In this study, we developed a dynamical Multi-Local-Worlds (MLW) complex adaptive system with co-evolution of agent's behavior and local topological configuration to predict whether agents' behavior would converge to a certain invariable distribution and derive the conditions that should be satisfied by the invariable distribution of the optimal strategies in a dynamical system structure. To this end, a Markov process controlled by agent's behavior and local graphic topology configuration was constructed to describe the dynamic case's interaction property. After analysis, the invariable distribution of the system was obtained using the stochastic process method. Then, three kinds of agent's behavior (smart, normal, and irrational) coupled with corresponding behaviors, were introduced as an example to prove that their strategies converge to a certain invariable distribution. The results showed that an agent selected his/her behavior according to the evolution of random complex networks driven by preferential attachment and a volatility mechanism with its payment, which made the complex adaptive system evolve. We conclude that the corresponding invariable distribution was determined by agent's behavior, the system's topology configuration, the agent's behavior noise, and the system population. The invariable distribution with agent's behavior noise tending to zero differed from that with the population tending to infinity. The universal conclusion, corresponding to the properties of both dynamical MLW complex adaptive system and cooperative/non-cooperative game that are much closer to the common property of actual economic and management events that have not been analyzed before, is instrumental in substantiating managers' decision-making in the development of traffic systems, urban models, industrial clusters, technology innovation centers, and other applications.
Citation: Hebing Zhang, Xiaojing Zheng. Invariable distribution of co-evolutionary complex adaptive systems with agent's behavior and local topological configuration[J]. Mathematical Biosciences and Engineering, 2024, 21(2): 3229-3261. doi: 10.3934/mbe.2024143
[1] | Moirangthem Pradeep Singh, Yumnam Rohen, Khairul Habib Alam, Junaid Ahmad, Walid Emam . On fixed point and an application of C∗-algebra valued (α,β)-Bianchini-Grandolfi gauge contractions. AIMS Mathematics, 2024, 9(6): 15172-15189. doi: 10.3934/math.2024736 |
[2] | Monairah Alansari, Mohammed Shehu Shagari, Akbar Azam, Nawab Hussain . Admissible multivalued hybrid Z-contractions with applications. AIMS Mathematics, 2021, 6(1): 420-441. doi: 10.3934/math.2021026 |
[3] | Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977 |
[4] | Tahair Rasham, Najma Noor, Muhammad Safeer, Ravi Prakash Agarwal, Hassen Aydi, Manuel De La Sen . On dominated multivalued operators involving nonlinear contractions and applications. AIMS Mathematics, 2024, 9(1): 1-21. doi: 10.3934/math.2024001 |
[5] | Yan Han, Shaoyuan Xu, Jin Chen, Huijuan Yang . Fixed point theorems for b-generalized contractive mappings with weak continuity conditions. AIMS Mathematics, 2024, 9(6): 15024-15039. doi: 10.3934/math.2024728 |
[6] | Samina Batul, Faisar Mehmood, Azhar Hussain, Dur-e-Shehwar Sagheer, Hassen Aydi, Aiman Mukheimer . Multivalued contraction maps on fuzzy b-metric spaces and an application. AIMS Mathematics, 2022, 7(4): 5925-5942. doi: 10.3934/math.2022330 |
[7] | Rashid Ali, Faisar Mehmood, Aqib Saghir, Hassen Aydi, Saber Mansour, Wajdi Kallel . Solution of integral equations for multivalued maps in fuzzy b-metric spaces using Geraghty type contractions. AIMS Mathematics, 2023, 8(7): 16633-16654. doi: 10.3934/math.2023851 |
[8] | Hongyan Guan, Jinze Gou, Yan Hao . On some weak contractive mappings of integral type and fixed point results in b-metric spaces. AIMS Mathematics, 2024, 9(2): 4729-4748. doi: 10.3934/math.2024228 |
[9] | Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Hassen Aydi, Manuel De La Sen . Rational contractions on complex-valued extended b-metric spaces and an application. AIMS Mathematics, 2023, 8(2): 3338-3352. doi: 10.3934/math.2023172 |
[10] | Pragati Gautam, Vishnu Narayan Mishra, Rifaqat Ali, Swapnil Verma . Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial b-metric space. AIMS Mathematics, 2021, 6(2): 1727-1742. doi: 10.3934/math.2021103 |
In this study, we developed a dynamical Multi-Local-Worlds (MLW) complex adaptive system with co-evolution of agent's behavior and local topological configuration to predict whether agents' behavior would converge to a certain invariable distribution and derive the conditions that should be satisfied by the invariable distribution of the optimal strategies in a dynamical system structure. To this end, a Markov process controlled by agent's behavior and local graphic topology configuration was constructed to describe the dynamic case's interaction property. After analysis, the invariable distribution of the system was obtained using the stochastic process method. Then, three kinds of agent's behavior (smart, normal, and irrational) coupled with corresponding behaviors, were introduced as an example to prove that their strategies converge to a certain invariable distribution. The results showed that an agent selected his/her behavior according to the evolution of random complex networks driven by preferential attachment and a volatility mechanism with its payment, which made the complex adaptive system evolve. We conclude that the corresponding invariable distribution was determined by agent's behavior, the system's topology configuration, the agent's behavior noise, and the system population. The invariable distribution with agent's behavior noise tending to zero differed from that with the population tending to infinity. The universal conclusion, corresponding to the properties of both dynamical MLW complex adaptive system and cooperative/non-cooperative game that are much closer to the common property of actual economic and management events that have not been analyzed before, is instrumental in substantiating managers' decision-making in the development of traffic systems, urban models, industrial clusters, technology innovation centers, and other applications.
Let (ˆU,d) be a metric space. For ˆℓ∈ˆU and β1⊆ˆU, let db(ˆℓ1,β1)=inf{db(ˆℓ1,ˆℓ2):ˆℓ2∈β1}. Denote N(ˆU), CL(ˆU), CB(ˆU) by the class all nonempty subsets of ˆU, the class of all nonempty closed subsets of ˆU and the class of all nonempty closed and bounded subsets of ˆU respectively. Define the Hausdorff-Pompeiu metric ˆHb induced by db on CB(ˆU) as follows:
ˆHb(β1,β2)=max{supˆℓ1∈β1db(ˆℓ1,β2),supˆℓ2∈β2db(ˆℓ2,β1)} |
for all β1,β2∈CL(ˆU). A point ˆℓ∈ˆU is said to be a fixed point of ˜T:ˆU→CL(ˆU), if ˆℓ∈˜Tˆℓ. If, for ˆℓ0∈ˆU, there exists a sequence {ˆℓi} in ˆU such that ˆℓi∈˜Tˆℓi−1, then O(˜T,ˆℓ0)={ˆℓ0,ˆℓ1,ˆℓ2,...} is said to be an orbit of ˜T:ˆU→CL(ˆU). A mapping f:ˆU→R is said to be ˜T-orbitally lower semi-continuous (o.l.s.c) if {ˆℓi} is a sequence in O(˜T,ˆℓ0) and ˆℓi→ϱ implies f(ϱ)≤lim infif(ˆℓi).
From now on, Nadler [13] realized the following multivalued version of BCP:
Theorem 1.1. [13] Let (ˆU,db) be a complete metric space and T:ˆU→CB(ˆU) be a Nadler contraction, i.e., there is γ∈[0,1) such that
ˆHb(Tˆℓ1,Tˆℓ2)≤γdb(ˆℓ1,ˆℓ2)forallˆℓ1,ˆℓ2∈ˆU. |
Then T possesses at least one fixed point.
We start the following results for main sequel.
Lemma 1.2. [13] Let (ˆU,db) be a metric space, β2∈CB(ˆU) and ˆℓ∈ˆU. Then, for each ϵ>0, there exists ν∈β2 such that
db(ˆℓ,ν)≤db(ˆℓ,β2)+ϵ. |
Lemma 1.3. [19] Let (ˆU,db) be a metric space and β1, β2∈CB(ˆU) with ˆHb(β1,β2)>0. Then for all h>1 and ˆℓ∈β1, there exists ν=ν(ˆℓ)∈β2 such that
db(ˆℓ,ν)<hˆHb(β1,β2). |
There after, many researchers worked on existence of fixed point theorems of single valued mappings can improve in the module of multi-valued mappings that satisfying various classes of contractive mappings (see [1,2,3,4,6,9,10,12,15,17,18,19,20]).
Definition 1.4. [8] A b-metric space on a nonempty set M is a function b:ˆU׈U→R+ such that for all ˆℓ1,ˆℓ2,ˆℓ3∈ˆU and a given real number s≥1, the following conditions hold:
(bi) db(ˆℓ1,ˆℓ2)=0 if and only if ˆℓ1=ˆℓ2;
(bii) db(ˆℓ1,ˆℓ2)=db(ˆℓ2,ˆℓ1);
(biii) db(ˆℓ1,ˆℓ3)≤s[db(ˆℓ1,ˆℓ2)+db(ˆℓ2,ˆℓ3)].
The pair (ˆU,db) is known as b-metric space.
The following examples present the context of b-metric spaces, which are essentially larger than the context of metric spaces [8].
Example 1.5. [8] Let ˆU=lp(R) with p∈(0,1) where lp(R)={{ˆℓi}⊂R:+∞∑i=1|ˆℓi|p<∞}. A function b:ˆU׈U→R+ is given by b(ˆℓ1,ˆℓ2)=(+∞∑i=1|ˆℓi|p)1p, where ˆℓ1=ˆℓi and ˆℓ2=ˆℓi′. Then the pair (ˆU,db) is known as b-metric space with s=21p.
Example 1.6. [8] Let ˆU=Lp[0,1] be the space of all real valued functions ˆℓ(r), 0≤r≤1 in such a way that 1∫0|ˆℓ(r)|1pdr<∞. A function b:ˆU׈U→R+ is given by b(ˆℓ1,ˆℓ2)=(1∫0|ˆℓ1(r)−ˆℓ2(r)|p)1p. Then the pair (ˆU,db) is known as b-metric space with s=21p.
