Microbial communities are constantly challenged by environmental stochasticity, rendering time-series data obtained from these communities inherently noisy. Traditional mathematical models, such as the first-order multivariate autoregressive (MAR) model and the deterministic generalized Lotka–Volterra model, are no longer suitable for predicting the stability of a microbiome from its time-series data, as they fail to capture volatility in the environment. To accurately measure microbiome stability, it is imperative to incorporate stochasticity into the existing mathematical models in microbiome research. In this paper, we introduce a stochastic generalized Lotka–Volterra (SgLV) system that characterizes the temporal dynamics of a microbial community. To study this system, we developed a comprehensive theoretical framework for calculating four resilience measures based on the SgLV model. These resilience metrics effectively capture the short- and long-term behaviors of the resilience of the microbiome. To illustrate the practical application of our approach, we demonstrate the procedure for calculating the four resilience measures using simulated microbial abundance datasets. The procedural simplicity enhances its utility as a valuable tool for application in various microbial and ecological communities.
Citation: Tuan A. Phan, Benjamin J. Ridenhour, Christopher H. Remien. Resilience of a stochastic generalized Lotka–Volterra model for microbiome studies[J]. Mathematical Biosciences and Engineering, 2025, 22(6): 1517-1550. doi: 10.3934/mbe.2025056
Microbial communities are constantly challenged by environmental stochasticity, rendering time-series data obtained from these communities inherently noisy. Traditional mathematical models, such as the first-order multivariate autoregressive (MAR) model and the deterministic generalized Lotka–Volterra model, are no longer suitable for predicting the stability of a microbiome from its time-series data, as they fail to capture volatility in the environment. To accurately measure microbiome stability, it is imperative to incorporate stochasticity into the existing mathematical models in microbiome research. In this paper, we introduce a stochastic generalized Lotka–Volterra (SgLV) system that characterizes the temporal dynamics of a microbial community. To study this system, we developed a comprehensive theoretical framework for calculating four resilience measures based on the SgLV model. These resilience metrics effectively capture the short- and long-term behaviors of the resilience of the microbiome. To illustrate the practical application of our approach, we demonstrate the procedure for calculating the four resilience measures using simulated microbial abundance datasets. The procedural simplicity enhances its utility as a valuable tool for application in various microbial and ecological communities.
| [1] |
G. Berg, D. Rybakova, D. Fischer, T. Cernava, M. C. C. Vergès, T. Charles, et al., Microbiome definition re-visited: Old concepts and new challenges, Microbiome, 8 (2020), 103. https://doi.org/10.1186/s40168-020-00875-0 doi: 10.1186/s40168-020-00875-0
|
| [2] |
I. Cho, M. Blaser, The human microbiome: At the interface of health and disease, Nat. Rev. Genet., 13 (2012), 260–270. https://doi.org/10.1038/nrg3182 doi: 10.1038/nrg3182
|
| [3] |
C. M. Cullen, K. K. Aneja, S. Beyhan, C. E. Cho, S. Woloszynek, M. Convertino, et al., Emerging priorities for microbiome research, Front. Microbiol., 11 (2020), 136. https://doi.org/10.3389/fmicb.2020.00136 doi: 10.3389/fmicb.2020.00136
|
| [4] |
