Citation: Xinqi Dong, E-Shien Chang, Stephanie Bergren BA. The Burden of Grandparenting among Chinese older adults in the Greater Chicago area—The PINE Study[J]. AIMS Medical Science, 2014, 1(2): 125-140. doi: 10.3934/medsci.2014.2.125
[1] | Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046 |
[2] | Minghung Lin, Yiyou Hou, Maryam A. Al-Towailb, Hassan Saberi-Nik . The global attractive sets and synchronization of a fractional-order complex dynamical system. AIMS Mathematics, 2023, 8(2): 3523-3541. doi: 10.3934/math.2023179 |
[3] | Rahat Zarin, Amir Khan, Aurangzeb, Ali Akgül, Esra Karatas Akgül, Usa Wannasingha Humphries . Fractional modeling of COVID-19 pandemic model with real data from Pakistan under the ABC operator. AIMS Mathematics, 2022, 7(9): 15939-15964. doi: 10.3934/math.2022872 |
[4] | Pratap Anbalagan, Evren Hincal, Raja Ramachandran, Dumitru Baleanu, Jinde Cao, Michal Niezabitowski . A Razumikhin approach to stability and synchronization criteria for fractional order time delayed gene regulatory networks. AIMS Mathematics, 2021, 6(5): 4526-4555. doi: 10.3934/math.2021268 |
[5] | Muhammad Farman, Ali Akgül, Sameh Askar, Thongchai Botmart, Aqeel Ahmad, Hijaz Ahmad . Modeling and analysis of fractional order Zika model. AIMS Mathematics, 2022, 7(3): 3912-3938. doi: 10.3934/math.2022216 |
[6] | Jingfeng Wang, Chuanzhi Bai . Global Mittag-Leffler stability of Caputo fractional-order fuzzy inertial neural networks with delay. AIMS Mathematics, 2023, 8(10): 22538-22552. doi: 10.3934/math.20231148 |
[7] | Yuehong Zhang, Zhiying Li, Wangdong Jiang, Wei Liu . The stability of anti-periodic solutions for fractional-order inertial BAM neural networks with time-delays. AIMS Mathematics, 2023, 8(3): 6176-6190. doi: 10.3934/math.2023312 |
[8] | Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Nantapat Jarasthitikulchai, Marisa Kaewsuwan . A generalized Gronwall inequality via $ \psi $-Hilfer proportional fractional operators and its applications to nonlocal Cauchy-type system. AIMS Mathematics, 2024, 9(9): 24443-24479. doi: 10.3934/math.20241191 |
[9] | Rana Safdar Ali, Saba Batool, Shahid Mubeen, Asad Ali, Gauhar Rahman, Muhammad Samraiz, Kottakkaran Sooppy Nisar, Roshan Noor Mohamed . On generalized fractional integral operator associated with generalized Bessel-Maitland function. AIMS Mathematics, 2022, 7(2): 3027-3046. doi: 10.3934/math.2022167 |
[10] | Yonghong Liu, Ghulam Farid, Dina Abuzaid, Hafsa Yasmeen . On boundedness of fractional integral operators via several kinds of convex functions. AIMS Mathematics, 2022, 7(10): 19167-19179. doi: 10.3934/math.20221052 |
As we all know, the study of variable exponent function space inspired by nonlinear elasticity theory and nonstandard growth differential equations is one of the key contents of harmonic analysis in the past three decades, attracting extensive attention from many scholars. In [19], the theory of function spaces with variable exponent was progressed since some elementary properties were established by Kováčik and Rákosník, and they studied many basic properties of variable exponent Lebesgue spaces and Sobolev spaces on $ \mathbb{R}^{n} $. Later, the Lebesgue spaces with variable exponent $ L^{p(\cdot)}(\mathbb{R}^{n}) $ were extensively investigated; see [7,8,22]. In [14], Izuki first introduced the Herz spaces with variable exponent ${\rm{\dot K}} ^{\alpha, q}_{p(\cdot)}(\mathbb{R}^{n}) $, which are generalizations of the Herz spaces ${\rm{\dot K}} ^{\alpha, q}_{p}(\mathbb{R}^{n}) $, and considered the boundedness of commutators of fractional integrals on Herz spaces with variable exponent. In [13], Izuki introduced the Herz-Morrey spaces with variable exponent $ \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha, \lambda}(\mathbb{R}^{n}) $, which are generalizations of the Herz-Morrey spaces $ \mathrm{M\dot{K}}_{q, p}^{\alpha, \lambda}(\mathbb{R}^{n}) $, and studied the boundedness of vector valued sublinear operators on Herz-Morrey spaces with variable exponent $ \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha, \lambda}(\mathbb{R}^{n}) $. On the other hand, in the study of boundary value problems for the Laplace equation on Lipschitz domains, the classical theory of Muckenhoupt weights is a powerful tool in harmonic analysis; see [21]. Generalized Muckenhoupt weights with variable exponent have been intensively studied; see [4,5].
In [11], Hardy defined the classical Hardy operators as:
$ P(f)(x):=1x∫x0f(t)dt,x>0. $ | (1.1) |
In [6], Christ and Grafakos defined the $ n- $dimensional Hardy operators as:
$ H(f)(x):=1|x|n∫|t|<|x|f(t)dt,x∈Rn∖{0}, $ | (1.2) |
and established the boundedness of $ \mathcal{P}(f)(x) $ in $ L^{p}(\mathbb{R}^{n}) $, getting the best constants.
In [9], under the condition of $ 0\leq \beta < n $ and $ |x| = \sqrt{\sum_{i = 1}^{n}x_{i}^{2}} $, Fu et al. defined the $ n- $dimensional fractional Hardy operators and its adjoint operators as:
$ Hβf(x):=1|x|n−β∫|t|<|x|f(t)dt,H∗βf(x):=∫|t|≥|x|f(t)|t|n−βdt,x∈Rn∖{0}, $ | (1.3) |
and established the boundedness of their commutators in Lebesgue spaces and homogeneous Herz spaces.
Let $ L^{1}_{\mathrm{loc}}(\mathbb{R}^{n}) $ be the collection of all locally integrable functions on $ \mathbb{R}^{n} $. Given a function $ b\in L^{1}_{\mathrm{loc}}(\mathbb{R}^{n}) $ and $ m\in \mathbb{N} $, Wang et al. [23] defined the $ m $th order commutators of $ n- $dimensional fractional Hardy operators and adjoint operators as:
$ Hmβ,bf(x):=1|x|n−β∫|t|<|x|(b(x)−b(t))mf(t)dt $ | (1.4) |
and
$ H∗mβ,bf(x):=∫|t|≥|x|(b(x)−b(t))mf(t)|t|n−βdt,x∈Rn∖{0}. $ | (1.5) |
Obviously, when $ m = 0 $, $ \mathcal{H}^{0}_{\beta, b} = \mathcal{H}_{_{\beta}} $, $ \mathcal{H}^{\ast 0}_{\beta, b} = \mathcal{H}^{\ast}_{\beta} $, and when $ m = 1 $, $ \mathcal{H}^{1}_{\beta, b} = \mathcal{H}_{\beta, b} $, $ \mathcal{H}^{\ast 1}_{\beta, b} = \mathcal{H}^{\ast}_{\beta, b} $. More important results with regard to these commutators, see [20,26,27].
Due to the need of future calculation in this paper, let $ 0 < \beta < n $, and the fractional integral operator $ I_{\beta} $ is defined as:
$ Iβ(f)(x):=∫Rnf(y)|x−y|n−βdy,x∈Rn. $ | (1.6) |
Let $ 0\leq \beta < n $ and $ f\in L_{\mathrm{loc}}^{1}(\mathbb{R}^{n}) $, and the fractional maximal operator $ M_{\beta} $ is defined as:
$ Mβf(x):=supx∈B1|B|1−βn∫B|f(y)|dy,x∈Rn, $ | (1.7) |
where the supremum is taken over all balls $ B\subset\mathbb{R}^{n} $ containing $ x $. When $ \beta = 0 $, we simply write $ M $ instead of $ M_{0} $, which is exactly the Hardy-Littlewood maximal function.
Let $ f\in L^{1}_{\mathrm{loc}}(\mathbb{R}^{n}) $ and $ \mathrm{BMO}(\mathbb{R}^{n}) $ consist of all $ f\in L^{1}_{\mathrm{loc}}(\mathbb{R}^{n}) $ with $ \mathrm{BMO}(\mathbb{R}^{n}) < \infty $. $ b $ is a bounded mean oscillation function if $ \|b\|_{\mathrm{BMO}} < \infty $, and the $ \|b\|_{\mathrm{BMO}} $ is defined as follow:
$ ‖b‖BMO:=supB∫B|b(x)−bB|dx, $ | (1.8) |
where the supremum is taken all over the balls $ B\in \mathbb{R}^{n} $ and $ b_{B}: = |B|^{-1}\int_{B}b(y)\mathrm{d}y $. For a comprehensive review of the bounded mean oscillation (BMO) space, please see the book [10].
Recently, Muhammad Asim et al. established the estimates of fractional Hardy operators on weighted variable exponent Morrey-Herz spaces in [1]. Amjad Hussain et al. established the boundedness of the commutators of the Fractional Hardy operators on weighted variable Herz-Morrey spaces in [12]. Motivated by the mentioned work, in this paper, we will give the boundedness of the $ m $th order commutators of $ n- $dimensional fractional Hardy operators $ \mathcal{H}^{m}_{_{\beta, b}} $ and its adjoint operators $ \mathcal{H}_{\beta, b}^{\ast m} $ on weighted variable exponent Morrey-Herz space $ \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha, \lambda}(\omega) $.
The paper is organized as follows. In Section 2, we provide some preliminary knowledge. The main results and their proofs are given in Section 3. In Section 4, we provide the conclusion of this paper. Throughout this paper, we use the following symbols and notations:
(1) For a constant $ R > 0 $ and a point $ x\in \mathbb{R}^{n} $, we write $ B(x, R): = \{y\in \mathbb{R}^{n}: |x-y| < R\} $.
(2) For any measurable set $ E\subset\mathbb{R}^{n} $, $ |E| $ denotes the Lebesgue measure, and $ \chi_{E} $ means the characteristic function.
(3) Given $ k\in \mathbb{Z} $, we write $ B_{k}: = \overline{B(0, 2^{k})} = \{x\in \mathbb{R}^{n}: |x|\leq 2^{k}\} $.
(4) We define a family $ \{A_{k}\}_{k = -\infty}^{\infty} $ by $ A_{k}: = B_{k}\setminus B_{k-1} = \{x\in \mathbb{R}^{n}: 2^{k-1} < |x|\leq 2^{k}\} $. Moreover $ \chi_{k} $ denotes the characteristic function of $ A_{k} $, namely, $ \chi_{k}: = \chi_{A_{k}} $.
(5) For any index $ 1 < p(x) < \infty $, $ p^{\prime}(x) $ denotes its conjugate index, namely, $ \frac{1}{p(x)}+\frac{1}{p^{\prime}(x)} = 1 $.
(6) If there exists a positive constant $ C $ independent of the main parameters such that $ A\leq CB $, then we write $ A\lesssim B $. Additionally, $ A\approx B $ means that both $ A\lesssim B $ and $ B\lesssim A $ hold.
$ \mathbf{Definition\; 2.1.} $ ([7]) Let $ p(\cdot): \mathbb{R}^{n}\rightarrow [1, \infty) $ be a measurable function.
(ⅰ) The Lebesgue space with variable exponent $ L^{p(\cdot)}(\mathbb{R}^{n}) $ is defined by
$ L^{p(\cdot)}(\mathbb{R}^{n}): = \Big\{f\; \mathrm{is\; measurable\; function}:\int_{\mathbb{R}^{n}}\Big(\frac{|f(x)|}{\lambda}\Big)^{p(x)}\mathrm{d}x < \infty \; \mathrm{for\; some\; constant}\; \lambda > 0\Big\}. $ |
(ⅱ) The spaces with variable exponent $ L_{\mathrm{loc}}^{p(\cdot)}(\mathbb{R}^{n}) $ are defined by
$ L^{p(\cdot)}_{\mathrm{loc}}(\mathbb{R}^{n}): = \{f\; \mathrm{is\; measurable\; function}:f\in L^{p(\cdot)}(K) \mathrm{\; for\; all\; compact\; subsets\; } K\subset \mathbb{R}^{n}\}. $ |
The Lebesgue space $ L^{p(\cdot)}(\mathbb{R}^{n}) $ is a Banach space with the norm defined by
$ \|f\|_{L^{p(\cdot)}(\mathbb{R}^{n})}: = \inf\Big\{\lambda > 0:\int_{\mathbb{R}^{n}}\Big(\frac{|f(x)|}{\lambda}\Big)^{p(x)}\mathrm{d}x\leq 1 \Big\}. $ |
$ \mathbf{Definition\; 2.2.} $ ([7]) (ⅰ) The set $ \mathcal{P}(\mathbb{R}^{n}) $ consists of all measurable functions $ p(\cdot): \mathbb{R}^{n}\rightarrow [1, \infty) $ satisfying
$ 1 < p_{-}\leq p(x)\leq p_{+} < \infty, $ |
where
$ p_{-}: = \mathrm{essinf}\{p(x): x\in \mathbb{R}^{n}\} > 1,\; \; \; p_{+}: = \mathrm{esssup}\{p(x): x\in \mathbb{R}^{n}\} < \infty. $ |
(ⅱ) The set $ \mathcal{B}(\mathbb{R}^{n}) $ consists of all measurable function $ p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) $ satisfying that the Hardy-Littlewood maximal operator $ M $ is bounded on $ L^{p(\cdot)}(\mathbb{R}^{n}) $.
$ \mathbf{Definition\; 2.3.} $ ([7]) Suppose that $ p(\cdot) $ is a real-valued function on $ \mathbb{R}^{n} $. We say that
(ⅰ) $ \mathcal{C}_{\mathrm{loc}}^{\mathrm{log}}(\mathbb{R}^{n}) $ is the set of all local log-Hölder continuous functions $ p(\cdot) $ satisfying
$ |p(x)−p(y)|≤−Clog(|x−y|),|x−y|≤12,x,y∈Rn. $ | (2.1) |
(ⅱ) $ \mathcal{C}_{0}^{\mathrm{log}}(\mathbb{R}^{n}) $ is the set of all local log-Hölder continuous functions $ p(\cdot) $ satisfying at origin
$ |p(x)−p0|≤Clog(e+1|x|),x∈Rn. $ | (2.2) |
(ⅲ) $ \mathcal{C}_{\mathrm{\infty}}^{\mathrm{log}}(\mathbb{R}^{n}) $ is the set of all local log-Hölder continuous functions satisfying at infinity
$ |p(x)−p∞|≤C∞log(e+|x|),x∈Rn. $ | (2.3) |
(ⅳ) $ \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) = \mathcal{C}_{\mathrm{\infty}}^{\mathrm{log}}(\mathbb{R}^{n})\cap \mathcal{C}_{\mathrm{loc}}^{\mathrm{log}}(\mathbb{R}^{n}) $ denotes the set of all global log-Hölder continuous functions $ p(\cdot) $.
It was proved in [7] that if $ p(\cdot)\in \mathcal{P}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) $, then the Hardy-Littlewood maximal operator $ M $ is bounded on $ L^{p(\cdot)}(\mathbb{R}^{n}) $.
$ \mathbf{Definition\; 2.4.} $ ([21]) Given a non-negative, measure function $ \omega $, for $ 1 < p < \infty $, $ \omega\in A_{p} $ if
$ [\omega]_{A_{p}}: = \sup\limits_{B}\Big(\frac{1}{|B|}\int_{B}\omega(x)\mathrm{d}x\Big)\Big(\frac{1}{|B|}\int_{B}\omega(x)^{1-p^{\prime}}\mathrm{d}x\Big)^{p-1} < \infty, $ |
where the supremum is taken over all balls $ B\subset \mathbb{R}^{n} $. Especially, we say $ \omega\in A_{1} $ if
$ [\omega]_{A_{1}}: = \sup\limits_{B}\frac{\frac{1}{|B|}\int_{B}\omega(x)\mathrm{d}x}{\mathrm{essinf}\{\omega(x): x\in B\}} < \infty. $ |
These weights characterize the weighted norm inequalities for the Hardy-Littlewood maximal operator, that is, $ \omega\in A_{p} $, $ 1 < p < \infty $, if and only if $ M:L^{p}(\omega)\rightarrow L^{p}(\omega) $.