Definition 1.7. [8] A sequence {ˆℓi} in b-metric space ˆU is said to be convergent if there is ˆℓ∈ˆU such that db(ˆℓi,ˆℓ)→0 as i→+∞ and write limi→+∞(ˆℓi)=ˆℓ. A sequence {ˆℓi} in (ˆU,db) is said to be Cauchy if db(ˆℓi,ˆℓi′)→0 as i,i′→+∞. A b-metric space (ˆU,db) is said to be complete if every Cauchy sequence in ˆU converges.
Note that, in general, the b-metric is not a continuous functional. Recently, Liu et al. [12] produced the following classical function:
Definition 1.8. Let φ:(0,+∞)→(0,+∞) satisfy the following conditions:
(φa) φ is nondecreasing;
(φb) for all {ˆℓi} in (0,+∞), limi→+∞φ(ˆℓi)=0 if and only if limi→+∞(ˆℓi)=0;
(φc) φ is continuous.
From now on, we denote by φ∗ the set of all function that satisfying (φa)−(φc). The following well known two lammas of φ functions will be needed in our forthcoming sequel:
Lemma 1.9. [12] Let {ˆℓi}i be a bounded sequence of real numbers and all its convergent subsequences have the same limit γ. Then {ˆℓi}i is convergent and limi→+∞(ˆℓi)=γ.
Lemma 1.10. Let φ:(0,+∞)→(0,+∞) be a nondecreasing and continuous function with infˆℓ∈(0,+∞)φ(ˆℓ)=0 and {ˆℓi}i∈(0,+∞). Then
limi→+∞φ(ˆℓi)=0ifandonlyiflimi→+∞(ˆℓi)=0. |
Proof. (⇒) Suppose limi→+∞φ(ˆℓi)=0. Then we claim that the sequence {ˆℓi} is bounded. In fact, if the sequence is unbounded, then we may assume that ˆℓi→+∞ and so for all δ>0, there is i0∈N such that ˆℓi >δ for all i>i0. Hence φ(δ)≤φ(ˆℓi) and so φ(δ)≤limi→+∞φ(ˆℓi)=0, which contradicts to φ(δ)>0. Thus {ˆℓi} is bounded. Hence there exists a subsequence {ˆℓii}⊂{ˆℓi} such that limi→+∞{ˆℓii}=k (where k is nonnegative number). Clearly k≥0. If k>0, then there is i0∈N such that {ˆℓii}∈(k2,3k2) for all i≥i0. By (φa), we deduce that φ(k2)≤limi→+∞{ˆℓii}=0, which contradicts to φ(k2)>0. Consequently, setting k=0 and by the above lemma, we have limi→+∞(ˆℓi)=0.
(⇐) Suppose that infˆℓ∈(0,+∞)φ(ˆℓ)=0. If ˆℓi→0, then for any given ϵ>0, there is k>0 such that φ(k)∈(0,ϵ) and there exists i1∈N such that ˆℓi<k for all i>i1. Therefore, 0<φ(ˆℓi)≤φ(k)<ϵ for i>i1. Hence φ(ˆℓi)→0 as i→+∞.
Throughout this paper E denotes an interval on R+ containing 0, that is, an interval of the form [0,R], [0,R), or [0,+∞). Proinov [14] introduced the following:
Lemma 1.11. [14] Let ˆℓ0∈Λ (Λ is a closed subset of ˆU) such that
db(ˆℓ0,˜Tˆℓ0)∈E, |
and ˆℓi∈Λ for some i≥0. Then we have db(ˆℓi,˜Tˆℓi)∈E.
Definition 1.12. [14] Suppose ˆℓ0∈Λ and db(ˆℓ0,˜Tˆℓ0)∈E. Then for an iterate ˆℓi (i≥0) which belongs to Λ, we define the closed ball ¯b(ˆℓi,ρ) with center ˆℓi and radius ρ>0.
Lemma 1.13. [14] If an element ˆℓ0∈Λ satisfies db(ˆℓ0,˜Tˆℓ0)∈E and ¯b(ˆℓi,ρ)⊂Λ for some i≥0, then ˆℓi+1∈Λ and ¯b(ˆℓi+1,ρ)⊂¯b(ˆℓi,ρ).
Definition 1.14. [14] Let i≥1. A function ξ:E→E is said to be a gauge function of order i on E if it satisfies the following conditions: (a) ξ(λˆℓ)<λiξ(ˆℓ) for all λ∈(0,1) and ˆℓ∈E; (b) ξ(ˆℓ)<ˆℓ for all ˆℓ∈E−{0}.
It is easy to see that the first condition of Definition 1.14 is equivalent to the following: ξ(0)=0 and ξ(ˆℓ)/ˆℓi is nondecreasing on E−{0}.
Definition 1.15. [14] A gauge function ξ:E→E is said to be a B-GGF on E if
σ(ˆℓ)=+∞∑i=0ξi(ˆℓ)<∞,forallˆℓ∈E. |
Note that a B-GGF also satisfies the following functional equation:
σ(ˆℓ)=σ(ξ(ˆℓ))+ˆℓ. |
Proinov [14] proved his main results by assuming B-GGF ξ and the mapping T:Λ→X satisfying the contractive condition d(T(x)T2(x))≤ξ(d(x;Tx)) when the underlying space is endowed with a metric. But from now on, in the context of b-metric space for some technical dialectics, Samreen et al. [16] introduced the following class of GF.
Definition 1.16. [16] A nondecreasing function ξ:E→E is said to be a b-B-GGF on E if
σ(ˆℓ)=+∞∑i=0siξi(ˆℓ)<∞,forallˆℓ∈E |
where s is the coefficient of b-metric space. Moreover, note that a b -B-GGF also satisfies the following functional equation:
σ(ˆℓ)=sσ(ξ(ˆℓ))+ˆℓ. |
Remark 1.17. Every b-B-GGF is also a B-GGF [7] but the converse may not hold. Furthermore, in [16], Samreen et al. introduced gauge functions in a b -metric space of the form
ξ(ˆℓ)={sξ(ˆℓ)ˆℓ,ifˆℓ∈E−{0}0,ifˆℓ=0 |
where s is the coefficient of b-metric space. For instance, we refer the following simple examples of gauge functions of order i as:
(a) ξ(ˆℓ)=λˆℓs for all λ∈(0,1) is a gauge function of order 1 on ˆℓ∈E;
(b) ξ(ˆℓ)=λˆℓks (λ>0, k>0) is a gauge function of order k on E=[0,l) where l=(1λ)11−k.
In 2015, Khojasteh et al. [11] introduced the concept of simulation function as follows:
Definition 1.18. [11] A function Γ:R+×R+→R is called an SF if
(Γ1) Γ(0,0)=0;
(Γ2) Γ(ˆℓ1,ˆℓ2)<ˆℓ2−ˆℓ1 for all ˆℓ′1,ˆℓ2>0;
(Γ3) if {ˆℓ1i}, {ˆℓ2i}∈(0,+∞) such that limi→+∞ˆℓ1i=limi→+∞ˆℓ2i>0, then
lim supi→+∞Γ(ˆℓ1i,ˆℓ2i)<0. |
Due to (Γ2), we have Γ(ˆℓ1,ˆℓ1)<0 for all ˆℓ1>0. From now on, we denote by ∇ the set of all functions satisfying (Γ1)-(Γ3). Some well known examples of Γ functions presented in the existing exposition are as follows:
Example 1.19. [11] For i=1,2, let ϑi:R+→R+ be continuous functions with ϑi(ˆℓ1)=0 if and only if ˆℓ1=0. The following functions Γj:R+×R+→R (j=1,⋯,6) are in ∇:
(a) Γ1(ˆℓ1,ˆℓ2)= ϑ1(ˆℓ2)−ϑ2(ˆℓ1) for all ˆℓ1,ˆℓ2≥0, where ϑ1(ˆℓ1)≤ˆℓ1≤ϑ2(ˆℓ1) for all ˆℓ1>0;
(b) Γ6(ˆℓ1,ˆℓ2)=ˆℓ2−∫ˆℓ10ς(u)dufor allˆℓ1,ˆℓ2≥0, where ς:R+→R+ is a function such that
∫ϵ0ς(u)duexistsand∫ϵ0ς(u)du>ϵ∀ϵ>0. |
Let (ˆU,db) be a metric space, ˜T be a self mapping on ˆU and Γ∈∇. ˜T is said to be a ∇-contraction with respect to Γ, if
Γ(db(˜Tˆℓ1,˜Tˆℓ2),db(ˆℓ1,ˆℓ2))≥0,forallˆℓ1,ˆℓ2∈ˆU. |
Due to (Γ2), we have db(Tˆℓ1,Tˆℓ2)≠db(ˆℓ1,ˆℓ2) for all distinct points ˆℓ1,ˆℓ2∈ˆU. Thus T is not an isometry, whenever T is a ∇-contraction with respect to Γ. Conversely, if a ∇-contraction mapping T on a metric space possesses a fixed point, then it is necessarily unique.
In the recent year, Ali et al. [5] initiated the following definition which is a modification of the notion of α-admissible.
Definition 1.20. [5] Let (ˆU,db) be a metric space and Λ be a nonempty subset of ˆU. A mapping ˜T:Λ→CB(ˆU) is called α-admissible if there exists a function α:Λ×Λ→[0,+∞) such that
α(a,b)≥1⇒α(ˆℓ,ν)≥1, |
for all ˆℓ∈˜Ta∩Λ and ν∈˜Tb∩Λ.
In this manuscript, we prove the notion of multi-valued Suzuki (SU) type fixed point results via φξ-contraction mapping and (∇α−ξ)-contraction mapping in the module of b -metric spaces, where ξ is a b-B-GGF on an interval E with some tangible examples and certain important corollaries are adopted subsequently. Our newly proved results over recent ones chiefly due to Proinov [14] and Ali et al. [1]. As the end results of a succession, we promote our main results to prove the existence of solution for the system of integral inclusion.
