Correction

Correction to "Data augmentation based semi-supervised method to improve COVID-19 CT classification" [Mathematical Biosciences and Engineering 20(4) (2023) 6838–6852]

  • Correction of: Mathematical Biosciences and Engineering 20: 6838-6852.
  • Received: 26 November 2024 Accepted: 05 December 2024 Published: 13 December 2024
  • Citation: Xiangtao Chen, Yuting Bai, Peng Wang, Jiawei Luo. Correction to 'Data augmentation based semi-supervised method to improve COVID-19 CT classification' [Mathematical Biosciences and Engineering 20(4) (2023) 6838–6852][J]. Mathematical Biosciences and Engineering, 2024, 21(12): 7854-7855. doi: 10.3934/mbe.2024345

    Related Papers:

    [1] Xiangtao Chen, Yuting Bai, Peng Wang, Jiawei Luo . Data augmentation based semi-supervised method to improve COVID-19 CT classification. Mathematical Biosciences and Engineering, 2023, 20(4): 6838-6852. doi: 10.3934/mbe.2023294
    [2] Shigui Ruan . Letter to the editors. Mathematical Biosciences and Engineering, 2009, 6(1): 207-208. doi: 10.3934/mbe.2009.6.207
    [3] Zejun Li, Yuxiang Zhang, Yuting Bai, Xiaohui Xie, Lijun Zeng . Correction to "IMC-MDA: Prediction of miRNA-disease association based on induction matrix completion" [Mathematical Biosciences and Engineering 20(6) (2023) 10659–10674]. Mathematical Biosciences and Engineering, 2024, 21(12): 7856-7859. doi: 10.3934/mbe.2024346
    [4] Javad Hassannataj Joloudari, Faezeh Azizi, Issa Nodehi, Mohammad Ali Nematollahi, Fateme Kamrannejhad, Edris Hassannatajjeloudari, Roohallah Alizadehsani, Sheikh Mohammed Shariful Islam . Developing a Deep Neural Network model for COVID-19 diagnosis based on CT scan images. Mathematical Biosciences and Engineering, 2023, 20(9): 16236-16258. doi: 10.3934/mbe.2023725
    [5] Xiangfen Song, Yinong Wang, Qianjin Feng, Qing Wang . Improved graph cut model with features of superpixels and neighborhood patches for myocardium segmentation from ultrasound image. Mathematical Biosciences and Engineering, 2019, 16(3): 1115-1137. doi: 10.3934/mbe.2019053
    [6] Editorial Office of Mathematical Biosciences and Engineering . Retraction notice to "A video images-aware knowledge extraction method for intelligent healthcare management of basketball players" [Mathematical Biosciences and Engineering 20(2) (2023) 1919-1937]. Mathematical Biosciences and Engineering, 2024, 21(7): 6658-6658. doi: 10.3934/mbe.2024291
    [7] Jingyao Liu, Qinghe Feng, Yu Miao, Wei He, Weili Shi, Zhengang Jiang . COVID-19 disease identification network based on weakly supervised feature selection. Mathematical Biosciences and Engineering, 2023, 20(5): 9327-9348. doi: 10.3934/mbe.2023409
    [8] Editorial Office of Mathematical Biosciences and Engineering . Retraction notice to "ICG fluorescence imaging technology in laparoscopic liver resection for primary liver cancer: A meta-analysis" [Mathematical Biosciences and Engineering 20(9) (2023) 15918–15941]. Mathematical Biosciences and Engineering, 2024, 21(7): 6559-6559. doi: 10.3934/mbe.2024286
    [9] Editorial Office of Mathematical Biosciences and Engineering . Retraction notice to “A novel architecture design for artificial intelligence-assisted culture conservation management system” [Mathematical Biosciences and Engineering 20(6) (2023) 9693–9711]. Mathematical Biosciences and Engineering, 2024, 21(9): 7102-7102. doi: 10.3934/mbe.2024313
    [10] XiaoQing Zhang, GuangYu Wang, Shu-Guang Zhao . CapsNet-COVID19: Lung CT image classification method based on CapsNet model. Mathematical Biosciences and Engineering, 2022, 19(5): 5055-5074. doi: 10.3934/mbe.2022236


  • "Data augmentation based semi-supervised method to improve COVID-19 CT classification" [Mathematical Biosciences and Engineering 20(4) (2023) 6838–6852]

    By Xiangtao Chen, Yuting Bai, Peng Wang and Jiawei Luo

    DOI: 10.3934/mbe.2023294

    Following publication, the authors have identified inappropriate references (References [3–5, 7, 10, 17]) included in the article [1]. To ensure the accuracy of our published work, we have decided to remove these references from the manuscript. The changes have no material impact on the conclusions of the article.

    This correction has been approved by the Editor-in-Chief. We appreciate the support of the editorial office in ensuring the integrity of the published work.

    We apologize for any inconvenience caused.



    [1] X. Chen, Y. Bai, P. Wang, J. Luo, Data augmentation based semi-supervised method to improve COVID-19 CT classification, Math. Biosci. Eng., 20 (2023), 6838–6852. https://doi.org/10.3934/mbe.2023294 doi: 10.3934/mbe.2023294
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1669) PDF downloads(306) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog