_{2}\in (16B)^{c} $, then $ |y_{1}-z_{0}|\geq 2|z-z_{0}| $, $ |y_{2}-z_{0}|\geq 2|z-z_{0}| $ and $ r_{B}\leq |z-z_{0}|\leq 4r_{B} $. Noticing that $ \frac{1}{q}+\frac{1}{tq^{\prime}}+\frac{1}{t^{\prime}q^{\prime}} = 1 $. It follows from Hölder's inequality, Theorem A and the fact (2.3) that
$ II5≤C(1|B|∫B(∫Rn∫Rn|K(z,y1,y2)−K(z0,y1,y2)||b(y1)−b16B|×|f2(y1)||g2(y2)|dy1dy2)δ)1/δ≤C(1|B|∫B(∞∑k1=1∞∑k2=1∫2k2|z−z0|≤|y2−z0|≤2k2+1|z−z0|∫2k1|z−z0|≤|y1−z0|≤2k1+1|z−z0|×|K(z,y1,y2)−K(z0,y1,y2)||b(y1)−b16B||f(y1)||g(y2)|dy1dy2)δdz)1/δ≤C(1|B|∫B(∞∑k1=1∞∑k2=1∫2k2|z−z0|≤|y2−z0|≤2k2+1|z−z0||g(y2)|×(∫2k1|z−z0|≤|y1−z0|≤2k1+1|z−z0||K(z,y1,y2)−K(z0,y1,y2)|qdy1)1q×(∫2k1+4B|b(y1)−b16B|t′q′dy1)1t′q′(∫2k1+4B|f(y1)|tq′dy1)1tq′dy2)δdz)1δ≤C(1|B|∫B(∞∑k1=1∞∑k2=1(∫2k1+4B|b(y1)−b16B|t′q′dy1)1t′q′×(∫2k2+4B|f(y1)|tq′dy1)1tq′(∫2k2+4B|g(y2)|q′dy2)1q′×(∫2k2|z−z0|≤|y2−z0|≤2k2+1|z−z0|∫2k1|z−z0|≤|y1−z0|≤2k1+1|z−z0||K(z,y1,y2)−K(z0,y1,y2)|qdy1dy2)1q)δdz)1δ≤C‖a‖Lip1(1|B|∫B(∞∑k1=1∞∑k2=1(1|2k1+4B|∫2k1+4B|b(y1)−b16B|t′q′dy1)1t′q′×(1|2k1+4B|∫2k1+4B|f(y1)|tq′dy1)1tq′×(1|2k1+4B|∫2k2+4B|g(y2)|q′dy2)1q′×|2k1+4B|1/q′|2k2+4B|1/q′|z−z0|−2nq′Ck12−k1nq′Ck22−k2nq′)δdz)1/δ $ |
$ ≤C‖a‖Lip1‖b‖BMOMs(f)(x)Mq′(g)(x)(∞∑k1=1Ck1)(∞∑k2=1Ck2)≤C‖a‖Lip1‖b‖BMOMs(f)(x)Ms(g)(x). $ |
Combining the estimate of $ II_{j}, j = 1, 2, 3, 4, 5 $, we get
$ (1|B|∫B|[[Tσ,a]j,b]1(f,g)(z)+[Tσ,a]j((b−b16B)f2,g2)(z0)|δdz)1δ≤C‖b‖BMO(Mε([Tσ,a]j(f,g))(x)+‖a‖Lip1Ms(f)(x)Ms(g)(x)). $ |
Similarly, for the case $ i = 2 $, we can obtain that
$ (1|B|∫B|[[Tσ,a]j,b]2(f,g)(z)+[Tσ,a]j((b−b16B)f2,g2)(z0)|δdz)1δ≤C‖b‖BMO(Mε([Tσ,a]j(f,g))(x)+‖a‖Lip1Ms(f)(x)Ms(g)(x)). $ |
Thus,
$ M♯δ([[Tσ,a]j,b]i(f,g))(x)≈supx∈Binfa∈C(1|B|∫B|[[Tσ,a]j,b]1(f,g)(z)|δ−a|dz)1/δ≤C‖b‖BMO(Mε([Tσ,a]j(f,g))(x)+‖a‖Lip1Ms(f)(x)Ms(g)(x)). $ |
This finishes the proof of Theorem 1.2.