In this section, motivated by the notion of multivalued Suzuki type φ -contraction, we define the notion of multivalued Suzuki type φξ-contraction as follows:
Definition 2.1. Let (ˆU,db) be a b-metric space with s≥1, Λ be a closed subset of ˆU and ξ be a b-B-GGF on an interval E. A mapping ˜T:Λ→CB(ˆU) is said to be a multivalued SU-type φ-contraction if there exists φ∈φ∗ such that for ˜Tˆℓ∩Λ≠∅
12smin{db(ˆℓ,˜Tˆℓ∩Λ),db(ν,˜Tν∩Λ)}<db(ˆℓ,ν) |
implies that
φ[ˆHb(˜Tˆℓ∩Λ,˜Tν∩Λ)]≤φ[ξ(Ω(ˆℓ,ν))], | (2.1) |
where
Ω(ˆℓ,ν)=max{db(ˆℓ,ν),db(ˆℓ,˜Tˆℓ),db(ν,˜Tν),db(ˆℓ,˜Tν)+db(ν,˜Tˆℓ)2s} |
for all ˆℓ∈Λ, ν∈˜Tˆℓ∩Λ with db(ˆℓ,ν)∈E, and ˆHb(˜Tˆℓ∩Λ,˜Tν∩Λ)>0.
Clearly in a class b-metric space, if an element ˆℓ0∈Λ such that O(ˆℓ0)⊂Λ satisfies db(ˆℓ0,˜Tˆℓ0)∈E and ¯b(ˆℓi,ρi)⊂Λ for some i≥0, then ˆℓi+1∈Λ and ¯b(ˆℓi+1,ρi+1)⊂¯b(ˆℓi,ρi).
Our first main result is as follows:
Theorem 2.2. Let (ˆU,db) be a complete b-metric space with s≥1, Λ be a closed subset of ˆU and ˜T:Λ→CB(ˆU) be a multivalued SU-type φ -contraction. Assume ˆℓ0∈Λ such that db(ˆℓ0,c∗)∈E for some c∗∈˜Tˆℓ0∩Λ. Then there exist an orbit {ˆℓi} of ˜T in Λ and σ∗∈Λ such that limi→+∞ˆℓi=σ∗. Moreover, σ∗ is a fixed point of ˜T if and only if the function g(ˆℓ):=db(ˆℓ,˜Tˆℓ∩Λ) is ˜T-o.l.s.c at σ∗.
Proof. Choose ˆℓ1=c∗∈˜Tˆℓ0∩Λ. In the presence of this manner db(ˆℓ0,ˆℓ1)=0, ˆℓ0 is a fixed point of ˜T. Thus we assume that db(ˆℓ0,ˆℓ1)≠0. On the other hand, we have
12smin{db(ˆℓ0,˜Tˆℓ0∩Λ),db(ˆℓ1,˜Tˆℓ1∩Λ)}<db(ˆℓ0,ˆℓ1). | (2.2) |
Define ρ=σ(db(ˆℓ0,ˆℓ1)). From (1.16), we have σ(r)≥r. Hence db(ˆℓ0,ˆℓ1)≤ρ and so ˆℓ1∈¯b(ˆℓ0,ρ). Since db(ˆℓ0,ˆℓ1)∈E, from (2.1) and (2.2) it follows that
φ[Hb(˜Tˆℓ0∩Λ,˜Tˆℓ1∩Λ)]≤φ[ξ(Ω(ˆℓ0,ˆℓ1))]<φ[Ω(ˆℓ0,ˆℓ1)]. |
By the property of right continuity of φ, there exists a real number h1>1 such that
φ[h1Hb(˜Tˆℓ0∩Λ,˜Tˆℓ1∩Λ)]≤φ[ξ(Ω(ˆℓ0,ˆℓ1))]. | (2.3) |
From
db(ˆℓ1,˜Tˆℓ1∩Λ)≤Hb(˜Tˆℓ0∩Λ,˜Tˆℓ1∩Λ)<h1Hb(˜Tˆℓ0∩Λ,˜Tˆℓ1∩Λ), |
by Lemma 1.3, there exists ˆℓ2∈˜Tˆℓ1∩Λ such that db(ˆℓ1,ˆℓ2)≤h1Hb(˜Tˆℓ0∩Λ,˜Tˆℓ1∩Λ). Since φ is nondecreasing, by (2.3), this inequality gives that
φ[(db(ˆℓ1,ˆℓ2)]≤φ[h1Hb(˜Tˆℓ0∩Λ,˜Tˆℓ1∩Λ)]<φ[Ω(ˆℓ0,ˆℓ1))], |
where
Ω(ˆℓ0,ˆℓ1)=max{db(ˆℓ0,ˆℓ1),db(ˆℓ0,˜Tˆℓ0),db(ˆℓ1,˜Tˆℓ1),db(ˆℓ0,˜Tˆℓ1)+db(ˆℓ1,˜Tˆℓ0)2s}≤max{db(ˆℓ0,ˆℓ1),db(ˆℓ1,˜Tˆℓ1),db(ˆℓ0,˜Tˆℓ1)2s}≤max{db(ˆℓ0,ˆℓ1),db(ˆℓ1,˜Tˆℓ1)}. |
Now, we claim that
φ[(db(ˆℓ1,ˆℓ2)]≤φ[h1Hb(˜Tˆℓ0∩Λ,˜Tˆℓ1∩Λ)]<φ[db(ˆℓ0,ˆℓ1))]. | (2.4) |
Let Δ=max{db(ˆℓ0,ˆℓ1),db(ˆℓ1,˜Tˆℓ1)}. Assume that Δ=db(ˆℓ1,˜Tˆℓ1). Since ˆℓ2∈˜Tˆℓ1∩Λ, we have
φ[(db(ˆℓ1,ˆℓ2)]≤φ[h1Hb(˜Tˆℓ0∩Λ,˜Tˆℓ1∩Λ)]<φ[db(ˆℓ1,ˆℓ2))], |
which is a contradiction. Hence (2.4) holds true. We assume that db(ˆℓ1,ˆℓ2)≠0, otherwise, ˆℓ1 is a fixed point of ˜T. From (φa), (2.4) implies that
db(ˆℓ1,ˆℓ2)<db(ˆℓ0,ˆℓ1). |
and so db(ˆℓ1,ˆℓ2)∈E. Next, ˆℓ2∈¯b(ˆℓ0,ρ) since
db(ˆℓ0,ˆℓ2)≤sdb(ˆℓ0,ˆℓ1)+sdb(ˆℓ1,ˆℓ2)≤sdb(ˆℓ0,ˆℓ1)+s2db(ˆℓ1,ˆℓ2)≤sdb(ˆℓ0,ˆℓ1)+s2ξ(db(ˆℓ0,ˆℓ1))=s[db(ˆℓ0,ˆℓ1)+sξ(db(ˆℓ0,ˆℓ1))]≤sσdb(ˆℓ0,ˆℓ1)≤db(ˆℓ0,ˆℓ1)+sσ(db(ˆℓ0,ˆℓ1))=σ(db(ˆℓ0,ˆℓ1))=ρ. |
Since
12smin{db(ˆℓ1,˜Tˆℓ1∩Λ),db(ˆℓ2,˜Tˆℓ2∩Λ)}<db(ˆℓ1,ˆℓ2), |
from (2.1), we have
φ[Hb(˜Tˆℓ1∩Λ,˜Tˆℓ2∩Λ)]≤φ[ξ(db(ˆℓ1,ˆℓ2)))]<φ[Ω(ˆℓ1,ˆℓ2))]. |
Since φ is right continuous, there exists a real number h2>1 such that
φ[h2Hb(˜Tˆℓ1∩Λ,˜Tˆℓ2∩Λ]≤φ[ξ(Ω(ˆℓ1,ˆℓ2))]. | (2.5) |
Next, from
db(ˆℓ2,˜Tˆℓ2∩Λ)≤Hb(˜Tˆℓ1∩Λ,˜Tˆℓ2∩Λ)<h2Hb(˜Tˆℓ1∩Λ,˜Tˆℓ2∩Λ), |
by Lemma 1.3, there exists ˆℓ3∈˜Tˆℓ2∩Λ such that db(ˆℓ2,ˆℓ3)≤h2Hb(˜Tˆℓ1∩Λ,˜Tˆℓ2∩Λ). By (2.5), this inequality gives that
φ[(db(ˆℓ2,ˆℓ3))]≤φ[h2Hb(˜Tˆℓ1∩Λ,˜Tˆℓ2∩Λ)]<φ[Ω(ˆℓ1,ˆℓ2))], |
where
Ω(ˆℓ1,ˆℓ2)=max{db(ˆℓ1,ˆℓ2),db(ˆℓ1,˜Tˆℓ1),db(ˆℓ2,˜Tˆℓ2),db(ˆℓ1,˜Tˆℓ2)+db(ˆℓ2,˜Tˆℓ1)2s}≤max{ˆd(ˆℓ1,ˆℓ2),ˆd(ˆℓ2,˜Tˆℓ2),ˆd(ˆℓ1,˜Tˆℓ2)2s}≤max{ˆd(ˆℓ1,ˆℓ2),ˆd(ˆℓ2,˜Tˆℓ2)}. |
This implies that
φ[(ˆd(ˆℓ2,ˆℓ3)]≤φ[h1Hb(˜Tˆℓ1∩Λ,˜Tˆℓ2∩Λ)]<φ[ˆd(ˆℓ1,ˆℓ2))]. | (2.6) |
Let Δ=max{db(ˆℓ1,ˆℓ2),db(ˆℓ2,˜Tˆℓ2)}. Assume that Δ=db(ˆℓ2,˜Tˆℓ2). Since ˆℓ3∈˜Tˆℓ2∩Λ, we have
φ[(db(ˆℓ2,ˆℓ3)]≤φ[h1Hb(˜Tˆℓ1∩Λ,˜Tˆℓ2∩Λ)]<φ[db(ˆℓ2,ˆℓ3))], |
which is a contradiction. Hence (2.6) holds true. We assume that db(ˆℓ2,ˆℓ3)≠0, otherwise, ˆℓ2 is a fixed point of ˜T. From (φa), (2.6) implies that
db(ˆℓ2,ˆℓ3)<db(ˆℓ1,ˆℓ2). |
and so db(ˆℓ2,ˆℓ3)∈E. Also, we have ˆℓ3∈¯b(ˆℓ0,ρ), since
db(ˆℓ0,ˆℓ3)≤sdb(ˆℓ0,ˆℓ1)+s2db(ˆℓ1,ˆℓ2)+s3db(ˆℓ2,ˆℓ3)=s[db(ˆℓ0,ˆℓ1)+sˇdb(ˆℓ1,ˆℓ2)+s2db(ˆℓ2,ˆℓ3)]≤s[db(ˆℓ0,ˆℓ1)+ξ(db(ˆℓ0,ˆℓ1))+ξ2(db(ˆℓ0,ˆℓ1))]≤sσˇdb(ˆℓ0,ˆℓ1)≤db(ˆℓ0,ˆℓ1)+sσ(db(ˆℓ0,ˆℓ1))=σ(db(ˆℓ0,ˆℓ1))=ρ. |
Continuing this manner, we build two sequences {ˆℓi}⊂¯b(ˆℓ0,ρ) and {hi}⊂(0,+∞) such that ˆℓi+1∈˜Tˆℓi∩Λ, ˆℓi≠ˆℓi+1 with db(ˆℓi,ˆℓi+1)∈E and
φ[(db(ˆℓi,ˆℓi+1))]≤φ[hiHb(˜Tˆℓi−1∩Λ,˜Tˆℓi∩Λ)]<φ[db(ˆℓi−1,ˆℓi)], |
for all i∈N. Then
φ[db(ˆℓi,ˆℓi+1)]≤φ[ξi(ˇdb(ˆℓ0,ˆℓ1))], foralli∈N. |
Since φ:(0,+∞)→(0,+∞), it follows from (2.6) that
0≤limi→+∞φ[db(ˆℓi,ˆℓi+1)]≤limi→+∞φ[ξi(db(ˆℓ0,ˆℓ1))]=0, |
which implies that
limi→+∞φ[db(ˆℓi,ˆℓi+1)]=0. |
By (φb) and Lemma 1.2, we have
limi→+∞ˇdb(ˆℓi,ˆℓi+1)=0. | (2.7) |
Next, we prove that {ˆℓi} is a Cauchy sequence in ˆU. Arguing by contradiction, we assume that there are ϵ>0 and sequences {δi}+∞i=1 and {κi}+∞i=1 of natural numbers such that
δi>κi>0,db(ˆℓδi,ˆℓκi)≥ϵanddb(ˆℓδi−1,ˆℓκi)<ϵforalli∈N. |
Therefore,
ϵ≤db(ˆℓδi,ˆℓκi)≤s[db(ˆℓδi,ˆℓδi−1)+db(ˆℓδi−1,ˆℓκi)]≤sˇdb(ˆℓδi,ˆℓδi−1)+sϵ. | (2.8) |
Setting i→+∞ in (2.8),
ϵ<limi→+∞db(ˆℓδi,ˆℓκi)<sϵ. | (2.9) |
From the trianguler inequality, we have
db(ˆℓδi,ˆℓκi)≤db(ˆℓδi,ˆℓδi+1)+db(ˆℓδi+1,ˆℓκi) | (2.10) |
and
db(ˆℓδi+1,ˆℓκi)≤s[ˇdb(ˆℓδi,ˆℓδi+1)+db(ˆℓδi,ˆℓκi)]. | (2.11) |
Letting the upper limit as i→+∞ in (2.10) and applying (2.7) and (2.9), we obtain
ϵ≤limi→+∞supdb(ˆℓδi,ˆℓκi)≤s[limi→+∞supdb(ˆℓδi+1,ˆℓκi)]. |
Again, setting the upper limit as i→+∞ in (2.11), we get
limi→+∞supdb(ˆℓδi+1,ˆℓκi)≤s[limi→+∞supdb(ˆℓδi,ˆℓκi)]≤s.sϵ=s2ϵ. |
Therefore,
ϵs≤limi→+∞supdb(ˆℓδi+1,ˆℓκi)≤s2ϵ, | (2.12) |
equivalently, we have
ϵs≤limi→+∞supdb(ˆℓδi,ˆℓκi+1)≤s2ϵ. | (2.13) |
By the trianguler inequality,
ˇdb(ˆℓδi+1,ˆℓκi)≤s[db(ˆℓδi+1,ˆℓκi+1)+db(ˆℓκi+1,ˆℓκi)]. | (2.14) |
Setting the limit as i→+∞ in (2.14), using (2.7) and (2.12), we have
ϵs2≤limi→+∞supdb(ˆℓδi+1,ˆℓκi+1). | (2.15) |
Owing to above process, we find
limi→+∞supˇdb(ˆℓδi+1,ˆℓκi+1)≤s3ϵ. | (2.16) |
From (2.15) and (2.16), we have
ϵs2≤limi→+∞supdb(ˆℓδi+1,ˆℓκi+1)≤s3ϵ. |
Owing to (2.7) and (2.9), we can choose a positive integer j0≥1 such that
12smin{db(ˆℓδi,˜Tˆℓδi∩Λ),db(ˆℓκi,˜Tˆℓκi∩Λ)}<ϵ2s<ˇdb(ˆℓδi,ˆℓκi) |
for all i≥j0. From (2.1), we have
0<φ[db(ˆℓδi+1,ˆℓκi+1)]≤φ[Hb(˜Tˆℓδi∩Λ,˜Tˆℓκi∩Λ)]≤φ[ξ(Ω(ˆℓδi,ˆℓκi)))], |
where
Ω(ˆℓδi,ˆℓκi)=max{db(ˆℓδi,ˆℓκi),db(ˆℓδi,˜Tˆℓδi),db(ˆℓκi,˜Tˆℓκi),db(ˆℓδi,˜Tˆℓκi)+db(ˆℓκi,˜Tˆℓδi)2s}≤max{db(ˆℓδi,ˆℓκi),db(ˆℓδi,ˆℓδi+1),db(ˆℓκi,ˆℓκi+1),db(ˆℓδi,ˆℓκi+1)+db(ˆℓκi,ˆℓδi+1)2s}. |
Setting the limit as i→+∞ and by (2.7), (2.9), (2.12) and (2.13), we have
ϵ=max{ϵ,12s(ϵs+ϵs)}≤limi→+∞supΩ(ˆℓδi,ˆℓκi)≤max{sϵ,12s(s2ϵ+s2ϵ)}=sϵ. |
By (2.15) and (φb), we have
φ[sϵ]=φ[ϵs2]≤limi→+∞supˇdb(ˆℓδi+1,ˆℓκi+1)≤limi→+∞φ[ξdb(ˆℓδi,ˆℓκi)]=φ[ξ(sϵ)]<φ[sϵ], |
which is a contradiction. Therefore, we deduce that {ˆℓi} is a Cauchy sequence in the closed ball ¯b(ˆℓ0,ρ). Since ¯b(ˆℓ0,ρ) is closed in ˆU, there exists a σ∗∈¯b(ˆℓ0,ρ) such that ˆℓi→σ∗. Note that σ∗∈Λ, since ˆℓi+1∈˜Tˆℓi∩Λ. Next, we claim that
12smin{db(ˆℓi,˜Tˆℓi∩Λ),db(σ∗,˜Tσ∗∩Λ)}<db(ˆℓi,σ∗), | (2.17) |
or
12smin{ˇdb(σ∗,˜Tσ∗∩Λ),db(ˆℓi+1,˜Tˆℓi+1∩Λ)}<db(ˆℓi+1,σ∗) |
for all i∈N. Assume, on contrary, there exists i′∈N such that
12smin{db(ˆℓi′,˜Tˆℓi′∩Λ),ˇdb(σ∗,˜Tσ∗∩Λ)}≥db(ˆℓi′,σ∗) | (2.18) |
and
12smin{db(σ∗,˜Tσ∗∩Λ),db(ˆℓi′+1,˜Tˆℓi′+1∩Λ)}≥db(ˆℓi′+1,σ∗). | (2.19) |
By (2.18), we have
2sˇdb(ˆℓi′,σ∗)≤min{db(ˆℓi′,˜Tˆℓi′∩Λ),db(σ∗,˜Tσ∗∩Λ)}≤min{s[db(ˆℓi′,σ∗)+db(σ∗,˜Tˆℓi′∩Λ)],ˇdb(σ∗,˜Tσ∗∩Λ)}≤s[db(ˆℓi′,σ∗)+db(σ∗,˜Tˆℓi′∩Λ)]<s[db(ˆℓi′,σ∗)+ˇdb(σ∗,˜Tˆℓi′)]≤s[db(ˆℓi′,σ∗)+db(σ∗,ˆℓi′+1)], |
which implies that
db(ˆℓi′,σ∗)≤db(σ∗,ˆℓi′+1). |
This together with (2.19) implies
db(ˆℓi′,σ∗)≤db(σ∗,ˆℓi′+1)≤12smin{db(σ∗,˜Tσ∗∩Λ),db(ˆℓi′+1,˜Tˆℓi′+1∩Λ)}. | (2.20) |
So
12smin{db(ˆℓi′,˜Tˆℓi′∩Λ),ˇdb(ˆℓi′+1,˜Tˆℓi′+1∩Λ)}<db(ˆℓi′,ˆℓi′+1). |
From the contractive condition (2.1), we have
0<φ[db(ˆℓi′+1,ˆℓi′+2)]≤φ[Hb(˜Tˆℓi′∩Λ,˜Tˆℓi′+1∩Λ)]≤φ[ξ(c(ˆℓi′,ˆℓi′+1)))], |
where