$ \mathbf{Definition\; 2.5.} $ ([15]) Suppose that $ p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) $. A weight $ \omega $ is in the class $ A_{p(\cdot)} $ if
$ supB:ball|B|−1‖ω1p(⋅)χB‖Lp(⋅)‖ω−1p(⋅)χB‖Lp′(⋅)<∞. $ | (2.4) |
Obviously, if $ p(\cdot) = p, 1 < p < \infty $, then the above definition reduces to the classical Muckenhoupt $ A_{p} $ class.
From [15], if $ p(\cdot), q(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) $, and $ p(\cdot)\leq q(\cdot) $, then $ A_{1}\subset A_{p(\cdot)}\subset A_{q(\cdot)} $.
$ \mathbf{Definition\; 2.6.} $ ([15]) Let $ 0 < \beta < n $ and $ p_{1}(\cdot), p_{2}(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) $ such that $ \frac{1}{p_{2}(x)} = \frac{1}{p_{1}(x)}-\frac{\beta}{n} $. A weight $ \omega $ is said to be an $ A(p_{1}(\cdot), p_{2}(\cdot)) $ weight if
$ ‖χB‖Lp2(⋅)(ωp2(⋅))‖χB‖(Lp1(⋅)(ωp1(⋅))′≤C|B|1−βn. $ | (2.5) |
$ \mathbf{Definition\; 2.7.} $ ([25]) Let $ p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) $ and $ \omega\in A_{p(\cdot)} $. The weighted variable exponent Lebesgue space $ L^{p(\cdot)}(\omega) $ denotes the set of all complex-valued measurable functions $ f $ satisfying
$ L^{p(\cdot)}(\omega): = \{f:f\omega^{\frac{1}{p(\cdot)}}\in L^{p(\cdot)}(\mathbb{R}^{n})\}. $ |
This is a Banach space equipped with the norm
$ \|f\|_{L^{p(\cdot)}(\omega)}: = \|f\omega^{\frac{1}{p(\cdot)}}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}. $ |
$ \mathbf{Definition\; 2.8.} $ ([1]) Let $ \omega $ be a weight on $ \mathbb{R}^{n} $, $ 0\leq \lambda < \infty $, $ 0 < q < \infty $, $ p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) $, and $ \alpha(\cdot): \mathbb{R}^{n}\rightarrow \mathbb{R} $ with $ \alpha(\cdot)\in L^{\infty}(\mathbb{R}^{n}) $. The weighted variable exponent Morrey-Herz space $ \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), \lambda}(\omega) $ is the set of all measurable functions $ f $ given by
$ \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), \lambda}(\omega): = \{f\in L_{\mathrm{loc}}^{p(\cdot)}(\mathbb{R}^{n}\backslash\{0\}, \omega): \|f\|_{\mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), \lambda}(\omega)} < \infty \}, $ |
where
$ \|f\|_{\mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), \lambda}(\omega)}: = \sup\limits_{k_{0}\in \mathbb{Z}}2^{-k_{0}\lambda}\Big\{\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(\cdot) q}\|f\chi_{k}\|_{L^{p(\cdot)}(\omega)}^{q} \Big\}^{\frac{1}{q}}. $ |
It is noted that $ \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), 0}(\omega) = \mathrm{\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot)}(\omega) $ is the variable exponent weighted Herz space defined in [2].
$ \mathbf{Definition\; 2.9.} $ ([15]) Let $ \mathcal{M} $ be the set of all complex-valued measurable functions defined on $ \mathbb{R}^{n} $ and $ X $ be a linear subspace of $ \mathcal{M} $.
(1) The space $ X $ is said to be a Banach function space if there exists a function $ \|\cdot\|_{X}:\mathcal{M}\rightarrow [0, \infty] $ satisfying the following properties: Let $ f, g, f_{j}\in\mathcal{M}\; (j = 1, 2, \ldots) $. Then
(a) $ f\in X $ holds if and only if $ \|f\|_{X} < \infty $.
(b) Norm property:
ⅰ. Positivity: $ \|f\|_{X}\geq 0 $.
ⅱ. Strict positivity: $ \|f\|_{X} = 0 $ holds if and only if $ f(x) = 0 $ for almost every $ x\in \mathbb{R}^{n} $.
ⅲ. Homogeneity: $ \|\lambda f\|_{X} = |\lambda|\cdot\|f\|_{X} $ holds for all $ \lambda\in\mathbb{C} $.
ⅳ. Triangle inequality: $ \|f+g\|_{X}\leq \|f\|_{X}+\|g\|_{X} $.
(c) Symmetry: $ \|f\|_{X} = \||f|\|_{X} $.
(d) Lattice property: If $ 0\leq g(x)\leq f(x) $ for almost every $ x\in \mathbb{R}^{n} $, then $ \|g\|_{X}\leq\|f\|_{X} $.
(e) Fatou property: If $ 0\leq f_{j}(x)\leq f_{j+1}(x) $ for all $ j $, and $ f_{j}(x)\rightarrow f(x) $ as $ j\rightarrow \infty $ for almost every $ x\in \mathbb{R}^{n} $, then $ \lim\limits_{j\rightarrow \infty}\|f_{j}\|_{X} = \|f\|_{X} $.
(f) For every measurable set $ F\subset \mathbb{R}^{n} $ such that $ |F| < \infty $, $ \|\chi_{F}\|_{X} $ is finite. Additionally, there exists a constant $ C_{F} > 0 $ depending only on $ F $ so that $ \int_{F}|h(x)|\mathrm{d}x\leq C_{F}\|h\|_{X} $ holds for all $ h\in X $.
(2) Suppose that $ X $ is a Banach function space equipped with a norm $ \|\cdot\|_{X} $. The associated space $ X^{\prime} $ is defined by
$ X^{\prime}: = \{f\in \mathcal{M}:\|f\|_{X^{\prime}} < \infty\}, $ |
where
$ \|f\|_{X^{\prime}}: = \sup\limits_{g}\Big\{\Big|\int_{\mathbb{R}^{n}}f(x)g(x)\mathrm{d}x\Big|:\|g\|_{X}\leq 1 \Big\}. $ |
$ \mathbf{Lemma\; 2.1.} $ ([3]) Let $ X $ be a Banach function space, and then we have the following:
(ⅰ) The associated space $ X^{\prime} $ is also a Banach function space.
(ⅱ) $ \|\cdot\|_{(X^{\prime})^{\prime}} $ and $ \|\cdot\|_{X} $ are equivalent.
(ⅲ) If $ g\in X $ and $ f\in X^{\prime} $, then
$ ∫Rn|f(x)g(x)|dx≤‖f‖X‖g‖X′ $ | (2.6) |
is the generalized Hölder inequality.
$ \mathbf{Lemma\; 2.2.} $ ([15]) If $ X $ is a Banach function space, then we have, for all balls $ B $,
$ 1≤|B|−1‖χB‖X‖χB‖X′. $ | (2.7) |
$ \mathbf{Lemma\; 2.3.} $ ([16]) Let $ X $ be a Banach function space. Suppose that the Hardy-Littlewood maximal operator $ M $ is weakly bounded on $ X $, that is,
$ \|\chi_{\{Mf > \lambda\}}\|_{X}\lesssim \lambda^{-1}\|f\|_{X} $ |
is true for all $ f\in X $ and all $ \lambda > 0 $. Then, we have
$ supB:ball1|B|‖χB‖X‖χB‖X′<∞. $ | (2.8) |
$ \mathbf{Lemma\; 2.4.} $ ([15]) Given a function $ W $ such that $ 0 < W(x) < \infty $ for almost every $ x\in \mathbb{R}^{n} $, $ W\in X_{\mathrm{loc}}(\mathbb{R}^{n}) $ and $ W^{-1}\in (X^{\prime})_{\mathrm{loc}}(\mathbb{R}^{n}) $,
(ⅰ) $ X(\mathbb{R}^{n}, W) $ is Banach function space equipped with the norm
$ ‖f‖X(Rn,W):=‖fW‖X, $ | (2.9) |
where
$ X(Rn,W):={f∈M:fW∈X}. $ | (2.10) |
(ⅱ) The associated space $ X^{\prime}(\mathbb{R}^{n}, W^{-1}) $ of $ X(\mathbb{R}^{n}, W) $ is also a Banach function space.