The theory of weighted estimates has played very important roles in modern harmonic analysis with lots of extensive applications in the others fields of mathematics, which has been extensively studied (see [35,29,30,33], for instance). In this section, for the commutators of bilinear pseudo-differential operators and Lipschitz functions, we will establish its boundedness of product of weighted Lebesgue spaces owning to the pointwise estimate of its sharp maximal function, that is, Theorem 1.1. The boundedness of the corresponding bilinear commutators with $ \mathrm{BMO} $ function on the product of weighted Lebesgue spaces is also obtained by using Theorem 1.1 and Theorem 1.2.
Let us recall the definition of the class of Muckenhoupt weights $ A_{p} $ before proving Theorems 1.3 and 1.4. Let $ 1 < p < \infty $ and $ \omega $ be a non-negative measurable function. We say $ \omega\in A_{p} $ if for every cube $ Q $ in $ \mathbb{R}^{n} $, there exists a positive $ C $ independent of $ Q $ such that
$ \left(\frac{1}{|Q|}\int_{Q}\omega(x)\mathrm{d}x \right) \left(\frac{1}{|Q|}\int_{Q}\omega(x)^{1-p^{\prime}}\mathrm{d}x\right)^{p-1}\leq C. $ |
Denote by $ A_{\infty} = \bigcup_{p\geq 1}A_{p} $. It is well known that if $ \omega\in A_{p} $ with $ 1 < p < \infty $, then $ \omega\in A_{r} $ for all $ r > p $, and $ \omega\in A_{p} $ for some $ q $, $ 1 < q < p $.
To prove Theorems 1.3 and 1.4, we need the following inequality regarding maximal functions which is a version of the classical ones due to Fefferman and Stein in (see [17]), and a property of $ A_{p} $.
Lemma 3.1. [17] Let $ 0 < p, \delta < \infty $, and $ \omega\in A_{\infty} $. Then there exists a positive constant $ C $ depending on the $ A_{\infty} $ constant of $ \omega $ such that
$ \int_{\mathbb{R}^{n}}[M_{\delta}(f)(x)]^{p}\omega(x)\mathrm{d}x\leq C \int_{\mathbb{R}^{n}}[M_{\delta}^{\sharp}(f)(x)]^{p}\omega(x)\mathrm{d}x, $ |
for every function $ f $ such that the left-hand side is finite.
Lemma 3.2 [18] For $ (\omega_{1}, \cdots, \omega_{m})\in (A_{p_{1}}, \cdots, A_{p_{m}}) $ with $ 1\leq p_{1}, \cdots, p_{m} < \infty $, and for $ 0 < \theta_{1}, \cdots, \theta_{m} < 1 $ such that $ \theta_{1}+\cdots+\theta_{m} = 1 $, we have $ \omega_{1}^{\theta_{1}}\cdots\omega_{m}^{\theta_{m}}\in A_{\max\{p_{1}, \cdots, p_{m}\}} $.
Proof of Theorem 1.3. It follows from Lemma 3.2 that $ \omega\in A_{\max\{p_{1}/q^{\prime}, p_{2}/q^{\prime}\}}\subset A_{\infty} $. Take a $ \delta $ such that $ 0 < \delta < 1/2 $. Then by Lemma 3.1 and Theorem 1.1, we get
$ ‖[Tσ,a]j(f,g)‖Lp(ω)≤‖Mδ([Tσ,a]j(f,g))‖Lp(ω)≤C‖M♯δ([Tσ,a]j(f,g))‖Lp(ω)≤C‖a‖Lip1‖Mq′(f)Mq′(g)‖Lp(ω)≤C‖a‖Lip1‖Mq′(f)‖Lp1(ω1)‖Mq′(g)‖Lp2(ω2)=C‖a‖Lip1‖M(|f|q′)‖1/q′Lp1/q′(ω1)M(|g|q′)‖1/q′Lp2/q′(ω2)≤C‖a‖Lip1‖|f|q′‖1/q′Lp1/q′(ω1)‖|g|q′‖1/q′Lp2/q′(ω2)=C‖a‖Lip1‖f‖Lp1(ω1)‖g‖Lp2(ω2). $ |
We complete the proof of the Theorem 1.3.
Proof of Theorem 1.4. It follows from Lemma 3.2 that $ \omega\in A_{\infty} $. Take $ \delta $ and $ \varepsilon $ such that $ 0 < \delta < \varepsilon < 1/2 $. Then by Lemma 3.1 and Theorem 1.1, let $ \vec{f} = (f_{1}, f_{2}) $, we get
$ ‖Mε([Tσ,a]j(→f))‖Lp(ω)≤C‖M♯ε([Tσ,a]j(→f))‖Lp(ω)≤C‖a‖Lip1‖2∏t=1Mq′(ft)‖Lp(ω). $ |
Since $ \omega_{t}\in A_{p_{t}/q^{\prime}} $, $ t = 1, 2 $, there exists an $ l_{t} $ such that $ 1 < l_{t} < p_{t}/q^{\prime} $ and $ \omega_{t}\in A_{l_{t}} $. It follows from $ q^{\prime} < p_{t}/l_{t} $ that there is an $ s_{t} $ such that $ q^{\prime} < s_{t} < p_{t}/l_{t} < p_{t} $. Let $ s = \min\{s_{1}, s_{2}\} $. Then $ s > q^{\prime} $ and $ s < p_{t} $.