Ω(ˆℓi′,ˆℓi′+1)=max{db(ˆℓi′,ˆℓi′+1),db(ˆℓi′,˜Tˆℓi′),ˇdb(ˆℓi′+1,˜Tˆℓi′+1),db(ˆℓi′,˜Tˆℓi′+1)+db(ˆℓi′+1,˜Tˆℓi′)2s}≤max{db(ˆℓi′,ˆℓi′+1),ˇdb(ˆℓi′+1,ˆℓi′+2),db(ˆℓi′,ˆℓi′+2)2s}≤max{db(ˆℓi′,ˆℓi′+1),db(ˆℓi′+1,ˆℓi′+2)}, |
which yields
φ[ˇdb(ˆℓi′+1,ˆℓi′+2)]≤φ[Hb(˜Tˆℓi′∩Λ,˜Tˆℓi′+1∩Λ)]<φ[db(ˆℓi′,ˆℓi′+1))]. |
Let Δ=max{db(ˆℓi′,ˆℓi′+1),db(ˆℓi′+1,ˆℓi′+2)}. Assume that Δ=db(ˆℓi′+1,ˆℓi′+2). Since ˆℓi′+2∈˜Tˆℓi′+1∩Λ, we have
φ[db(ˆℓi′+1,ˆℓi′+2)]≤φ[Hb(˜Tˆℓi′∩Λ,˜Tˆℓi′+1∩Λ)]<φ[db(ˆℓi′+1,ˆℓi′+2))], |
which is a contradiction. Owing to (φa), we have
ˇdb(ˆℓi′+1,ˆℓi′+2)<db(ˆℓi′,ˆℓi′+1). | (2.21) |
From (2.19), (2.20) and (2.21), we obtain
db(ˆℓi′+1,ˆℓi′+2)<db(ˆℓi′,ˆℓi′+1)≤s[ˇdb(ˆℓi′,σ∗)+db(σ∗,ˆℓi′+1)]≤[12min{db(σ∗,˜Tσ∗∩Λ),db(ˆℓi′+1,˜Tˆℓi′+1∩Λ)}+12min{ˇdb(σ∗,˜Tσ∗∩Λ),db(ˆℓi′+1,˜Tˆℓi′+1∩Λ)}]≤min{db(σ∗,˜Tσ∗∩Λ),db(ˆℓi′+1,ˆℓi′+2)}=db(ˆℓi′+1,ˆℓi′+2), |
which is a contradiction. Hence (2.17) holds true, that is,
12smin{ˇdb(ˆℓi,˜Tˆℓi∩Λ),db(σ∗,˜Tσ∗∩Λ)}<db(ˆℓi,σ∗)foralli≥2. | (2.22) |
Owing to (2.22), we have
12smin{db(ˆℓi,˜Tˆℓi∩Λ),db(ˆℓi+1,˜Tˆℓi+1∩Λ)}<db(ˆℓi,ˆℓi+1). |
Moreover, we know that db(ˆℓi,ˆℓi+1)∈E for all i. Thus, from (2.1), we have
φ[db(ˆℓi+1,˜Tˆℓi+1∩Λ)]≤φ[Hb(˜Tˆℓi∩Λ,˜Tˆℓi+1∩Λ)]≤φ[ξ(Ω(ˆℓi,ˆℓi+1)))]<φ[Ω(ˆℓi,ˆℓi+1)))], |
where
Ω(ˆℓi,ˆℓi+1)=max{db(ˆℓi,ˆℓi+1),db(ˆℓi,˜Tˆℓi),db(ˆℓi+1,˜Tˆℓi+1),db(ˆℓi,˜Tˆℓi+1)+db(ˆℓi+1,˜Tˆℓi)2s}≤max{db(ˆℓi,ˆℓi+1),db(ˆℓi+1,ˆℓi+2),db(ˆℓi,ˆℓi+2)2s}≤max{db(ˆℓi,ˆℓi+1),db(ˆℓi+1,ˆℓi+2)}, |
which implies
φ[db(ˆℓi+1,ˆℓi+2)]≤φ[Hb(˜Tˆℓi∩Λ,˜Tˆℓi+1∩Λ)]<φ[db(ˆℓi,ˆℓi+1))]. |
Let Δ=max{db(ˆℓi,ˆℓi+1),db(ˆℓi+1,ˆℓi+2)}. Assume that Δ=db(ˆℓi+1,ˆℓi+2). Since ˆℓi+2∈˜Tˆℓi+1∩Λ, we have
φ[db(ˆℓi+1,ˆℓi+2)]≤φ[Hb(˜Tˆℓi∩Λ,˜Tˆℓi+1∩Λ)]<φ[db(ˆℓi+1,ˆℓi+2))], |
which is a contradiction. Also, by (φa), we deduce that
db(ˆℓi+1,˜Tˆℓi+1∩Λ)<db(ˆℓi,ˆℓi+1). | (2.23) |
Taking the limit i→+∞ in (2.23), we get
limi→+∞db(ˆℓi+1,˜Tˆℓi+1∩Λ)=0. |
Since g(ˆℓ)=db(ˆℓ,˜Tˆℓ∩Λ) is ˜T-o.l.s.c at σ∗,
db(σ∗,˜Tσ∗∩Λ)=g(σ∗)≤lim infig(ˆℓi+1)=lim infidb(ˆℓi+1,˜Tˆℓi+1∩Λ)=0. |
Since ˜Tσ∗ is closed, we have σ∗∈˜Tσ∗. Conversely, if σ∗ is a fixed point of ˜T then g(σ∗)=0≤lim infig(ˆℓi), since σ∗∈Λ.
Corollary 2.3. Let (ˆU,db) be a b-metric space with s≥1, Λ be a closed subset of ˆU and ξ be a b-B-GGF on an interval E. A mapping ˜T:Λ→CB(ˆU) is said to be a multivalued SU-type φ-contraction if there exists φ∈φ∗ such that for ˜Tˆℓ∩Λ≠∅
12smin{db(ˆℓ,˜Tˆℓ∩Λ),db(ν,˜Tν∩Λ)}<db(ˆℓ,ν) |
implies that
φ[Hb(˜Tˆℓ∩Λ,˜Tν∩Λ)]≤φ[ξ((ˆℓ,ν)))], |
for all ˆℓ∈Λ, ν∈˜Tˆℓ∩Λ with db(ˆℓ,ν)∈E, where Hb(˜Tˆℓ∩Λ,˜Tν∩Λ)>0. Assume ˆℓ0∈Λ such that db(ˆℓ0,c∗)∈E for some c∗∈˜Tˆℓ0∩Λ. Then there exist an orbit {ˆℓi} of ˜T in Λ and σ∗∈Λ such that limi→+∞ˆℓi=σ∗. Moreover, σ∗ is a fixed point of ˜T if and only if the function g(ˆℓ):=db(ˆℓ,˜Tˆℓ∩Λ) is ˜T-o.l.s.c at σ∗.
Corollary 2.4. Let (ˆU,db) be a b-metric space with s≥1, Λ be a closed subset of ˆU and ξ be a b-B-GGF on an interval E. A mapping ˜T:Λ→CB(ˆU) is said to be a multivalued SU-type φ-contraction if there exists φ∈φ∗ such that for ˜Tˆℓ∩Λ≠∅
12smin{db(ˆℓ,˜Tˆℓ∩Λ),db(ν,˜Tν∩Λ)}<db(ˆℓ,ν) |
implies that
φ[Hb(˜Tˆℓ∩Λ,˜Tν∩Λ)]≤φ[ξ(db(ˆℓ,ν)))], |
for all ˆℓ∈ˆU, ν∈˜Tˆℓ with db(ˆℓ,ν)∈E. Suppose that ˆℓ0∈ˆU such that db(ˆℓ0,c∗)∈E for some c∗∈˜Tˆℓ0. Then there exists an orbit {ˆℓi} of ˜T in ˆU which converges to the fixed point σ∗∈F={ˆℓ∈ˆU:db(ˆℓ,σ∗)∈E} of ˜T.
Example 2.5. Let ˆU=[0,1] be endowed with the metric db with coefficient s≥α2+7α2−1>1 [where α≥3 is any positive integers] as defined by db(ˆℓ,ν)=|ˆℓ−ν|2 for all ˆℓ,ν∈ˆU but not a metric bd. For ˆℓ1=0, ˆℓ2=12 and ˆℓ3=1, we obtain
bd(ˆℓ1,ˆℓ3)=1>14+14=bd(ˆℓ1,ˆℓ2)+bd(ˆℓ2,ˆℓ3) |
and let E=[0,+∞). Consider the mapping ˜T:ˆU→CB(ˆU) defined by ˜T(ˆℓ)=[0,ˆℓ2]. Clearly,
12smin{db(ˆℓ,˜Tˆℓ∩Λ),db(ν,˜Tν∩Λ)}<db(ˆℓ,ν) |
if and only if ˆℓ,ν∈[0,1]. Let ˆℓ0=1. Then we have c∗=12∈˜Tˆℓ0 such that db(ˆℓ0,c∗)∈E and
φ[Hb(˜Tˆℓ,˜Tν)]=φ[|ˆℓ2−ν2|2]≤φ[|ˆℓ+ν|2db(ˆℓ,ν)]. |
Set φ(r)=rer for all r>0 and suppose that ξ(r)=r2 is a b -B-GGF of order 2 on E=[0,1α−1] with coefficient α2+7α2−1. For any ˆℓ∈[0,1] and ν∈˜Tˆℓ, we get
φ[Hb(˜Tˆℓ,˜Tν)]≤[|ˆℓ+ν|2db(ˆℓ,ν)]e[|ˆℓ+ν|2db(ˆℓ,ν)]=φ[ξ(db(ˆℓ,ν))]. |
Thus, all the conditions of Corollary 2.3 are fulfilled and 0 is a fixed point of ˜T.