$ \mathbf{Lemma\; 2.5.} $ ([15]) Let $ X $ be a Banach function space and $ M $ be bounded on $ X^{\prime} $. Then, there exists a constant $ \delta\in(0, 1) $ for all $ B\subset \mathbb{R}^{n} $ and $ E\subset B $,
$ ‖χE‖X‖χB‖X≤(|E||B|)δ. $ | (2.11) |
The paper [19] shows that $ L^{p(\cdot)}(\mathbb{R}^{n}) $ is a Banach function space and the associated space $ L^{p^{\prime}(\cdot)}(\mathbb{R}^{n}) $ with equivalent norm.
$ \mathbf{Remark\; 2.6.} $ ([1]) Let $ p(\cdot)\in\mathcal{P}(\mathbb{R}^{n}) $, and by comparing the $ L^{p(\cdot)}(\omega^{p(\cdot)}) $ and $ L^{p^{\prime}(\cdot)}(\omega^{-p^{\prime}(\cdot)}) $ with the definition of $ X(\mathbb{R}^{n}, W) $, we have the following:
(1) If we take $ W = \omega $ and $ X = L^{p(\cdot)}(\mathbb{R}^{n}) $, then we get $ L^{p(\cdot)}(\mathbb{R}^{n}, \omega) = L^{p(\cdot)}(\omega^{p(\cdot)}) $.
(2) If we consider $ W = \omega^{-1} $ and $ X = L^{p^{\prime}(\cdot)}(\mathbb{R}^{n}) $, then we get $ L^{p^{\prime}(\cdot)}(\mathbb{R}^{n}, \omega^{-1}) = L^{p^{\prime}(\cdot)}(\omega^{-p^{\prime}(\cdot)}) $.
By virtue of Lemma 2.4, we get
$ (L^{p(\cdot)}(\mathbb{R}^{n}, \omega))^{\prime} = (L^{p(\cdot)}(\omega^{p(\cdot)}))^{\prime} = L^{p^{\prime}(\cdot)}(\omega^{-p^{\prime}(\cdot)}) = L^{p^{\prime}(\cdot)}(\mathbb{R}^{n}, \omega^{-1}). $ |
$ \mathbf{Lemma\; 2.7.} $ ([17]) Let $ p(\cdot)\in\mathcal{P}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) $ be a log-Hölder continuous function both at infinity and at origin, if $ \omega^{p_{_{2}}(\cdot)}\in A_{p_{_{2}}(\cdot)} $ implies $ \omega^{-p^{\prime}_{_{2}}(\cdot)}\in A_{p^{\prime}_{_{2}}(\cdot)} $. Thus, the Hardy-Littlewood operator is bounded on $ L^{p^{\prime}_{_{2}}(\cdot)}(\omega^{-p^{\prime}_{_{2}}(\cdot)}) $, and there exist constants $ \delta_{1}, \delta_{2}\in (0, 1) $ such that
$ ‖χE‖Lp2(⋅)(ωp2(⋅))‖χB‖Lp2(⋅)(ωp2(⋅))=‖χE‖(Lp′2(⋅)(ω−p′2(⋅)))′‖χB‖(Lp′2(⋅)(ω−p′2(⋅)))′≤C(|E||B|)δ1, $ | (2.12) |
and
$ ‖χE‖(Lp2(⋅)(ωp2(⋅)))′‖χB‖(Lp2(⋅)(ωp2(⋅)))′≤C(|E||B|)δ2, $ | (2.13) |
for all balls $ B\subset \mathbb{R}^{n} $ and all measurable sets $ E\subset B $.
$ \mathbf{Lemma\; 2.8.} $ ([15]) Let $ p_{1}(\cdot)\in \mathcal{P}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) $ and $ 0 < \beta < \frac{n}{p_{1}^{+}} $. Define $ p_{2}(\cdot) $ by $ \frac{1}{p_{1}(x)}-\frac{1}{p_{2}(\cdot)} = \frac{\beta}{n} $. If $ \omega\in A(p_{1}(\cdot), p_{2}(\cdot)) $, then $ I_{\beta} $ is bounded from $ L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}) $ to $ L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}) $.
$ \mathbf{Lemma\; 2.9.} $ ([24, Corollary 3.11]) Let $ b\in \mathrm{BMO}(\mathbb{R}^{n}), m\in \mathbb{N} $, and $ k, j\in \mathbb{Z} $ with $ k > j $. Then, we have
$ C−1‖b‖mBMO(Rn)≤supB1‖χB‖Lp(⋅)(ω)‖(b−bB)mχB‖Lp(⋅)(ω)≤C‖b‖mBMO(Rn). $ | (2.14) |
$ ‖(b−bBj)mχBk‖Lp(⋅)(ω)≤C(k−j)m‖b‖mBMO(Rn)‖χBk‖Lp(⋅)(ω). $ | (2.15) |
$ \mathbf{Proposition\; 3.1.} $ ([12] Let $ q(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) $, $ 0 < p < \infty $, and $ 0\leq \lambda < \infty $. If $ \alpha(\cdot)\in L^{\infty}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) $, then
$ ‖f‖pM˙Kα(⋅),λp,q(⋅)(ωq(⋅))=supk0∈Z2−k0λpk0∑j=−∞2jα(⋅)p‖fχj‖pLq(⋅)(ωq(⋅))≤max{supk0∈Zk0<02−k0λp(k0∑j=−∞2jα(0)p‖fχj‖pLq(⋅)(ωq(⋅))),supk0∈Zk0≥0(2−k0λp(−1∑j=−∞2jα(0)p‖fχj‖pLq(⋅)(ωq(⋅)))+2−k0λp(k0∑j=02jα(∞)p‖fχj‖pLq(⋅)(ωq(⋅))))}. $ |
$ \mathbf{Theorem\; 3.1.} $ Let $ 0 < q_{1}\leq q_{2} < \infty $, $ p_{2}(\cdot)\in\mathcal{P}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) $ and $ p_{1}(\cdot) $ be such that $ \frac{1}{p_{2}(\cdot)} = \frac{1}{p_{1}(\cdot)}-\frac{\beta}{n} $. Also, let $ \omega^{p_{2}(\cdot)}\in A_{1} $, $ b\in \mathrm{BMO}(\mathbb{R}^{n}) $, $ \lambda > 0 $ and $ \alpha(\cdot)\in L^{\infty}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) $ be log-Hölder continuous at the origin, with $ \alpha(0)\leq \alpha(\infty) < \lambda+n\delta_{2}-\beta $, where $ \delta_{2}\in(0, 1) $ is the constant appearing in (2.13). Then,
$ ‖Hmβ,bf‖M˙Kα(⋅),λq2,p2(⋅)(ωp2(⋅))≲‖b‖mBMO‖f‖M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅)). $ | (3.1) |
Proof. For arbitrary $ f\in \mathrm{M\dot{K}}_{q_{1}, p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)}) $, let $ f_{j} = f\cdot\chi_{j} = f\cdot\chi_{A_{j}} $ for every $ j\in \mathbb{Z} $, and then
$ f(x)=∞∑j=−∞f(x)⋅χj(x)=∞∑j=−∞fj(x). $ | (3.2) |
By the inequality of $ C_{p} $, it is not difficult to see that
$ |Hmβ,bf(x)χk(x)|≤1|x|n−β∫|t|<|x||b(x)−b(t)|m|f(t)|dt⋅χk(x)≤1|x|n−β∫B(0,|x|)|b(x)−b(t)|m|f(t)|dt⋅χk(x)≤1|x|n−β∫Bk|b(x)−b(t)|m|f(t)|dt⋅χk(x)≤2−k(n−β)k∑j=−∞∫Aj|b(x)−b(t)|m|f(t)|dt⋅χk(x)≲2−k(n−β)k∑j=−∞∫Aj|b(x)−bAj|m|f(t)|dt⋅χk(x)+2−k(n−β)k∑j=−∞∫Aj|b(t)−bAj|m|f(t)|dt⋅χk(x)=E1+E2. $ | (3.3) |
For $ E_{1} $, by the generalized Hölder inequality, we have
$ E1=2−k(n−β)k∑j=−∞∫Aj|b(x)−bAj|m|f(t)|dt⋅χk(x)≤2−k(n−β)k∑j=−∞|b(x)−bAj|m⋅χk(x)‖fj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′. $ | (3.4) |