Since $ l_{t} < p_{t}/s_{t}\leq p_{t}/s $, then $ \omega_{i}\in A_{l_{t}}\subset A_{p_{t}/s} $, $ t = 1, 2 $. It follows from Lemma 3.1 and Theorem 1.2 that
$ ‖[[Tσ,a]j,b]i(→f)‖Lp(ω)≤‖Mδ([[Tσ,a]j,b]i(→f))‖Lp(ω)≤C‖M♯δ([[Tσ,a]j,b]i(→f))‖Lp(ω)≤C‖b‖BMO(‖Mε([Tσ,a]j(→f))‖Lp(ω)+‖a‖Lip1‖2∏t=1Ms(ft)‖Lp(ω))≤C‖b‖BMO(‖a‖Lip1‖2∏t=1Mq′(ft)‖Lp(ω)+‖a‖Lip1‖2∏t=1Ms(ft)‖Lp(ω))≤C‖b‖BMO‖a‖Lip1(‖2∏t=1Ms(ft)‖Lp(ω))=C‖b‖BMO‖a‖Lip12∏t=1‖Ms(ft)‖Lpt(ωt)≤C‖b‖BMO‖a‖Lip12∏t=1‖M(|ft|s)‖1/sLpt/s(ωt)=C‖b‖BMO‖a‖Lip12∏t=1‖ft‖Lpt(ωt). $ |
We complete the proof of the Theorem 1.4.
The spaces with variable exponent have been widely studied in recent ten years. The results show that they are not only the generalized forms of the classical function spaces with invariable exponent, but also there are some new breakthroughs in the research techniques. These new real variable methods help people further understand the function spaces. Due to the fundamental paper [24] by Kovóčik and Rákosník, Lebesgue spaces with variable exponent $ L^{p(\cdot)}(\mathbb{R}^{n}) $ becomes one of the important class function spaces. The theory of the variable exponent function spaces have been applied in fluid dynamics, elastlcity dynamics, calculus of variations and differential equations with non-standard growth conditions (for example, see [1,2,16]). In [8], authors proved the extrapolation theorem which leads the boundedness of some classical operators including the commutators on $ L^{p(\cdot)}(\mathbb{R}^{n}) $. Karlovich and Lerner also obtained the bundedness of the singular integral commutators in [23]. The boundedness of some typical operators is being studied with keen interest on spaces with variable exponent (see [9,22,41,42,43]).
In this section, we will establish the boundedness of $ [T_{\sigma}, a]_{j} $ and $ [[T_{\sigma}, a]_{j}, b]_{i}(i, j = 1, 2) $ on the product of variable exponent Lebesgue spaces, that is, we shall prove Theorems 1.5 and 1.6.
Denote $ \mathcal{P}(\mathbb{R}^{n}) $ to be the set of all measurable functions $ p(\cdot):\mathbb{R}^{n}\rightarrow [1, \infty) $ with
$ p_{-} = :\mathrm{ess}\inf\limits_{x\in \mathbb{R}^{n}}p(x) > 1 \; {\rm{and} }\; p_{+} = :\mathrm{ess}\sup\limits_{x\in \mathbb{R}^{n}}p(x) < \infty, $ |
and $ \mathcal{B}(\mathbb{R}^{n}) $ to be the set of all functions $ p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) $ satisfying the condition that the Hardy-littlewood maximal operator $ M $ is bounded on $ L^{p(\cdot)}(\mathbb{R}^{n}) $.