In this section, motivated by the notion of multivalued Suzuki type ∇ -contraction, we define the notion of multivalued Suzuki type (∇α−ξ)-contraction as follows:
Definition 3.1. Let (ˆU,db) be a b-metric space with s≥1, Λ be a closed subset of ˆU and ξ be a b-B-GGF on an interval E. A mapping ˜T:Λ→CB(ˆU) is said to be a multivalued Suzuki type (∇α−ξ)-contraction if there exists Γ∈∇ such that for ˜Tˆℓ∩Λ≠∅
12smin{db(ˆℓ,˜Tˆℓ∩Λ),db(ν,˜Tν∩Λ)}<db(ˆℓ,ν) |
implies that
Γ[α(ˆℓ,ν)Hb(˜Tˆℓ∩Λ,˜Tν∩Λ),ξ(Ω(ˆℓ,ν))]≥0, | (3.1) |
where
Ω(ˆℓ,ν)=max{db(ˆℓ,ν),db(ˆℓ,˜Tˆℓ),db(ν,˜Tν),db(ˆℓ,˜Tν)+db(ν,˜Tˆℓ)2s} |
for all ˆℓ∈Λ, ν∈˜Tˆℓ∩Λ with db(ˆℓ,ν)∈E.
The second one of our results is as follows.
Theorem 3.2. Let (ˆU,db) be a complete b-metric space with s≥1, Λ be a closed subset of ˆU and ˜T:Λ→CB(ˆU) be a multivalued SU-type (α-∇)-contraction. Suppose that the following conditions are satisfied:
(i) ˜T is α-admissible;
(ii) there exists ˆℓ0∈Λ with db(ˆℓ0,ˆℓ1)∈E for some ˆℓ1∈˜Tˆℓ0∩Λ such that α(ˆℓ0,ˆℓ1)≥1.
Then there exist an orbit {ˆℓi} of ˜T in Λ and σ∗∈Λ such that limi→+∞ˆℓi=σ∗. Moreover, σ∗ is a fixed point of ˜T if and only if the function g(ˆℓ):=db(ˆℓ,˜Tˆℓ∩Λ) is ˜T-o.l.s.c at σ∗.
Proof. Owing to the hypothesis, there exists ˆℓ0∈Λ with db(ˆℓ0,ˆℓ1)∈E for some ˆℓ1∈˜Tˆℓ0∩Λ such that α(ˆℓ0,ˆℓ1)≥1. On the other hand, we have
12smin{db(ˆℓ0,˜Tˆℓ0∩Λ),db(ˆℓ1,˜Tˆℓ1∩Λ)}<db(ˆℓ0,ˆℓ1). | (3.2) |
If db(ˆℓ0,ˆℓ1)=0, then ˆℓ0 is a fixed point of ˜T. Thus, we assume that db(ˆℓ0,ˆℓ1)≠0. Define ρ=σ(db(ˆℓ0,ˆℓ1)). From (1.16), we have σ(r)≥r. Hence db(ˆℓ0,ˆℓ1)≤ρ and so ˆℓ1∈¯b(ˆℓ0,ρ). Since α(ˆℓ0,ˆℓ1)≥1 and db(ˆℓ0,ˆℓ1)∈E, from (3.1) and (3.2), it follows that
0≤Γ[α(ˆℓ0,ˆℓ1)Hb(˜Tˆℓ0∩Λ,˜Tˆℓ1∩Λ),ξ(db(ˆℓ0,ˆℓ1))]<ξ(Ω(ˆℓ0,ˆℓ1))−α(ˆℓ0,ˆℓ1)Hb(˜Tˆℓ0∩Λ,˜Tˆℓ1∩Λ), |
which implies
α(ˆℓ0,ˆℓ1)Hb(˜Tˆℓ0∩Λ,˜Tˆℓ1∩Λ)<ξ(Ω(ˆℓ0,ˆℓ1)). |
We can choose an ϵ1>0 such that
α(ˆℓ0,ˆℓ1)Hb(˜Tˆℓ0∩Λ,˜Tˆℓ1∩Λ)+ϵ1≤ξ(Ω(ˆℓ0,ˆℓ1)). |
Thus
db(ˆℓ1,˜Tˆℓ1∩Λ)+ϵ1≤Hb(˜Tˆℓ0∩Λ,˜Tˆℓ1∩Λ)+ϵ1≤α(ˆℓ0,ˆℓ1)Hb(˜Tˆℓ0∩Λ,˜Tˆℓ1∩Λ)+ϵ1≤ξ(Ω(ˆℓ0,ˆℓ1)). | (3.3) |
It follows from Lemma 1.2 that there exists ˆℓ2∈˜Tˆℓ1∩Λ such that
db(ˆℓ1,ˆℓ2)≤db(ˆℓ1,˜Tˆℓ1∩Λ)+ϵ1. | (3.4) |
From (3.3) and (3.4), we have
db(ˆℓ1,ˆℓ2)≤ξ(Ω(ˆℓ0,ˆℓ1)), |
where
Ω(ˆℓ0,ˆℓ1)=max{db(ˆℓ0,ˆℓ1),db(ˆℓ0,˜Tˆℓ0),db(ˆℓ1,˜Tˆℓ1),db(ˆℓ0,˜Tˆℓ1)+db(ˆℓ1,˜Tˆℓ0)2s}≤max{db(ˆℓ0,ˆℓ1),db(ˆℓ1,˜Tˆℓ1),db(ˆℓ0,˜Tˆℓ1)2s}≤max{db(ˆℓ0,ˆℓ1),db(ˆℓ1,˜Tˆℓ1)}. |
We claim that
db(ˆℓ1,ˆℓ2)≤ξ(db(ˆℓ0,ˆℓ1)). | (3.5) |
Let Δ=max{db(ˆℓ0,ˆℓ1),db(ˆℓ1,˜Tˆℓ1)}. Assume that Δ=db(ˆℓ1,˜Tˆℓ1). Since ˆℓ2∈˜Tˆℓ1∩Λ, we have
(db(ˆℓ1,ˆℓ2)≤ξ(db(ˆℓ1,ˆℓ2)), |
which is a contradiction. Hence (3.5) holds true. We assume that db(ˆℓ1,ˆℓ2)≠0, otherwise, ˆℓ1 is a fixed point of ˜T. Since db(ˆℓ1,ˆℓ2)≤ξ(db(ˆℓ0,ˆℓ1))<db(ˆℓ0,ˆℓ1), we deduce that db(ˆℓ1,ˆℓ2)∈E. Next, ˆℓ2∈¯b(ˆℓ0,ρ) since
db(ˆℓ0,ˆℓ2)≤sdb(ˆℓ0,ˆℓ1)+sdb(ˆℓ1,ˆℓ2)≤sdb(ˆℓ0,ˆℓ1)+s2db(ˆℓ1,ˆℓ2)≤sdb(ˆℓ0,ˆℓ1)+s2ξ(db(ˆℓ0,ˆℓ1))=s[db(ˆℓ0,ˆℓ1)+sξ(db(ˆℓ0,ˆℓ1))]≤sσdb(ˆℓ0,ˆℓ1)≤db(ˆℓ0,ˆℓ1)+sσ(db(ˆℓ0,ˆℓ1))=σ(db(ˆℓ0,ˆℓ1))=ρ.. |
Since ˜T is α-admissible, α(ˆℓ1,ˆℓ2)≥1. Also, since
12smin{db(ˆℓ1,˜Tˆℓ1∩Λ),db(ˆℓ2,˜Tˆℓ2∩Λ)}<db(ˆℓ1,ˆℓ2), |
from the contractive condition (3.1), we get
0≤Γ[α(ˆℓ1,ˆℓ2)Hb(˜Tˆℓ1∩Λ,˜Tˆℓ2∩Λ),ξ(Ω(ˆℓ1,ˆℓ2))]<ξ(Ω(ˆℓ1,ˆℓ2))−α(ˆℓ1,ˆℓ2)Hb(˜Tˆℓ1∩Λ,˜Tˆℓ2∩Λ). |
This implies that
α(ˆℓ1,ˆℓ2)Hb(˜Tˆℓ1∩Λ,˜Tˆℓ2∩Λ)<ξ(Ω(ˆℓ1,ˆℓ2)). |
Now choose an ϵ2>0 such that
α(ˆℓ1,ˆℓ2)Hb(˜Tˆℓ1∩Λ,˜Tˆℓ2∩Λ)+ϵ2≤ξ(Ω(ˆℓ1,ˆℓ2)). |
Thus,
db(ˆℓ2,˜Tˆℓ2∩Λ)+ϵ2≤Hb(˜Tˆℓ1∩Λ,˜Tˆℓ2∩Λ)+ϵ2≤α(ˆℓ1,ˆℓ2)Hb(˜Tˆℓ1∩Λ,˜Tˆℓ2∩Λ)+ϵ2≤ξ(Ω(ˆℓ1,ˆℓ2)). | (3.6) |
It follows from Lemma 1.2 that there exists ˆℓ3∈˜Tˆℓ2∩Λ such that
db(ˆℓ2,ˆℓ3)≤db(ˆℓ2,˜Tˆℓ2∩Λ)+ϵ2. | (3.7) |
From (3.6) and (3.7), we obtain
db(ˆℓ2,ˆℓ3)≤ξ(Ω(ˆℓ1,ˆℓ2)), |
where
Ω(ˆℓ1,ˆℓ2)=max{db(ˆℓ1,ˆℓ2),db(ˆℓ1,˜Tˆℓ1),db(ˆℓ2,˜Tˆℓ2),db(ˆℓ1,˜Tˆℓ2)+db(ˆℓ2,˜Tˆℓ1)2s}≤max{db(ˆℓ1,ˆℓ2),db(ˆℓ2,˜Tˆℓ2),db(ˆℓ1,˜Tˆℓ2)2s}≤max{db(ˆℓ1,ˆℓ2),db(ˆℓ2,˜Tˆℓ2)}. |
This implies that
db(ˆℓ2,ˆℓ3)≤ξdb(ˆℓ1,ˆℓ2)). | (3.8) |
Let Δ=max{db(ˆℓ1,ˆℓ2),db(ˆℓ2,˜Tˆℓ2)}. Assume that Δ=db(ˆℓ2,˜Tˆℓ2). Since ˆℓ3∈˜Tˆℓ2∩Λ, we have
db(ˆℓ2,ˆℓ3)≤ξˆd(ˆℓ2,ˆℓ3)), |
which is a contradiction. Hence (3.8) holds true. We assume that db(ˆℓ2,ˆℓ3)≠0, otherwise, \widehat{\ell } _{2} is a fixed point of \widetilde{T}. From (3.8), we have d_{b}(\widehat{\ell }_{2}, \widehat{\ell }_{3}) < d_{b}(\widehat{\ell }_{1}, \widehat{ \ell }_{2}) and so d_{b}(\widehat{\ell }_{2}, \widehat{\ell }_{3})\in E. Also, we have \widehat{\ell }_{3}\in \overline{b}(\widehat{\ell }_{0}, \rho), since
\begin{eqnarray*} d_{b}(\widehat{\ell }_{0},\widehat{\ell }_{3})\leq sd_{b}(\widehat{\ell } _{0},\widehat{\ell }_{1})+s^{2}d_{b}(\widehat{\ell }_{1},\widehat{\ell } _{2})+s^{3}d_{b}(\widehat{\ell }_{2},\widehat{\ell }_{3}) & = & s\left[ d_{b}(\widehat{\ell }_{0},\widehat{\ell }_{1})+sd_{b}(\widehat{\ell }_{1},\widehat{\ell }_{2})+s^{2}d_{b}(\widehat{\ell }_{2},\widehat{\ell } _{3})\right] \\ & \leq & s\left[ d_{b}(\widehat{\ell }_{0},\widehat{\ell }_{1})+\xi (d_{b}( \widehat{\ell }_{0},\widehat{\ell }_{1}))+\xi ^{2}(d_{b}(\widehat{\ell }_{0}, \widehat{\ell }_{1}))\right] \\ & \leq & s\sigma d_{b}(\widehat{\ell }_{0},\widehat{\ell }_{1}) \\ & \leq & d_{b}(\widehat{\ell }_{0},\widehat{\ell }_{1})+s\sigma (d_{b}(\widehat{ \ell }_{0},\widehat{\ell }_{1})) \\ & = & \sigma (d_{b}(\widehat{\ell }_{0},\widehat{\ell }_{1})) = \rho . \end{eqnarray*} |