By taking the $ (L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})) $-norm on both sides of (3.4) and using (2.15) of Lemma 2.9, we get
$ ‖E1‖(Lp2(⋅)(ωp2(⋅)))≤2−k(n−β)k∑j=−∞‖|b(x)−bAj|m⋅χk‖(Lp2(⋅)(ωp2(⋅)))‖fj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′≲2−k(n−β)k∑j=−∞(k−j)m‖b‖mBMO‖χk‖(Lp2(⋅)(ωp2(⋅)))‖fj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′. $ | (3.5) |
For $ E_{2} $, by the generalized Hölder inequality, we have
$ E2=2−k(n−β)k∑j=−∞∫Aj|b(t)−bAj|m|f(t)|dt⋅χk(x)≤2−k(n−β)k∑j=−∞‖|b(t)−bAj|m⋅χj(x)‖(Lp1(⋅)(ωp1(⋅)))′‖fj‖Lp1(⋅)(ωp1(⋅))⋅χk(x). $ | (3.6) |
By taking the $ (L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})) $-norm on both sides of (3.6) and using (2.14) of Lemma 2.9, we get
$ ‖E2‖(Lp2(⋅)(ωp2(⋅)))≤2−k(n−β)k∑j=−∞‖|b(x)−bAj|m⋅χj‖(Lp1(⋅)(ωp1(⋅)))′‖fj‖Lp1(⋅)(ωp1(⋅))‖χk‖(Lp2(⋅)(ωp2(⋅)))≲2−k(n−β)k∑j=−∞‖b‖mBMO‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖fj‖Lp1(⋅)(ωp1(⋅))‖χk‖(Lp2(⋅)(ωp2(⋅))). $ | (3.7) |
Hence, from inequalities (3.3), (3.5) and (3.7), we get
$ ‖Hmβ,bf(x)χk‖(Lp2(⋅)(ωp2(⋅)))≲2−k(n−β)‖fj‖Lp1(⋅)(ωp1(⋅)){k∑j=−∞(k−j)m‖b‖mBMO‖χk‖(Lp2(⋅)(ωp2(⋅)))‖χj‖(Lp1(⋅)(ωp1(⋅)))′+k∑j=−∞‖b‖mBMO‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖(Lp2(⋅)(ωp2(⋅)))}≲2−k(n−β)‖b‖mBMOk∑j=−∞(k−j)m‖fj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖(Lp2(⋅)(ωp2(⋅))). $ | (3.8) |
By virtue of Lemma 2.5, we have
$ ‖χBk‖X‖χk‖X≤(|Bk||Ak|)δ=C⟹‖χBk‖X≤C‖χk‖X. $ | (3.9) |
Note that $ \|\chi_{j}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})} \leq\|\chi_{B_{j}}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})} $ and $ \chi_{B_{j}}(x)\lesssim 2^{-j\beta}I_{\beta}(\chi_{B_{j}}) $ (see [18, p. 350]). By applying (2.8), (3.9) and Lemma 2.8, we obtain
$ ‖χj‖Lp2(⋅)(ωp2(⋅))≤‖χBj‖Lp2(⋅)(ωp2(⋅))≲2−jβ‖Iβ(χBj)‖Lp2(⋅)(ωp2(⋅))≲2−jβ‖χBj‖Lp1(⋅)(ωp1(⋅))≲2−jβ‖χj‖Lp1(⋅)(ωp1(⋅))≲2j(n−β)‖χj‖−1(Lp1(⋅)(ωp1(⋅)))′. $ | (3.10) |
By virtue of (2.7) and (2.8), combining (2.13) and (3.10), we have
$ 2k(β−n)‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖Lp2(⋅)(ωp2(⋅))=2kβ‖χj‖(Lp1(⋅)(ωp1(⋅)))′2−kn‖χk‖Lp2(⋅)(ωp2(⋅))≲2kβ‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖−1(Lp2(⋅)(ωp2(⋅)))′=2kβ‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χj‖−1(Lp2(⋅)(ωp2(⋅)))′‖χj‖(Lp2(⋅)(ωp2(⋅)))′‖χk‖(Lp2(⋅)(ωp2(⋅)))′≲2kβ2nδ2(j−k)‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χj‖−1(Lp2(⋅)(ωp2(⋅)))′≲2kβ2nδ2(j−k)2j(n−β)‖χj‖−1Lp2(⋅)(ωp2(⋅))‖χj‖−1(Lp2(⋅)(ωp2(⋅)))′=2kβ2nδ2(j−k)2−jβ(2−jn‖χj‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp2(⋅)(ωp2(⋅)))′)−1≲2(β−nδ2)(k−j). $ | (3.11) |
Hence by virtue of (3.8) and (3.11), we have
$ ‖Hmβ,bf(x)χk‖(Lp2(⋅)(ωp2(⋅)))≲‖b‖mBMOk∑j=−∞(k−j)m2(β−nδ2)(k−j)‖fj‖Lp1(⋅)(ωp1(⋅)). $ | (3.12) |
In order to estimate $ \|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})} $, we consider two cases as below.
Case 1: For $ j < 0 $, we get
$ ‖fj‖Lp1(⋅)(ωp1(⋅))=2−jα(0)(2jα(0)q1‖fj‖q1Lp1(⋅)(ωp1(⋅)))1q1≤2−jα(0)(j∑i=−∞2iα(0)q1‖fi‖q1Lp1(⋅)(ωp1(⋅)))1q1=2j(λ−α(0)){2−jλ(j∑i=−∞2iα(⋅)q1‖fi‖q1Lp1(⋅)(ωp1(⋅)))1q1}≲2j(λ−α(0))‖f‖M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅)). $ | (3.13) |
Case 2: For $ j\geq0 $, we get
$ ‖fj‖Lp1(⋅)(ωp1(⋅))=2−jα(∞)(2jα(∞)q1‖fj‖q1Lp1(⋅)(ωp1(⋅)))1q1≤2−jα(∞)(j∑i=−∞2iα(∞)q1‖fi‖q1Lp1(⋅)(ωp1(⋅)))1q1=2j(λ−α(∞)){2−jλ(j∑i=−∞2iα(⋅)q1‖fi‖q1Lp1(⋅)(ωp1(⋅)))1q1}≲2j(λ−α(∞))‖f‖M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅)). $ | (3.14) |
Now, by virtue of the condition $ q_{1}\leq q_{2} $ and the definition of weighted variable exponent Morrey-Herz space along with the use of Proposition 3.1, we get
$ ‖Hmβ,bf‖q1M˙Kα(⋅),λq2,p2(⋅)(ωp2(⋅))=supk0∈Z2−k0λq1k0∑k=−∞2kα(⋅)q1‖Hmβ,bfχk‖q1Lp2(⋅)(ωp2(⋅))≤max{supk0∈Zk0<02−k0λq1k0∑k=−∞2kα(0)q1‖Hmβ,bfχk‖q1Lp2(⋅)(ωp2(⋅)),supk0∈Zk0≥02−k0λq1(−1∑k=−∞2kα(0)q1‖Hmβ,bfχk‖q1Lp2(⋅)(ωp2(⋅))+k0∑k=02kα(∞)q1‖Hmβ,bfχk‖q1Lp2(⋅)(ωp2(⋅)))}=max{J1,J2+J3}, $ | (3.15) |
where
$ J1=supk0∈Zk0<02−k0λq1k0∑k=−∞2kα(0)q1‖Hmβ,bfχk‖q1Lp2(⋅)(ωp2(⋅)),J2=supk0∈Zk0≥02−k0λq1−1∑k=−∞2kα(0)q1‖Hmβ,bfχk‖q1Lp2(⋅)(ωp2(⋅)),J3=supk0∈Zk0≥02−k0λq1k0∑k=02kα(∞)q1‖Hmβ,bfχk‖q1Lp2(⋅)(ωp2(⋅)). $ |
First, we estimate $ J_{1} $. Since $ \alpha(0)\leq \alpha(\infty) < n\delta_{2}+\lambda-\beta $, combining (3.12) and (3.13), we get
$ J1≲supk0∈Zk0<02−k0λq1k0∑k=−∞2kα(0)q1(k∑j=−∞(k−j)m‖b‖mBMO2(β−nδ2)(k−j)‖f‖Lp1(⋅)(ωp1(⋅)))q1≲supk0∈Zk0<02−k0λq1k0∑k=−∞2kα(0)q1(k∑j=−∞(k−j)m‖b‖mBMO2(β−nδ2)(k−j)2j(λ−α(0))‖f‖M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅)))q1≲‖b‖mq1BMO‖f‖q1M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅))supk0∈Zk0<02−k0λq1k0∑k=−∞2kα(0)q1(k∑j=−∞(k−j)m2(β−nδ2)(k−j)2j(λ−α(0)))q1≲‖b‖mq1BMO‖f‖q1M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅))supk0∈Zk0<02−k0λq1k0∑k=−∞2kλq1(k∑j=−∞(k−j)m2(j−k)(nδ2+λ−β−α(0)))q1≲‖b‖mq1BMO‖f‖q1M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅)). $ |
The estimate of $ J_{2} $ is similar to that of $ J_{1} $.