E. K. Costello, K. Stagaman, L. Dethlefsen, B. J. Bohannan, D. A. Relman, The application of ecological theory toward an understanding of the human microbiome, Science, 336 (2012), 1255–1262. https://doi.org/10.1126/science.1224203 doi: 10.1126/science.1224203
|
| [5] |
D. A. Relman, The human microbiome: Ecosystem resilience and health, Nutr. Rev., 70 (2012), S2–S9. https://doi.org/10.1111/j.1753-4887.2012.00489.x doi: 10.1111/j.1753-4887.2012.00489.x
|
| [6] |
V. Bucci, J. B. Xavier, Towards predictive models of the human gut microbiome, J. Mol. Biol., 426 (2014), 3907–3916. https://doi.org/10.1016/j.jmb.2014.03.017 doi: 10.1016/j.jmb.2014.03.017
|
| [7] |
R. R. Stein, V. Bucci, N. C. Toussaint, C. G. Buffie, G. Rätsch, E. G. Pamer, et al., Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota, PLoS Comput. Biol., 9 (2013), e1003388. https://doi.org/10.1371/journal.pcbi.1003388 doi: 10.1371/journal.pcbi.1003388
|
| [8] |
M. Grizotte-Lake, G. Zhong, K. Duncan, J. Kirkwood, N. Iyer, I. Smolenski, et al., Commensals suppress epithelial cell retinoic acid synthesis to regulate intestinal interleukin-22 activity and prevent microbial dysbiosis, Immunity, 49 (2018), 1103–1115. e6. https://doi.org/10.1016/j.immuni.2018.11.018 doi: 10.1016/j.immuni.2018.11.018
|
| [9] |
J. Ravel, P. Gajer, Z. Abdo, G. M. Schneider, S. S. K. Koenig, S. L. McCulle, et al., Vaginal microbiome of reproductive-age women, Proc. Natl. Acad. Sci., 108 (2011), 4680–4687. https://doi.org/10.1073/pnas.1002611107 doi: 10.1073/pnas.1002611107
|
| [10] |
W. G. Wade, Resilience of the oral microbiome, Periodontology 2000, 86 (2021), 113–122. https://doi.org/10.1111/prd.12365 doi: 10.1111/prd.12365
|
| [11] |
S. K. Dogra, J. Doré, S. Damak, Gut microbiota resilience: Definition, link to health and strategies for intervention, Front. Microbiol., 11 (2020), 572921. https://doi.org/10.3389/fmicb.2020.572921 doi: 10.3389/fmicb.2020.572921
|
| [12] |
M. Fassarella, E. E. Blaak, J. Penders, A. Nauta, H. Smidt, E. G. Zoetendal, Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health, Gut, 70 (2021), 595–605. https://doi.org/10.1136/gutjnl-2020-321747 doi: 10.1136/gutjnl-2020-321747
|
| [13] |
G. Bacci, A. Mengoni, G. Emiliani, C. Chiellini, E. G. Cipriani, G. Bianconi, et al., Defining the resilience of the human salivary microbiota by a 520-day longitudinal study in a confined environment: The Mars500 mission, Microbiome, 9 (2021), 152. https://doi.org/10.1186/s40168-021-01070-5 doi: 10.1186/s40168-021-01070-5
|
| [14] |
C. S. Holling, Resilience and stability of ecological systems, Annual Review of Ecology and Systematics, 4 (1973), 1–23. https://doi.org/10.1146/annurev.es.04.110173.000245 doi: 10.1146/annurev.es.04.110173.000245
|
| [15] |
S. L. Pimm, J. H. Lawton, Number of trophic levels in ecological communities, Nature, 268 (1977), 329–331. https://doi.org/10.1038/268329a0 doi: 10.1038/268329a0
|
| [16] | D. L. DeAngelis, Enegry flow, nutrient cycling, and ecosystem resilience, Ecology, 61 (1980), 764–771. https://doi.org/10.2307/1936746 |
| [17] |
K. L. Cottingham, S. R. Carpenter, Predictive indices of ecosystem resilience in models of north temperate lakes, Ecology, 75 (1994), 2127–2138. https://doi.org/10.2307/1941616 doi: 10.2307/1941616
|
| [18] |
M. G. Neubert, H. Caswell, Alternatives to resilience for measuring the response of ecological systems to perturbations, Ecology, 78 (1997), 653–665. https://doi.org/10.1890/0012-9658(1997)078[0653:ATRFMT]2.0.CO;2 doi: 10.1890/0012-9658(1997)078[0653:ATRFMT]2.0.CO;2
|
| [19] |
J-F. Arnoldi, M. Loreau, B. Haegeman, Resilience, reactivity and variability: A mathematical comparison of ecological stability measures, J. Theor. Biol., 389 (2016), 47–59. https://doi.org/10.1016/j.jtbi.2015.10.012 doi: 10.1016/j.jtbi.2015.10.012