Continuing this manner, we obtain a sequence \left\{ \widehat{\ell } _{i}\right\} \subset \overline{b}(\widehat{\ell }_{0}, \rho) such that \widehat{\ell }_{i+1}\in \widetilde{T}\widehat{\ell }_{i}\cap \Lambda, \widehat{\ell }_{i}\neq \widehat{\ell }_{i+1} with \alpha \left(\widehat{ \ell }_{i}, \widehat{\ell }_{i+1}\right) \geq 1 , d_{b}(\widehat{\ell }_{i}, \widehat{\ell }_{i+1})\in E and by the above hypothesis, we have
\begin{equation} d_{b}(\widehat{\ell }_{i},\widehat{\ell }_{i+1})\leq \xi ^{i}(d_{b}(\widehat{ \ell }_{0},\widehat{\ell }_{1})),\ \ {\rm{for\; all }}\;i\in \mathbb{N}. \end{equation} | (3.9) |
For any q\in \mathbb{N} , by using the triangular inequality and (3.9), we get
\begin{align} d_{b}(\widehat{\ell }_{i},\widehat{\ell }_{i+q})& \leq s^{i}d_{b}(\widehat{ \ell }_{i},\widehat{\ell }_{i+1})+s^{i+1}d_{b}(\widehat{\ell }_{i+1}, \widehat{\ell }_{i+2})+\cdots +s^{i+q-1}d_{b}(\widehat{\ell }_{i+q-1}, \widehat{\ell }_{i+q})\\ & \leq s^{i}\xi ^{i}(d_{b}(\widehat{\ell }_{0},\widehat{\ell } _{1}))+s^{i+1}\xi ^{i+1}(d_{b}(\widehat{\ell }_{0},\widehat{\ell } _{1}))+\cdots +s^{i+q-1}\xi ^{i+q-1}(d_{b}(\widehat{\ell }_{0},\widehat{\ell }_{1})) \\ & \leq \sum\limits_{j = i}^{\infty }s^{j}\xi ^{j}(d_{b}(\widehat{\ell }_{0},\widehat{ \ell }_{1})) < \infty . \end{align} | (3.10) |
Assume that
\begin{equation} H_{i} = \sum\limits_{j = i}^{\infty }s^{j}\xi ^{j}(d_{b}(\widehat{\ell }_{0},\widehat{ \ell }_{1}))\;{\rm{ and }}\;\lim\limits_{i\rightarrow +\infty }H_{i} = H. \end{equation} | (3.11) |
By (3.10) and (3.11), we get
\begin{equation} d_{b}(\widehat{\ell }_{i},\widehat{\ell }_{i+q})\leq \left( H_{i+q-1}-H_{i}\right) . \end{equation} | (3.12) |
Due to (3.11), (3.12) implies that d_{b}(\widehat{\ell }_{i}, \widehat{\ell } _{i+q})\rightarrow 0 as i\rightarrow +\infty . Hence \{\widehat{\ell } _{i}\} is a Cauchy sequence in the closed ball \overline{b}(\widehat{\ell } _{0}, \rho). Since \overline{b}(\widehat{\ell }_{0}, \rho) is closed in \hat{U} , there exists an \sigma ^{\ast }\in \overline{b}(\widehat{\ell } _{0}, \rho) such that \widehat{\ell }_{i}\rightarrow \sigma ^{\ast } . Note that \sigma ^{\ast }\in \Lambda, since \widehat{\ell }_{i+1}\in \widetilde{T}\widehat{\ell }_{i}\cap \Lambda. By the same argument as in Theorem 2.2, we have
\begin{equation*} \frac{1}{2s}\min \left\{ d_{b}(\widehat{\ell }_{i},\widetilde{T}\widehat{ \ell }_{i}\cap \Lambda ),d_{b}(\widehat{\ell }_{i+1},\widetilde{T}\widehat{ \ell }_{i+1}\cap \Lambda )\right\} < d_{b}(\widehat{\ell }_{i},\widehat{\ell } _{i+1}). \end{equation*} |
Also, we know that \alpha \left(\widehat{\ell }_{i}, \widehat{\ell } _{i+1}\right) \geq 1 and d_{b}(\widehat{\ell }_{i}, \widehat{\ell } _{i+1})\in E for all n . Thus, from (3.1), we have
\begin{align*} 0& \leq \Gamma \lbrack \alpha (\widehat{\ell }_{i},\widehat{\ell } _{i+1})H_{b}(\widetilde{T}\widehat{\ell }_{i}\cap \Lambda ,\widetilde{T} \widehat{\ell }_{i+1}\cap \Lambda ),\xi (\Omega (\widehat{\ell }_{i}, \widehat{\ell }_{i+1}))] \\ & < \xi (\Omega (\widehat{\ell }_{i},\widehat{\ell }_{i+1}))-\alpha (\widehat{ \ell }_{i},\widehat{\ell }_{i+1})H_{b}(\widetilde{T}\widehat{\ell }_{i}\cap \Lambda ,\widetilde{T}\widehat{\ell }_{i+1}\cap \Lambda ), \end{align*} |
which gives that
\begin{equation*} \alpha (\widehat{\ell }_{i},\widehat{\ell }_{i+1})H_{b}(\widetilde{T} \widehat{\ell }_{i}\cap \Lambda ,\widetilde{T}\widehat{\ell }_{i+1}\cap \Lambda ) < \xi (\Omega (\widehat{\ell }_{i},\widehat{\ell }_{i+1})). \end{equation*} |
Since \widehat{\ell }_{i+1}\in \widetilde{T}\widehat{\ell }_{i}\cap \Lambda, from (3.9), we get
\begin{eqnarray} d_{b}(\widehat{\ell }_{i+1},\widetilde{T}\widehat{\ell }_{i+1}\cap \Lambda ) &\leq &\alpha (\widehat{\ell }_{i},\widehat{\ell }_{i+1})H_{b}(\widetilde{T} \widehat{\ell }_{i}\cap \Lambda ,\widetilde{T}\widehat{\ell }_{i+1}\cap \Lambda ) \\ & < &\xi (d_{b}(\widehat{\ell }_{i},\widehat{\ell }_{i+1})) \\ &\leq &\xi ^{i+1}(d_{b}(\widehat{\ell }_{0},\widehat{\ell }_{1})). \end{eqnarray} | (3.13) |
Taking the limit i\rightarrow +\infty in (3.13), we obtain
\begin{equation*} \lim\limits_{i\rightarrow +\infty }d_{b}(\widehat{\ell }_{i+1},\widetilde{T} \widehat{\ell }_{i+1}\cap \Lambda ) = 0. \end{equation*} |
Since g(\widehat{\ell }) = d_{b}(\widehat{\ell }, \widetilde{T}\widehat{\ell } \cap \Lambda) is \widetilde{T} -orbitally lower semi-continuous at \sigma ^{\ast } ,
\begin{equation*} d_{b}(\sigma ^{\ast },\widetilde{T}\sigma ^{\ast }\cap \Lambda ) = g(\sigma ^{\ast })\leq \liminf\limits_{i}g(\widehat{\ell }_{i+1}) = \liminf\limits_{i}\check{d}_{b}( \widehat{\ell }_{i+1},\widetilde{T}\widehat{\ell }_{i+1}\cap \Lambda ) = 0. \end{equation*} |
Since \widetilde{T}\sigma ^{\ast } is closed, we have \sigma ^{\ast }\in \widetilde{T}\sigma ^{\ast } . Conversely, if \sigma ^{\ast } is a fixed point of \widetilde{T} then g(\sigma ^{\ast }) = 0\leq \liminf_{i}g(\widehat{\ell }_{i}), since \sigma ^{\ast }\in \Lambda.
Setting \Gamma (r, s) = s-\int_{0}^{r}\varsigma (t)dt\;{\rm{ for \;all }}\;r, s\geq 0 in Theorem 3.2, we get the following result.