Definition 4.1. [23] Let $ p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) $. The variable exponent Lebesgue space is defined by
$ L^{p(\cdot)}(\mathbb{R}^{n}) = \left\{f \; {\rm {measurable}}: \int_{\mathbb{R}^{n}}\left(\frac{|f(x)|}{\eta}\right)^{p(x)}\mathrm{d}x < \infty \; {\rm {for\; some \;constant}}\; \; \lambda > 0\right\}. $ |
As $ p(\cdot) = p $ is a constant, then $ L^{p(\cdot)}(\mathbb{R}^{n}) = L^p(\mathbb{R}^{n}) $ coincides with the usual Lebesgue space. It is pointed out in [23] that $ L^{p(\cdot)}(\mathbb{R}^{n}) $ becomes a Banach space with respect to the norm
$ \|f\|_{L^{p(\cdot)}(\mathbb{R}^{n})} = \inf\left\{\eta > 0:\int_{\mathbb{R}^{n}}\left(\frac{|f(x)|}{\eta}\right)^{p(x)}\mathrm{d}x\leq1\right\}. $ |
Lemma 4.2. [13] Let $ p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) $. Then $ M $ is bounded on $ L^{p(\cdot)}(\mathbb{R}^{n}) $ if and only if $ M_{q_{0}} $ is bounded on $ L^{p(\cdot)}(\mathbb{R}^{n}) $ for some $ 1 < q_{0} < \infty $, where $ M_{q_{0}}(f) = [M(|f|^{q_{0}})]^{1/q_{0}} $.
Lemma 4.3. [32] Let $ p(\cdot), p_{1}(\cdot), \cdots, p_{m}(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) $ so that $ 1/p(x) = 1/p_{1}(x)+\cdots+1/p_{m}(x) $. Then for any $ f_{j}\in L^{p_{j}}(\mathbb{R}^{n}) $, $ j = 1, 2, \cdots, m $, there has
$ \|\prod\limits_{j = 1}^{m}f_{j}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}\leq 2^{m-1}\prod\limits_{j = 1}^{m}\|f_{j}\|_{L^{p_{j}(\cdot)}(\mathbb{R}^{n})}.\\ $ |
Lemma 4.4. [14] Given a family $ \mathcal{F} $ of ordered pairs of measurable functions, suppose for some fixed $ 0 < p_{0} < \infty $, every $ (f, g)\in \mathcal{F} $ and every $ \omega\in A_{1} $,
$ \int_{\mathbb{R}^{n}}|f(x)|^{p_{0}}\omega(x)\mathrm{d}x\leq C_{0}\int_{\mathbb{R}^{n}}|g(x)|^{p_{0}}\omega(x)\mathrm{d}x. $ |
Let $ p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) $ with $ p_{0}\leq p_{-} $. If $ (\frac{p(\cdot)}{p_{0}})^{\prime}\in \mathcal{B}(\mathbb{R}^{n}) $, then there exists a constant $ C > 0 $ such that for all $ (f, g)\in \mathcal{F} $, $ \|f\|_{L^{p(\cdot)}(\mathbb{R}^{n})}\leq C\|g\|_{L^{p(\cdot)}(\mathbb{R}^{n})} $.
Lemma 4.5. [14] If $ p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) $, then $ C_{0}^{\infty} $ is dense in $ L^{p(\cdot)}(\mathbb{R}^{n}) $.
Lemma 4.6. [13] Let $ p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) $. Then the following conditions are equivalent.
(1) $ p(\cdot)\in \mathcal{B}(\mathbb{R}^{n}) $;
(2) $ p^{\prime}(\cdot)\in \mathcal{B}(\mathbb{R}^{n}) $;
(3) $ p(\cdot)/p_{0}\in \mathcal{B}(\mathbb{R}^{n}) $ for some $ 1 < p_{0} < p_{-} $;
(4) $ (p(\cdot)/p_{0})^{\prime}\in \mathcal{B}(\mathbb{R}^{n}) $ for some $ 1 < p_{0} < p_{-} $.