|
| [20] |
J-F. Arnoldi, M. Loreau, B. Haegeman, How ecosystems recover from pulse perturbations: A theory of short- to long-term responses, J. Theor. Biol., 436 (2018), 79–92. https://doi.org/10.1016/j.jtbi.2017.10.003 doi: 10.1016/j.jtbi.2017.10.003
|
| [21] |
A. R. Ives, Measuring resilience in stochastic systems, Ecol. Monogr., 65 (1995), 217–233. https://doi.org/10.2307/2937138 doi: 10.2307/2937138
|
| [22] |
A. R. Ives, B. Dennis, K. L. Cottingham, S. R. Carpenter, Estimating community stability and ecological interactions from time-series data, Ecol. Monogr., 73 (2003), 301–330. https://doi.org/10.1890/0012-9615(2003)073[0301:ECSAEI]2.0.CO;2 doi: 10.1890/0012-9615(2003)073[0301:ECSAEI]2.0.CO;2
|
| [23] |
E. Buckwar, C. Kelly, Asymptotic and transient mean-square properties of stochastic systems arising in ecology, fluid dynamics, and system control, SIAM J. Appl. Math., 74 (2014), 411–433. https://doi.org/10.1137/120893859 doi: 10.1137/120893859
|
| [24] |
I. Hayashi, H. Fujita, H. Toju, Deterministic and stochastic processes generating alternative states of microbiomes, ISME Commun., 4 (2024), ycae007. https://doi.org/10.1093/ismeco/ycae007 doi: 10.1093/ismeco/ycae007
|
| [25] | J. M. Ponciano, J. P. Gómez, J. Ravel, L. J. Forney, Inferring stability and persistence in the vaginal microbiome: A stochastic model of ecological dynamics, preprint, bioRxiv 2024.03.02.581600 https://doi.org/10.1101/2024.03.02.581600 |
| [26] |
S. Zaoli, J. Grilli, A macroecological description of alternative stable states reproduces intra- and inter-host variability of gut microbiome, Sci. Adv., 7 (2021), eabj2882. https://doi.org/10.1126/sciadv.abj2882 doi: 10.1126/sciadv.abj2882
|
| [27] |
R. Wolff, W. Shoemaker, N. Garud, Ecological stability emerges at the level of strains in the human gut microbiome, mBio, 14 (2023), e02502-22. https://doi.org/10.1128/mbio.02502-22 doi: 10.1128/mbio.02502-22
|
| [28] |
S. J. Schreiber, M. Benaim, K. A. S. Atchade, Persistence in fluctuating environments, J. Math. Biol., 62 (2011), 655–683. https://doi.org/10.1007/s00285-010-0349-5 doi: 10.1007/s00285-010-0349-5
|
| [29] |
R. Rudnicki, Long-time behaviour of a stochastic prey–predator model, Stoch. Process. Their Appl., 108 (2003), 93–107. https://doi.org/10.1016/S0304-4149(03)00090-5 doi: 10.1016/S0304-4149(03)00090-5
|
| [30] |
D. H. Nguyen, G. Yin, Coexistence and exclusion of stochastic competitive Lotka–Volterra models, J. Differ. Equat., 262 (2017), 1192–1225. https://doi.org/10.1016/j.jde.2016.10.005 doi: 10.1016/j.jde.2016.10.005
|
| [31] | M. Benaim, Stochastic persistence, arXiv: 1806.08450. |
| [32] |
A. Hening, H. D. Nguyen, Coexistence and extinction for stochastic Kolmogorov systems, Ann. Appl. Probab., 28 (2018), 1893–1942. https://doi.org/10.1214/17-AAP1347 doi: 10.1214/17-AAP1347
|
| [33] |
A. Hening, H. D. Nguyen, Persistence in stochastic Lotka–Volterra food chains with intraspecific competition, Bull. Math. Biol., 80 (2018), 2527–2560. https://doi.org/10.1007/s11538-018-0468-5 doi: 10.1007/s11538-018-0468-5
|
| [34] |
A. Hening, H. D. Nguyen, Stochastic Lotka–Volterra food chains, J. Math. Biol., 77 (2018), 135–163. https://doi.org/10.1007/s00285-017-1192-8 doi: 10.1007/s00285-017-1192-8
|
| [35] |
S. Marino, N. T. Baxter, G. B. Huffnagle, J. F. Petrosino, P. D. Schloss, Mathematical modeling of primary succession of murine intestinal microbiota, Proc. Natl. Acad. Sci., 111 (2014), 439–444. https://doi.org/10.1073/pnas.1311322111 doi: 10.1073/pnas.1311322111
|
| [36] |
P. Dam, L. L. Fonseca, K. T. Konstantinidis, E. O. Voit, Dynamic models of the complex microbial metapopulation of lake mendota, npj Syst. Biol. Appl., 2 (2016), 16007. https://doi.org/10.1038/npjsba.2016.7 doi: 10.1038/npjsba.2016.7