Lastly, we estimate $ J_{3} $. Since $ \alpha(0)\leq \alpha(\infty) < n\delta_{2}+\lambda-\beta $, combining (3.12) and (3.14), we get
$ J3≲supk0∈Zk0≥02−k0λq1k0∑k=02kα(∞)q1(k∑j=−∞(k−j)m‖b‖mBMO2(β−nδ2)(k−j)‖f‖Lp1(⋅)(ωp1(⋅)))q1≲supk0∈Zk0≥02−k0λq1k0∑k=02kα(∞)q1(k∑j=−∞(k−j)m‖b‖mBMO2(β−nδ2)(k−j)2j(λ−α(∞))‖f‖M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅)))q1≲‖b‖mq1BMO‖f‖q1M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅))supk0∈Zk0≥02−k0λq1k0∑k=02kα(∞)q1(k∑j=−∞(k−j)m2(β−nδ2)(k−j)2j(λ−α(∞)))q1≲‖b‖mq1BMO‖f‖q1M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅))supk0∈Zk0≥02−k0λq1k0∑k=02kλq1(k∑j=−∞(k−j)m2(j−k)(nδ2+λ−β−α(∞)))q1≲‖b‖mq1BMO‖f‖q1M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅)). $ |
The desired result is obtained by combining the estimates of $ J_{1} $, $ J_{2} $ and $ J_{3} $.
$ \mathbf{Theorem\; 3.2.} $ Let $ 0 < q_{1}\leq q_{2} < \infty $, $ p_{2}(\cdot)\in\mathcal{P}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) $ and $ p_{1}(\cdot) $ be such that $ \frac{1}{p_{2}(\cdot)} = \frac{1}{p_{1}(\cdot)}-\frac{\beta}{n} $. Also, let $ \omega^{p_{2}(\cdot)}\in A_{1} $, $ b\in \mathrm{BMO}(\mathbb{R}^{n}) $, $ \lambda > 0 $ and $ \alpha(\cdot)\in L^{\infty}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) $ be log-Hölder continuous at the origin, with $ \lambda-n\delta_{1} < \alpha(0)\leq\alpha(\infty) $, where $ \delta_{1}\in(0, 1) $ is the constant appearing in (2.12). Then,
$ ‖H∗mβ,bf‖M˙Kα(⋅),λq2,p2(⋅)(ωp2(⋅))≲‖b‖mBMO‖f‖M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅)). $ | (3.16) |
Proof. From an application of the inequality of $ C_{p} $, it is not difficult to see that
$ |H∗mβ,bf(x)χk(x)|≤∫Rn∖Bk|t|β−n|b(x)−b(t)|m|f(t)|dt⋅χk(x)≤∞∑j=k+1∫Aj|t|β−n|b(x)−b(t)|m|f(t)|dt⋅χk(x)≲∞∑j=k+1∫Aj|t|β−n|b(x)−bAj|m|f(t)|dt⋅χk(x)+∞∑j=k+1∫Aj|t|β−n|b(t)−bAj|m|f(t)|dt⋅χk(x)=F1+F2. $ | (3.17) |
For $ F_{1} $, by the generalized Hölder inequality, we have
$ F1≤∞∑j=k+12−j(n−β)∫Aj|b(x)−bAj|m|f(t)|dt⋅χk(x)≤∞∑j=k+12−j(n−β)|b(x)−bAj|m⋅χk(x)‖fj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′. $ | (3.18) |
By taking the $ (L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})) $-norm on both sides of (3.18) and using (2.15) of Lemma 2.9, we get
$ ‖F1‖(Lp2(⋅)(ωp2(⋅)))≤∞∑j=k+12−j(n−β)‖|b(x)−bAj|m⋅χk‖(Lp2(⋅)(ωp2(⋅)))‖fj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′≲∞∑j=k+12−j(n−β)(j−k)m‖b‖mBMO‖χk‖(Lp2(⋅)(ωp2(⋅)))‖fj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′. $ | (3.19) |
For $ F_{2} $, by the generalized Hölder inequality, we have
$ F2≤∞∑j=k+12−j(n−β)∫Aj|b(t)−bAj|m|f(t)|dt⋅χk(x)≤∞∑j=k+12−j(n−β)‖|b(t)−bAj|m⋅χj(x)‖(Lp1(⋅)(ωp1(⋅)))′‖fj‖Lp1(⋅)(ωp1(⋅))⋅χk(x). $ | (3.20) |
By taking the $ (L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})) $-norm on both sides of (3.20) and using (2.15) of Lemma 2.9, we get
$ ‖F2‖(Lp2(⋅)(ωp2(⋅)))≤∞∑j=k+12−j(n−β)‖|b(t)−bAj|m⋅χj‖(Lp1(⋅)(ωp1(⋅)))′‖fj‖Lp1(⋅)(ωp1(⋅))‖χk‖(Lp2(⋅)(ωp2(⋅)))≲∞∑j=k+12−j(n−β)‖b‖mBMO‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖fj‖Lp1(⋅)(ωp1(⋅))‖χk‖(Lp2(⋅)(ωp2(⋅))). $ | (3.21) |
Hence, from inequalities (3.17), (3.19) and (3.21), we get
$ ‖H∗mβ,bf(x)χk‖(Lp2(⋅)(ωp2(⋅)))≲‖fj‖Lp1(⋅)(ωp1(⋅)){∞∑j=k+12−j(n−β)(j−k)m‖b‖mBMO‖χk‖(Lp2(⋅)(ωp2(⋅)))‖χj‖(Lp1(⋅)(ωp1(⋅)))′+∞∑j=k+12−j(n−β)‖b‖mBMO‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖(Lp2(⋅)(ωp2(⋅)))}≲‖b‖mBMO∞∑j=k+12−j(n−β)(j−k)m‖fj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖(Lp2(⋅)(ωp2(⋅))). $ | (3.22) |
On the other hand, by (2.7) and (2.8), combining (2.12) and (3.10), we have
$ 2−j(n−β)‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′=2jβ‖χk‖Lp2(⋅)(ωp2(⋅))2−jn‖χj‖(Lp1(⋅)(ωp1(⋅)))′≲2jβ‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖−1Lp1(⋅)(ωp1(⋅))=2jβ‖χj‖−1Lp1(⋅)(ωp1(⋅))‖χj‖Lp2(⋅)(ωp2(⋅))‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖Lp2(⋅)(ωp2(⋅))≲2jβ2nδ1(k−j)‖χj‖−1Lp1(⋅)(ωp1(⋅))‖χj‖Lp2(⋅)(ωp2(⋅))≲2jβ2nδ1(k−j)2j(n−β)‖χj‖−1Lp1(⋅)(ωp1(⋅))‖χj‖−1(Lp1(⋅)(ωp1(⋅)))′=2jβ2nδ1(k−j)2−jβ(2−jn‖χj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′)−1≲2nδ1(k−j). $ | (3.23) |
Hence combining (3.22) and (3.23), we obtain
$ ‖H∗mβ,bf(x)χk‖(Lp2(⋅)(ωp2(⋅)))≲‖b‖mBMO∞∑j=k+1(j−k)m2nδ1(k−j)‖fj‖Lp1(⋅)(ωp1(⋅)). $ | (3.24) |
Next, by virtue of the condition $ q_{1}\leq q_{2} $ and the definition of weighted variable exponent Morrey-Herz space along with the use of Proposition 3.1, we get
$ ‖H∗mβ,bf‖q1M˙Kα(⋅),λq2,p2(⋅)(ωp2(⋅))=supk0∈Z2−k0λq1k0∑k=−∞2kα(⋅)q1‖H∗mβ,bfχk‖q1Lp2(⋅)(ωp2(⋅))≤max{supk0∈Zk0<02−k0λq1k0∑k=−∞2kα(0)q1‖H∗mβ,bfχk‖q1Lp2(⋅)(ωp2(⋅)),supk0∈Zk0≥02−k0λq1(−1∑k=−∞2kα(0)q1‖H∗mβ,bfχk‖q1Lp2(⋅)(ωp2(⋅))+k0∑k=02kα(∞)q1‖H∗mβ,bfχk‖q1Lp2(⋅)(ωp2(⋅)))}=max{Y1,Y2+Y3}, $ | (3.25) |
where
$ Y1=supk0∈Zk0<02−k0λq1k0∑k=−∞2kα(0)q1‖H∗mβ,bfχk‖q1Lp2(⋅)(ωp2(⋅)),Y2=supk0∈Zk0≥02−k0λq1−1∑k=−∞2kα(0)q1‖H∗mβ,bfχk‖q1Lp2(⋅)(ωp2(⋅)),Y3=supk0∈Zk0≥02−k0λq1k0∑k=02kα(∞)q1‖H∗mβ,bfχk‖q1Lp2(⋅)(ωp2(⋅)). $ |
First, we estimate $ Y_{1} $. Since $ \lambda-n\delta_{1} < \alpha(0)\leq \alpha(\infty) $, combining (3.24) and (3.13), we get
$ Y1≲supk0∈Zk0<02−k0λq1k0∑k=−∞2kα(0)q1(∞∑j=k+1(j−k)m‖b‖mBMO2nδ1(k−j)‖f‖Lp1(⋅)(ωp1(⋅)))q1≲supk0∈Zk0<02−k0λq1k0∑k=−∞2kα(0)q1(∞∑j=k+1(j−k)m‖b‖mBMO2nδ1(k−j)2j(λ−α(0))‖f‖M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅)))q1≲‖b‖mq1BMO‖f‖q1M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅))supk0∈Zk0<02−k0λq1k0∑k=−∞2kα(0)q1(∞∑j=k+1(j−k)m2nδ1(k−j)2j(λ−α(0)))q1≲‖b‖mq1BMO‖f‖q1M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅))supk0∈Zk0<02−k0λq1k0∑k=−∞2kλq1(∞∑j=k+1(j−k)m2(j−k)(λ−nδ1−α(0)))q1≲‖b‖mq1BMO‖f‖q1M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅)). $ |
The estimate of $ Y_{2} $ is similar to that of $ Y_{1} $.
Lastly, we estimate $ Y_{3} $. Since $ \lambda-n\delta_{1} < \alpha(0)\leq \alpha(\infty) $, combining (3.24) and (3.14), we get
$ Y3≲supk0∈Zk0≥02−k0λq1k0∑k=02kα(∞)q1(∞∑j=k+1(j−k)m‖b‖mBMO2nδ1(k−j)‖f‖Lp1(⋅)(ωp1(⋅)))q1≲supk0∈Zk0≥02−k0λq1k0∑k=02kα(∞)q1(∞∑j=k+1(j−k)m‖b‖mBMO2nδ1(k−j)2j(λ−α(∞))‖f‖M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅)))q1≲‖b‖mq1BMO‖f‖q1M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅))supk0∈Zk0≥02−k0λq1k0∑k=02kα(∞)q1(∞∑j=k+1(j−k)m2nδ1(k−j)2j(λ−α(∞)))q1≲‖b‖mq1BMO‖f‖q1M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅))supk0∈Zk0≥02−k0λq1k0∑k=02kλq1(∞∑j=k+1(j−k)m2(j−k)(λ−nδ1−α(∞)))q1≲‖b‖mq1BMO‖f‖q1M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅)). $ |
The desired result is obtained by combining the estimates of $ Y_{1} $, $ Y_{2} $ and $ Y_{3} $.
This paper considers the boundedness for $ m $th order commutators of $ n- $dimensional fractional Hardy operators $ \mathcal{H}^{m}_{_{\beta, b}} $ and adjoint operators $ \mathcal{H}_{\beta, b}^{\ast m} $ on weighted variable exponent Morrey-Herz spaces $ \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), \lambda}(\omega) $. When $ m = 0 $, our main result holds on weighted variable exponent Morrey-Herz space for fractional Hardy operators and generalizes the result of Asim et al. in [1, Theorems 4.2 and 4.3]. When $ m = 1 $, our main result holds on weighted variable exponent Morrey-Herz space for commutators of the fractional Hardy operators and generalizes the result of Hussain et al. in [12, Theorems 18 and 19].
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This paper is supported by the National Natural Science Foundation of China (Grant No. 12161071), Qinghai Minzu University campus level project (Nos. 23GH29, 23GCC10).
All authors declare that they have no conflicts of interest.
[1] | Xu L, Chi I. (2011) Life satisfaction among rural Chinese grandparents: the roles of intergenerational family relationship and support exchange with grandchildren. Int J Social Welfare 20(s1): S148-S159. |
[2] | Chow N. (2004) Asian value and aged care. Geriatr Gerontol Int 4(S1): S21-S25. |
[3] | Kim U, Tirandis H, Kagitcibasi G, et al. (Eds. ) (1994) Individualism and collectivism: theory, method, and applications Thousand Oaks: Sage. |
[4] | Chen F, Liu G. (2012) The health implications of grandparents caring for grandchildren in China. J Gerontol 67(1): 99-112. |
[5] | Xie X, Xia Y. (2011) Grandparenting in Chinese Immigrant Families. Marriage Family Rev 47(6):383-396. |
[6] | Bennett P, Meredith WH. (1995) The modern role of the grandmother in China: a departure from the confucian ideal. Int J Sociol Family 25(1): 1-12. |
[7] | Bowers B, Myers B. (1999) Grandmothers providing care for grandchildren: consequences of various levels of caregiving. Family Relat 48(3): 303-311. |
[8] | Pruchno RA, McKenney D. (2002) Psychological well-being of black and white grandmothers raising grandchildren: examination of a two-factor model. J Gerontol 57B(5): 444-452. |
[9] | Waldrop DP, Weber JA. (2001) From grandparent to caregiver: the stress and satisfaction of raising grandchildren. Families Society: J Contemp Human Services 82(5): 461-472. |
[10] | Musil CM, Ahmad M. (2002) Health of grandmothers a comparison by caregiver status. J Aging Health 14(1): 96-121. |
[11] | Musil CM. (2000) Health of grandmothers as caregivers: A ten month follow-up. J Women Aging 12(1-2): 129-145. |
[12] | Dong X, Simon M, Evans D. (2012) Decline in physical function and risk of elder abuse reported to social services in a community-dwelling population of older adults. J Am Geriatr Society 60(10): 1922-1928. |
[13] | Dong X, Chang ES, Wong E, et al. (2010) Assessing the health needs of Chinese older adults: findings from a community-based participatory research study in Chicago’s Chinatown. J Aging Res 2010: 1-12. |
[14] | Kamo Y. (1998) Asian grandparents. In: Handbook on grandparenthood. New York: Greenwood Press, 97-112. |
[15] | Lee E. (1997) Chinese American families. In: Working with Asian Americans: A guide for clinicians: 46-78. |
[16] | Kramer EJ, Kwong K, Lee E, et al. (2002) Cultural factors influencing the mental health of Asian Americans. Western J Med 176(4): 227. |
[17] | Tam VCW, Detzner D. (1998) Grandparents as a family resource in Chinese-American families: Perceptions of the middle generation. In: MCCubbin HI, Thompson EA, Thompson AI, et al (Eds. ), Resiliency in Native-American and immigrant families. Thousand Oaks: Sage, 243-263. |
[18] | Phinney J, Ong A, Madden T. (2000) Cultural values and intergenerational value discrepancies in immigrant and non-immigrant Families. Child Dev 71(2): 528-539. |
[19] | Taylor P, Passel J, Fry R, et al. (2010) The return of the multi-generational family household. Pew Res Center 18: 1-25. |
[20] | Silverstein M, Chen X. (1999) The impact of acculturation in Mexican American families on the quality of adult grandchild-grandparent relationships. J Marriage Family 61(1): 188-198. |
[21] | Dong X, Chang ES, Wong E, et al. (2012) A qualitative study of filial piety among community dwelling, Chinese, older adults: Changing meaning and impact on health and well-being. J Intergenerat Relat 10(2): 131-146. |
[22] | Chen R, Simon MA, Chang ES, et al. (2014) The perception of social support among U. S. Chinese older adults: findings from the PINE study. J Aging Health 26(7): 1137-1154. |
[23] |
Lou V. (2010) Life satisfaction of older adults in Hong Kong: The role of social support from grandchildren. Social Indic Res 95: 377-391. doi: 10.1007/s11205-009-9526-6
![]() |
[24] | Lo M, Liu YH. (2009) Quality of life among older grandparent caregivers: a pilot study. J Adv Nurs 65(7): 1475-1484. |
[25] |
Treas J, Mazumdar S. (2002) Older people in America’s immigrant families: Dilemmas of dependence, integration, and isolation. J Aging Studies 16: 243-258. doi: 10.1016/S0890-4065(02)00048-8
![]() |
[26] | Guo B, Pickard J, Huang J. (2008) A cultural perspective on health outcomes of caregiving grandparents: Evidence from China. J Intergen Relat 5(4): 25-40. |
[27] | Goh EC. (2009) Grandparents as childcare providers: An in-depth analysis of the case of Xiamen, China. J Aging Studies 23(1): 60-68. |
[28] | Chen F, Liu G, Mair CA. (2011) Intergenerational ties in context: Grandparents caring for grandchildren in China. Social Forces 90(2): 571-594. |
[29] | Ko PC, Hank K. (2014) Grandparents caring for grandchildren in China and Korea: Findings from CHARLS and KLoSA. J Gerontol Series B: Psychol Sci Social Sci 69(4): 646-651. |
[30] | Sun J. (2013) Chinese older adults taking care of grandchildren: Practices and policies for productive aging. Ageing Int 38(1): 58-70. |
[31] |
Wei-Qun LV, Chi I. (2008) Measuring grandparenthood stress and reward: Developing a scale based on perceptions by grandparents with adolescent grandchildren in Hong Kong. Geriatr Gerontol Int 8: 291-299. doi: 10.1111/j.1447-0594.2008.00484.x
![]() |
[32] | Strom RD, Strom SK, Wang CM, et al. (1999) Grandparents in the United States and the Republic of China: A comparison of generations and cultures. Int J Aging Human Develop 49(4):279-317. |
[33] | Chen J, Murayama S, Kamibeppu K. (2010) Factors related to well-being among the elderly in urban China focusing on multiple roles. Biosci Trends 4: 61-71. |
[34] | Grinstead LN, Leder S, Jensen S, et al. (2003) Review of research on the health of caregiving grandparents. J Adv Nursing 44(3): 318-326. |
[35] | Hayslip B, Kaminski PL. (2005) Grandparents raising their grandchildren: A review of the literature and suggestions for practice. Gerontologist 45(2): 262-269. |
[36] | Kataoka-Yahiro M, Ceria C, Caulfield R. (2004) Grandparent caregiving role in ethnically diverse families. J Pediatr Nursing 19(5): 315-328. |
[37] | Nagata D, Cheng WJY, Tsai-Chae AH. (2010) Chinese American grandmothering: a qualitative exploration. Asian Am J Psychol 1(2): 151-161. |
[38] | Pruchno R. (1999) Raising grandchildren: The experiences of black and white grandmothers. Gerontologist 39(2): 209-221. |
[39] | Simon MA, Magee M, Shah A, et al. (2008) Building a Chinese community health survey in Chicago: the value of involving the community to more accurately portray health. Int J Health Ageing Manag 2(1): 42-57. |
[40] | Dong X, Wong E, Simon M. (2014) Study design and implementation of the PINE study. J Aging Health. Published online 25 March 2014. |
[41] | Dong XQ, Chang ES, Wong E, et al. (2011) Working with culture: lessons learned from a community-engaged project in a Chinese aging population. Aging Health 7(4): 529-537. |
[42] |
Dong XQ, Chang ES, Simon M, et al. (2011) Sustaining community-university partnerships: lessons learned from a participatory research project with elderly Chinese. Gateways: Int J Commun Res Engag 4: 31-47. doi: 10.5130/ijcre.v4i0.1767
![]() |
[43] | Dong X, Li Y, Chen R, et al. (2013) Evaluation of community health education workshops among Chinese older adults in Chicago: a community-based participatory research approach. J Educ Train Studies 1(1): 170-181. |
[44] | Chang ES, Simon M, Dong X. (2012) Integrating cultural humility into health care professional education and training. Adv Health Sci Educ 17(2): 269-278. |
[45] | Simon M, Chang E, Rajan K, et al. (2014) Demographic characteristics of U. S. Chinese older adults in the greater Chicago area: Assessing the representativeness of the PINE study. J Aging Health In press. |
[46] | Musil CM. (1998) Health, stress, coping, and social support in grandmother caregivers. Health Care Women Int 19(5): 441-455. |
[47] | Luo Y, LaPierre TA, Hughes ME, et al. (2012) Grandparents providing care to grandchildren: a population-based study of continuity and change. J Family Issues 33(9): 1143-1167. |
[48] | Lumpkin JR. (2008) Grandparents in a parental or near-parental role: Sources of stress and coping mechanisms. J Family Issues 29(3): 357-372. |
[49] | Ku LJE, Stearns SC, Van Houtven CH, et al. (2013) Impact of caring for grandchildren on the health of grandparents in Taiwan. J Gerontol Series B: Psychol Sci Social Sci 68(6): 1009-1021. |
[50] |
Minkler M, Fuller-Thomson E, Miller D, et al. (1997) Depression in grandparents raising grandchildren. Arch Family Med 6: 445-452. doi: 10.1001/archfami.6.5.445
![]() |
[51] | Hughes ME, Wait LJ, LaPierre TA, et al. (2007) All in the family: the impact of caring for grandchildren on grandparents’ health. J Gerontol: Social Sci 62B(2): S108-119. |
[52] |
Burton LM. (1992) Black grandparents rearing children of drug-addicted parents: Stressors, outcomes, and social service needs. Gerontologist 32: 744-751. doi: 10.1093/geront/32.6.744
![]() |
[53] |
Kelley SJ. (1993) Caregiver stress in grandparents raising grandchildren. IMAGE: J Nursing Scholar 25: 331-337. doi: 10.1111/j.1547-5069.1993.tb00268.x
![]() |
1. | Rishi Kumar Pandey, Kottakkaran Sooppy Nisar, Enhanced numerical techniques for solving generalized rotavirus mathematical model via iterative method and ρ-Laplace transform, 2024, 12, 26668181, 100963, 10.1016/j.padiff.2024.100963 | |
2. | Huda Alsaud, Muhammad Owais Kulachi, Aqeel Ahmad, Mustafa Inc, Muhammad Taimoor, Investigation of SEIR model with vaccinated effects using sustainable fractional approach for low immune individuals, 2024, 9, 2473-6988, 10208, 10.3934/math.2024499 | |
3. | Cicik Alfiniyah, Tutik Utami, Nashrul Millah, Reuben Iortyer Gweryina, Optimal control and stability analysis of an alcoholism model with treatment centers, 2025, 22150161, 103311, 10.1016/j.mex.2025.103311 |