Proof of Theorem 1.5. Here we note $ \vec{f} = (f_{1}, f_{2}) $, where $ f_{1} $ and $ f_{2} $ are bounded measurable functions with compact support. Since $ p(\cdot)\in \mathcal{B}(\mathbb{R}^{n}) $, then by Lemma 4.6, there exists a $ p_{0} $ such that $ 1 < p_{0} < p_{-} $ and $ (p(\cdot)/p_{0})^{\prime}\in \mathcal{B}(\mathbb{R}^{n}) $. Take a $ \delta $ such that $ 0 < \delta < 1/2 $. For any $ \omega\in A_{1} $, it follows from Lemma 3.1 and Theorem 1.1 that
$ ∫Rn|[Tσ,a]j(→f)|p0ω(x)dx≤C∫Rn[Mδ([Tσ,a]j(→f))(x)]p0ω(x)dx≤C∫Rn[M♯δ([Tσ,a]j(→f))(x)]p0ω(x)dx≤C‖a‖Lip1∫Rn[2∏t=1Mq′(ft)(x)]p0ω(x)dx≤C‖a‖Lip1∫Rn[2∏t=1Mqj0(ft)(x)]p0ω(x)dx. $ |
Applying Lemma 4.4 to the pair $ ([T_{\sigma}, a]_{j}(\vec{f}), \prod_{t = 1}^{2}M_{q_{0}^{t}}(f_{t})) $, we can get
$ \|[T_{\sigma}, a]_{j}(\vec{f})\|_{L^{p(\cdot)}(\mathbb{R}^{n})}\leq C\|a\|_{\mathrm{Lip^{1}}}\left\|\prod\limits_{t = 1}^{2}M_{q_{0}^{j}}(f_{t}))\right\|_{L^{p(\cdot)}(\mathbb{R}^{n})}. $ |
Then by Lemmas 4.2 and 4.3, we have
$ \|[T_{\sigma}, a]_{j}(\vec{f})\|_{L^{p(\cdot)}(\mathbb{R}^{n})}\leq C\|a\|_{\mathrm{Lip^{1}}}\left\|\prod\limits_{t = 1}^{2}M_{q_{0}^{j}}(f_{t}))\right\|_{L^{p_{t}(\cdot)}(\mathbb{R}^{n})}\leq C\|a\|_{\mathrm{Lip^{1}}}\prod\limits_{t = 1}^{2}\left\|f_{t}\right\|_{L^{p_{t}(\cdot)}(\mathbb{R}^{n})}. $ |
This completes the proof of the Theorem 1.5.
Proof of Theorem 1.6. Denote $ q_{0} = \min \{q_{0}^{1}, q_{0}^{2}\} $, then $ q^{\prime} < q_{0} < \infty $. Let $ \vec{f} = (f_{1}, f_{2}) $, where $ f_{1} $ and $ f_{2} $ are bounded measurable functions with compact support. Since $ p(\cdot)\in \mathcal{B}(\mathbb{R}^{n}) $, then by Lemma 4.6, there exists a $ p_{0} $ such that $ 1 < p_{0} < p_{-} $ and $ (p(\cdot)/p_{0})^{\prime}\in \mathcal{B}(\mathbb{R}^{n}) $. Take $ \delta $ and $ \varepsilon $ such that $ 0 < \delta < \varepsilon < 1/2 $. For any $ \omega\in A_{1} $, it follows from Lemma 3.1, Theorem 1.1 and Theorem 1.2 that
$ ∫Rn|[[Tσ,a]j,b]i(→f)|p0ω(x)dx≤C∫Rn[Mδ([[Tσ,a]j,b]i(→f))(x)]p0ω(x)dx≤C∫Rn[M♯δ([[Tσ,a]j,b]i(→f))(x)]p0ω(x)dx≤C‖b‖p0BMO∫Rn(Mε([Tσ,a]j(→f))(x)dx+‖a‖Lip12∏t=1Mq0(ft)(x))p0ω(x)dx≤C‖b‖p0BMO(∫Rn[M♯ε([Tσ,a]j(→f))]p0ω(x)dx+‖a‖p0Lip1∫Rn[2∏t=1Mq′(ft)(x)]p0ω(x)dx)≤C‖b‖p0BMO‖a‖p0Lip1(∫Rn[2∏t=1Mq′(ft)(x)]p0ω(x)dx+∫Rn[2∏t=1Mq0(ft)(x)]p0ω(x)dx)≤C‖b‖p0BMO‖a‖p0Lip1∫Rn[2∏t=1Mqj0(ft)(x)]p0ω(x)dx. $ |
Applying Lemma 4.4 to the pair $ ([[T_{\sigma}, a]_{j}, b]_{i}(\vec{f}), \prod_{t = 1}^{2}M_{q_{0}^{t}}(f_{t})) $, we can get
$ \|[[T_{\sigma}, a]_{j}, b]_{i}(\vec{f})\|_{L^{p(\cdot)}(\mathbb{R}^{n})}\leq C\|a\|_{\mathrm{Lip^{1}}}\left\|\prod\limits_{t = 1}^{2}M_{q_{0}^{j}}(f_{t}))\right\|_{L^{p(\cdot)}(\mathbb{R}^{n})}. $ |
Then by Lemmas 4.2 and 4.3, we have
$ ‖[[Tσ,a]j,b]i(→f)‖Lp(⋅)(Rn)≤C‖a‖Lip1‖2∏t=1Mqt0(ft))‖Lpt(⋅)(Rn)≤C‖a‖Lip12∏t=1‖ft‖Lpt(⋅)(Rn). $ |
We complete the proof of Theorem 1.6.
In this section, we will show the endpoint estimate for the $ [T_{\sigma}, a]_{j} \; {\rm{with} }\; j = 1, 2 $, that is, we will give the proof of Theorem 1.7.