|
| [37] |
P. Dam, L. M. Rodriguez-R, C. Luo, J. Hatt, D. Tsementzi, K. T. Konstantinidis, et al., Model-based comparisons of the abundance dynamics of bacterial communities in two lakes, Sci. Rep., 10 (2020), 2423. https://doi.org/10.1038/s41598-020-58769-y doi: 10.1038/s41598-020-58769-y
|
| [38] | V. Bucci, B. Tzen, N. Li, M. Simmons, T. Tanoue, E. Bogart, et al., MDSINE: Microbial dynamical systems inference engine for microbiome time-series analyses, Genome. Biol. 17 (2016), 121. https://doi.org/10.1186/s13059-016-0980-6 |
| [39] |
B. J. Ridenhour, S. Brooker, J. Williams, J. T. V. Leuven, A. W. Miller, M. D. Dearing, et al., Modeling time-series data from microbial communities, ISME J., 11 (2017), 2526–2537. https://doi.org/10.1038/ismej.2017.107 doi: 10.1038/ismej.2017.107
|
| [40] |
J. Mounier, C. Monnet, T. Vallaeys, R. Arditi, A. S. Sarthou, A. Hélias, et al., Microbial interactions within a cheese microbial community, Appl. Environ. Microbiol., 74 (2008), 172–181. https://doi.org/10.1128/AEM.01338-07 doi: 10.1128/AEM.01338-07
|
| [41] |
J. G. Caporaso, C. L. Lauber, E. K. Costello, D. Berg-Lyons, A. Gonzalez, J. Stombaugh, et al., Moving pictures of the human microbiome, Genome. Biol., 12 (2011), R50. https://doi.org/10.1186/gb-2011-12-5-r50 doi: 10.1186/gb-2011-12-5-r50
|
| [42] |
L. A. David, A. C. Materna, J. Friedman, M. I. Campos-Baptista, M. C. Blackburn, A. Perrotta, et al., Host lifestyle affects human microbiota on daily timescales, Genome. Biol., 15 (2014), R89. https://doi.org/10.1186/gb-2014-15-7-r89 doi: 10.1186/gb-2014-15-7-r89
|
| [43] |
C. Buffie, V. Bucci, R. Stein, P. T. McKenney, L. Ling, A. Gobourne, et al., Precision microbiome reconstitution restores bile acid mediated resistance to clostridium difficile, Nature, 517 (2014), 205–208. https://doi.org/10.1038/nature13828 doi: 10.1038/nature13828
|
| [44] |
O. S. Venturelli, A. C. Carr, G. Fisher, R. H. Hsu, R. Lau, B. P. Bowen, et al., Deciphering microbial interactions in synthetic human gut microbiome communities, Mol. Syst. Biol., 14 (2018), e8157. https://doi.org/10.15252/msb.20178157 doi: 10.15252/msb.20178157
|
| [45] |
B. H. Schlomann, R. Parthasarathy, Timescales of gut microbiome dynamics, Current Opin. Microbiol., 50 (2019), 56–63. https://doi.org/10.1016/j.mib.2019.09.011 doi: 10.1016/j.mib.2019.09.011
|
| [46] |
T. J. Wiles, B. H. Schlomann, E. S. Wall, R. Betancourt, R. Parthasarathy, K. Guillemin, Swimming motility of a gut bacterial symbiont promotes resistance to intestinal expulsion and enhances inflammation, PLoS Biol., 18 (2020), e3000661. https://doi.org/10.1371/journal.pbio.3000661 doi: 10.1371/journal.pbio.3000661
|
| [47] |
A. P. Browning, D. J. Warne, K. Burrage, R. E. Baker, M. J. Simpson, Identifiability analysis for stochastic differential equation models in systems biology, J. R. Soc. Interface, 17 (2020), 20200652. https://doi.org/10.1098/rsif.2020.0652 doi: 10.1098/rsif.2020.0652
|
| [48] |
C. H. Remien, M. J. Eckwright, B. J. Ridenhour, Structural identifiability of the generalized Lotka-Volterra model for microbiome studies, R. Soc. Open Sci., 8 (2021), 201378. https://doi.org/10.1098/rsos.201378 doi: 10.1098/rsos.201378
|
| [49] |
S. R. Lele, K. Nadeem, B. Schmuland, Estimability and likelihood inference for generalized linear mixed models using data cloning, J. Am. Statist. Assoc., 105 (2010), 1617–1625. https://doi.org/10.1198/jasa.2010.tm09757 doi: 10.1198/jasa.2010.tm09757
|
| [50] | C. Flamant, P. Protopapas, D. Sondak, Solving differential equations using neural network solution bundles, arXiv: 2006.14372. |