Proof of Theorem 1.7. Take $ p_{1}, p_{2} $ such that $ \max\{q^{\prime}, 2\} < p_{1}, p_{2} < \infty $. Let $ 1/p = 1/p_{1}+1/p_{2} $. Then $ 1 < p < \infty $. It follows from Lemma 2.3 that $ [T_{\sigma}, a]_{j}(j = 1, 2) $ is bounded from $ L^{p_{1}}\times L^{p_{2}} $ into $ L^{p} $.
Let $ f, g\in L^{\infty} $. Then for any ball $ B = B(x_{0}, r_{B}) $ with $ r_{B} > 0 $, we decompose $ f $ and $ g $ as follows
$ f = f\chi_{2B}+ f\chi_{(2B)^{c}}: = f^{1}+f^{2}, \; \; g = g\chi_{2B}+g\chi_{(2B)^{c}}: = g^{1}+g^{2}. $ |
Then
$ 1|B|∫B|[Tσ,a]j(f,g)(z)|−[Tσ,a]j(f2,g2)(x0)|dz≤1|B|∫B|[Tσ,a]j(f1,g1)(z)|+1|B|∫B|[Tσ,a]j(f2,g1)(z)|dz+1|B|∫B|[Tσ,a]j(f1,g2)(z)|dz+1|B|∫B|[Tσ,a]j(f2,g2)(z)−[Tσ,a]j(f2,g2)(x0)|dz:=4∑s=1Js. $ |
It follows from the Hölder's inequality and Lemma 2.3 that
$ J1≤(1|B|∫B|[Tσ,a]j(f1,g1)(z)|p)1/p≤C|B|−1/p‖a‖Lip1‖f1‖Lp1‖g1‖Lp2≤‖a‖Lip1‖f‖∞‖g‖∞. $ |
By the size conditions in Theorem A of the kernel, we have
$ J2≤1|B|∫B(∫(2B)c∫2B|K(z,y1,y2)|f(y1)||g(y2)|dy2dy1)dz≤C‖a‖Lip11|B|∫B(∫(2B)c(∫2B|g(y2)|dy2)|f(y1)||z−y1|2ndy1)dz≤C‖a‖Lip1‖f‖∞‖g‖∞(∫2Bdy2)(∫(2B)c1|x0−y1|2ndy1)≤C‖a‖Lip1‖f‖∞‖g‖∞. $ |
Similarly, we can obtain that
$ J_{3}\leq C \|a\|_{\mathrm{Lip^{1}}}\|f\|_{\infty}\|g\|_{\infty}. $ |
Noting that as $ z\in B $, and $ y_{1}, y_{2}\in (2B)^{c} $, then $ |y_{1}-x_{0}|\geq 2|z-x_{0}| $ and $ |y_{2}-x_{0}|\geq 2|z-x_{0}| $. It follows from the Hölder's inequality and (2.3) that
$ J4≤1|B|∫B(∫Rn∫Rn|K(z,y1,y2)|f(y1)−K(x0,y1,y2)|f2(y1)||g2(y2)|dy1dy2)dz≤C∞∑k1=1∞∑k2=11|B|∫B∫2k2|z−z0|≤|y2−z0|≤2k2|z−z0|∫2k1|z−z0|≤|y1−z0|≤2k1+1|z−z0| $ |
$ |K(z,y1,y2)−K(x0,y1,y2)||f(y1)||g(y2)|dy1dy2|dy1dy2dz≤C‖a‖Lip1‖f‖∞‖g‖∞∞∑k1=1∞∑k2=11|B|∫B∫2k2|z−z0|≤|y2−z0|≤2k2+1|z−z0|(2k1|z−x0|)nq′×(∫2k1|z−z0|≤|y1−z0|≤2k1+1|z−z0||K(z,y1,y2)−K(x0,y1,y2)|qdy1)1/qdy2dz≤C‖a‖Lip1‖f‖∞‖g‖∞∞∑k1=1∞∑k2=11|B|(2k1|z−x0|)nq′(2k2|z−x0|)nq′×(∫2k2|z−z0|≤|y2−z0|≤2k2+1|z−z0|∫2k1|z−z0|≤|y1−z0|≤2k1+1|z−z0|×|K(z,y1,y2)−K(x0,y1,y2)|qdy1dy2)1/qdz≤C‖a‖Lip1‖f‖∞‖g‖∞∞∑k1=1∞∑k2=12k1nq′2k2nq′(Ck12−k1nq′)(Ck22−k2nq′)≤C‖a‖Lip1‖f‖∞‖g‖∞. $ |
Thus,
$ ‖[Tσ,a]j(f,g)‖BMO=supB1|B|∫B|[Tσ,a]j(f,g)(z)−([Tσ,a]j(f,g))B|dz≤supB1|B|∫B|[Tσ,a]j(f,g)(z)−[Tσ,a]j(f2,g2)(x0)|dz≤C‖a‖Lip1‖f‖∞‖g‖∞. $ |
Which completes the proof of the Theorem 1.7.
In this paper, we consider the commutators of bilinear pseudo-differential operators and the operation of multiplication by a Lipschitz function. By establishing the pointwise estimates of the corresponding sharp maximal function, the boundedness of the commutators is obtained respectively on the products of weighted Lebesgue spaces and variable exponent Lebesgue spaces with $ \sigma \in\mathcal{B}BS_{1, 1}^{1} $. Moreover, the endpoint estimate of the commutators is also established on $ L^{\infty}\times L^{\infty} $.
This work is supported by the Doctoral Scientific Research Foundation of Northwest Normal University (202003101203), Young Teachers$ ^{'} $ Scientific Research Ability Promotion Project of Northwest Normal University (NWNU-LKQN2021-03) and National Natural Science Foundation of China (11561062).
The authors declare that they have no conflict of interest.
[1] |
van Gool AJ, Hendrickson RC (2012) The proteomic toolbox for studying cerebrospinal fluid. Expert Rev Proteomics 9: 165-179. doi: 10.1586/epr.12.6
![]() |
[2] | Craft GE, Chen A, Nairn AC (2013) Recent advances in quantitative neuroproteomics. Methods61: 186-218. |
[3] |
Yuan X, Desiderio DM (2005) Proteomics analysis of human cerebrospinal fluid. J Chromatogr B Analyt Technol Biomed Life Sci 815: 179-189. doi: 10.1016/j.jchromb.2004.06.044
![]() |
[4] |
Huang JT, McKenna T, Hughes C, et al. (2007) CSF biomarker discovery using label-free nano-LC-MS based proteomic profiling: technical aspects. J Sep Sci 30: 214-225. doi: 10.1002/jssc.200600350
![]() |
[5] |
Giron P, Dayon L, Turck N, et al. (2011) Quantitative analysis of human cerebrospinal fluid proteins using a combination of cysteine tagging and amine-reactive isobaric labeling. J Proteome Res 10: 249-258. doi: 10.1021/pr100535f
![]() |
[6] |
Parnetti L, Castrioto A, Chiasserini D, et al. (2013) Cerebrospinal fluid biomarkers in Parkinson disease. Nat Rev Neurol 9: 131-140. doi: 10.1038/nrneurol.2013.10
![]() |
[7] | Constantinescu R, Mondello S (2012) Cerebrospinal fluid biomarker candidates for parkinsonian disorders. Front Neurol 3: 187. |
[8] | Abdi F, Quinn JF, Jankovic J, et al. (2006) Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J Alzheimers Dis 9: 293-348. |
[9] |
Lehnert S, Jesse S, Rist W, et al. (2012) iTRAQ and multiple reaction monitoring as proteomic tools for biomarker search in cerebrospinal fluid of patients with Parkinson's disease dementia. Exp Neurol 234: 499-505. doi: 10.1016/j.expneurol.2012.01.024
![]() |
[10] |
Constantinescu R, Andreasson U, Li S, et al. (2010) Proteomic profiling of cerebrospinal fluid in parkinsonian disorders. Parkinsonism Relat Disord 16: 545-549. doi: 10.1016/j.parkreldis.2010.06.011
![]() |
[11] |
Sinha A, Srivastava N, Singh S, et al. (2009) Identification of differentially displayed proteins in cerebrospinal fluid of Parkinson's disease patients: a proteomic approach. Clin Chim Acta 400:14-20. doi: 10.1016/j.cca.2008.09.026
![]() |
[12] |
Jesse S, Lehnert S, Jahn O, et al. (2012) Differential sialylation of serpin A1 in the early diagnosis of Parkinson's disease dementia. PLoS One 7: e48783. doi: 10.1371/journal.pone.0048783
![]() |
[13] |
Olivieri S, Conti A, Iannaccone S, et al. (2011) Ceruloplasmin oxidation, a feature of Parkinson's disease CSF, inhibits ferroxidase activity and promotes cellular iron retention. J Neurosci 31:18568-18577. doi: 10.1523/JNEUROSCI.3768-11.2011
![]() |
[14] | Iannaccone S, Cerami C, Alessio M, et al. (2013) In vivo microglia activation in very early dementia with Lewy bodies, comparison with Parkinson's disease. Parkinsonism Relat Disord19: 47-52. |
[15] |
Tohgi H, Abe T, Yamazaki K, et al. (1999) Alterations of 3-nitrotyrosine concentration in the cerebrospinal fluid during aging and in patients with Alzheimer's disease. Neurosci Lett 269:52-54. doi: 10.1016/S0304-3940(99)00406-1
![]() |
[16] |
Poulsen K, Bahl JM, Simonsen AH, et al. (2014) Distinct transthyretin oxidation isoform profile in spinal fluid from patients with Alzheimer's disease and mild cognitive impairment. Clin Proteomics 11: 12. doi: 10.1186/1559-0275-11-12
![]() |
[17] |
Nakamura T, Tu S, Akhtar MW, et al. (2013) Aberrant protein s-nitrosylation in neurodegenerative diseases. Neuron 78: 596-614. doi: 10.1016/j.neuron.2013.05.005
![]() |
[18] |
Yuan X, Desiderio DM (2003) Proteomics analysis of phosphotyrosyl-proteins in human lumbar cerebrospinal fluid. J Proteome Res 2: 476-487. doi: 10.1021/pr025589a
![]() |
[19] | Weintraub SJ, Deverman BE (2007) Chronoregulation by asparagine deamidation. Sci STKE2007: re7. |
[20] |
Barbariga M, Curnis F, Spitaleri A, et al. (2014) Oxidation-induced structural changes of ceruloplasmin foster NGR motif deamidation that promotes integrin binding and signaling. J Biol Chem 289: 3736-3748. doi: 10.1074/jbc.M113.520981
![]() |
[21] |
Zhang J (2007) Proteomics of human cerebrospinal fluid-the good, the bad, and the ugly. Proteomics Clin Appl 1: 805-819. doi: 10.1002/prca.200700081
![]() |
[22] |
Schutzer SE, Liu T, Natelson BH, et al. (2010) Establishing the proteome of normal human cerebrospinal fluid. PLoS One 5: e10980. doi: 10.1371/journal.pone.0010980
![]() |
[23] |
Perrin RJ, Payton JE, Malone JP, et al. (2013) Quantitative label-free proteomics for discovery of biomarkers in cerebrospinal fluid: assessment of technical and inter-individual variation. PLoS One 8: e64314. doi: 10.1371/journal.pone.0064314
![]() |
[24] |
Stoop MP, Coulier L, Rosenling T, et al. (2010) Quantitative proteomics and metabolomics analysis of normal human cerebrospinal fluid samples. Mol Cell Proteomics 9: 2063-2075. doi: 10.1074/mcp.M110.000877
![]() |
[25] |
Zhang J, Goodlett DR, Peskind ER, et al. (2005) Quantitative proteomic analysis of age-related changes in human cerebrospinal fluid. Neurobiol Aging 26: 207-227. doi: 10.1016/j.neurobiolaging.2004.03.012
![]() |
[26] | Musci G, Bonaccorsi di Patti MA, Fagiolo U, et al. (1993) Age-related changes in human ceruloplasmin. J Biol Chem 268: 13388-13395. |
[27] |
Yuan X, Desiderio DM (2005) Proteomics analysis of prefractionated human lumbar cerebrospinal fluid. Proteomics 5: 541-550. doi: 10.1002/pmic.200400934
![]() |
[28] |
Waller LN, Shores K, Knapp DR (2008) Shotgun proteomic analysis of cerebrospinal fluid using off-gel electrophoresis as the first-dimension separation. J Proteome Res 7: 4577-4584. doi: 10.1021/pr8001518
![]() |
[29] | Cannistraci CV, Montevecchi FM, Alessio M (2009) Median-modified Wiener filter provides efficient denoising, preserving spot edge and morphology in 2-DE image processing. Proteomics9: 4908-4919. |
[30] |
Cannistraci CV, Ravasi T, Montevecchi FM, et al. (2010) Nonlinear dimension reduction and clustering by Minimum Curvilinearity unfold neuropathic pain and tissue embryological classes. Bioinformatics 26: i531-539. doi: 10.1093/bioinformatics/btq376
![]() |
[31] |
Cannistraci CV, Alanis-Lobato G, Ravasi T (2013) Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding. Bioinformatics 29: i199-209. doi: 10.1093/bioinformatics/btt208
![]() |
1. | Gianni Petino, Donatella Privitera, Uncovering the local foodscapes. Exploring the Etna volcano case study, Italy, 2023, 9, 2471-2132, 392, 10.3934/geosci.2023021 |