Corollary 3.3. Let (\hat{U}, d_{b}) be a complete b -metric space with s\geq 1 , \Lambda be a closed subset of \hat{U}, \xi be a b -B-GGF on an interval E and let \widetilde{T}:\Lambda \rightarrow CB(\hat{U}) be a given multivalued mapping. Suppose that for \widetilde{T}\widehat{\ell }\cap \Lambda \neq \emptyset such that
\begin{equation*} \frac{1}{2s}\min \left\{ d_{b}(\widehat{\ell },\widetilde{T}\widehat{\ell } \cap \Lambda ),d_{b}(\nu ,\widetilde{T}\nu \cap \Lambda )\right\} < d_{b}( \widehat{\ell },\nu ) \end{equation*} |
implies that
\begin{equation*} \int_{0}^{\alpha (\widehat{\ell },\nu )H_{b}(\widetilde{T}\widehat{\ell } \cap \Lambda ,\widetilde{T}\nu \cap \Lambda )}\varsigma (t)dt\leq \xi ( \widehat{d}(\widehat{\ell },\nu )) \end{equation*} |
for all \widehat{\ell }\in \Lambda, \nu \in \widetilde{T}\widehat{\ell } \cap \Lambda with \widehat{d}(\widehat{\ell }, \nu)\in E, where \varsigma :\mathbb{R}^{+}\rightarrow \mathbb{R}^{+} is a function such that \int_{0}^{\epsilon }\varsigma (t)dt exists and \int_{0}^{\epsilon }\varsigma (t)dt > \epsilon for all \epsilon > 0 . Suppose that the following conditions are satisfied:
(i) \widetilde{T} is \alpha -admissible;
(ii) there exists \widehat{\ell }_{0}\in \Lambda with d_{b}(\widehat{\ell }_{0}, \widehat{\ell }_{1})\in E for some \widehat{\ell } _{1}\in \widetilde{T}\widehat{\ell }_{0}\cap \Lambda such that \alpha \left(\widehat{\ell }_{0}, \widehat{\ell }_{1}\right) \geq 1 .
Then there exist an orbit \{\widehat{\ell }_{i}\} of \widetilde{T} in \Lambda and \sigma ^{\ast }\in \Lambda such that \lim_{i\rightarrow +\infty } \widehat{\ell }_{i} = \sigma ^{\ast } . Moreover, \sigma ^{\ast } is a fixed point of \widetilde{T} if and only if the function g(\widehat{\ell }): = d_{b}(\widehat{\ell }, \widetilde{T}\widehat{\ell }\cap \Lambda) is \widetilde{T} -o.l.s.c at \sigma ^{\ast } .
Corollary 3.4. Let (\hat{U}, d_{b}) be a complete b -metric space with s\geq 1 , \xi be b -B-GGF on an interval E and let \widetilde{T}: \hat{U}\rightarrow CB(\hat{U}) be a given multivalued mapping. Suupose that there exist \psi \in \Phi and \Gamma \in \nabla such that
\begin{equation*} \frac{1}{2s}\min \left\{ d_{b}(\widehat{\ell },\widetilde{T}\widehat{\ell } \cap \Lambda ),\check{d}_{b}(\nu ,\widetilde{T}\nu \cap \Lambda )\right\} < d_{b}(\widehat{\ell },\nu ) \end{equation*} |
implies that
\begin{equation*} \Gamma \left[ \alpha (\widehat{\ell },\nu )H_{b}(\widetilde{T}\widehat{\ell } ,\widetilde{T}\nu ),\xi (d_{b}(\widehat{\ell },\nu ))\right] \geq 0 \end{equation*} |
for all \widehat{\ell }\in \hat{U}, \nu \in \widetilde{T}\widehat{\ell } with d_{b}(\widehat{\ell }, \nu)\in E. Suppose that the following conditions are satisfied:
(i) \widetilde{T} is \alpha -admissible;
(ii) there exists \widehat{\ell }_{0}\in \hat{U} with d_{b}(\widehat{\ell }_{0}, \widehat{\ell }_{1})\in E for some \widehat{\ell } _{1}\in \widetilde{T}\widehat{\ell }_{0} such that \alpha \left(\widehat{ \ell }_{0}, \widehat{\ell }_{1}\right) \geq 1 .
Then there exists an orbit \{\widehat{\ell }_{i}\} of \widetilde{T} in \hat{U} which converges to the fixed point \sigma ^{\ast }\in \mathcal{F} = \{\widehat{\ell }\in \hat{U} :d_{b}(\widehat{\ell }, \sigma ^{\ast })\in E\} of \widetilde{T}.
In the recent past, Banach's fixed point theorem has a broad family of important applications to an iteration methods for the system of linear algebraic equation and the most publicized application of Banach's fixed point theorem emarge in the module of function spaces. This yields the existence of solution for the system of differential and integral equations (see [3]). In this section, we investigate Corollary 2.4 to stabilize the existence of solution for the system of integral inclusions.
Consider the following system of integral inclusion:
\begin{equation} \varsigma \left( r\right) \in \kappa +U\int_{r_{0}}^{r}D\left( t,\varsigma \left( t\right) \right) dt, \end{equation} | (4.1) |
where \kappa \in \left(-\infty, +\infty \right) , U is a bounded compact subset of \left(-\infty, +\infty \right) and the operator D\left(t, \varsigma \left(t\right) \right) is lower semi-continuous. Let \hat{U} = C(I) be the space of all continuous real valued functions ( C(I) is complete with respect to the metric d_{b} ) endowed with the b -metric defined by
\begin{equation*} d_{b}\left( \widehat{\ell }_{1},\widehat{\ell }_{2}\right) = \sup\limits_{r\in I}\left\vert \widehat{\ell }_{1}\left( r\right) -\widehat{\ell }_{2}\left( r\right) \right\vert . \label{4.2} \end{equation*} |
Assume that there exists D:\left(-\infty, +\infty \right) \times \left(-\infty, +\infty \right) \rightarrow \left(-\infty, +\infty \right) which is continuous on
\begin{equation*} \Gamma = \left\{ (r,\varsigma ):{\rm{ }}\left\vert r-r_{0}\right\vert \leq \left[ \frac{\alpha _{1}^{h-2}}{\alpha _{1}^{h-1}}\right] \;{\rm{ and }}\; \left\vert \varsigma -\kappa \right\vert \leq \frac{1}{2}\left( \frac{\alpha _{2}}{\alpha _{1}}\right) \right\} \end{equation*} |
where \alpha _{1} = \max_{u\in U}\left\vert U\right\vert, 0 < \alpha _{2} < \alpha _{1} and h\geq 2 such that
\begin{equation*} \left\vert D\left( r,\varsigma _{1}\left( r\right) \right) -D\left( r,\varsigma _{2}\left( r\right) \right) \right\vert \leq \frac{\alpha _{1}}{ \alpha _{2}}\left\vert \varsigma _{1}\left( r\right) -\varsigma _{2}\left( r\right) \right\vert ^{h}, \label{4.3} \end{equation*} |
where D is bounded as
\begin{equation*} \left\vert D\left( t,\varsigma \right) \right\vert < \frac{1}{2}\left[ \frac{ \alpha _{2}}{\alpha _{1}}\right] ^{h}. \label{4.4} \end{equation*} |
Moreover, let \check{C} = \left\{ \varsigma \in C(I):\widehat{V}\left(\varsigma, \kappa \right) \leq \frac{1}{2\alpha _{2}}\right\} be a closed subspace of C(I) and the operator g be defined by
\begin{equation*} g(\varsigma \left( r\right) )\in \kappa +U\int_{r_{0}}^{r}V\left( t,\varsigma \left( t\right) \right) dt. \label{4.5} \end{equation*} |
Set V_{\hat{U}}\left(r\right) = \int_{r_{0}}^{r}V\left(t, \varsigma \left(t\right) \right) dt. Note that
\begin{eqnarray} H_{b}[g(\varsigma _{1}\left( r\right) ),g(\varsigma _{2}\left( r\right) )] & = &H_{b}[\kappa +UV_{\hat{U}}\left( r\right) ,\kappa +UV_{y}\left( r\right) ] \\ &\leq &H_{b}[UV_{\hat{U}}\left( r\right) ,UV_{y}\left( r\right) ] \\ & = &\max \left\{ \max\limits_{\overline{a}\in UV_{\hat{U}}\left( r\right) }\check{d} _{b}\left( \overline{a},UV_{y}\left( r\right) \right) ,\max\limits_{\overline{b}\in UV_{y}\left( r\right) }d_{b}\left( \overline{b},UV_{\hat{U}}\left( r\right) \right) \right\} . \end{eqnarray} | (4.2) |
Then
\begin{eqnarray*} \max\limits_{\overline{a}\in UV_{\hat{U}}\left( r\right) }d_{b}\left( \overline{a} ,UV_{y}\left( r\right) \right) & = &\max\limits_{\overline{a}\in UV_{\hat{U}}\left( r\right) }\min\limits_{\overline{b}\in UV_{y}\left( r\right) }d_{b}\left( \overline{ a},\overline{b}\right) \\ & = &\max\limits_{\overline{u}\in U}\min\limits_{\overline{v}\in U}\check{d}_{b}\left( \overline{u}V\left( r,\varsigma _{1}\left( r\right) \right) ,\overline{v} V\left( r,\varsigma _{2}\left( r\right) \right) \right) \\ & = &\max\limits_{\overline{u}\in U}\min\limits_{\overline{v}\in U}\sup\limits_{r\in I}{\rm{ }} \left\vert \overline{u}V\left( r,\varsigma _{1}\left( r\right) \right) - \overline{v}V\left( r,\varsigma _{2}\left( r\right) \right) \right\vert \\ &\leq &\max\limits_{\overline{u}\in U}\min\limits_{\overline{v}\in U}\sup\limits_{r\in I}[\left\vert \overline{u}V\left( r,\varsigma _{2}\left( r\right) \right) - \overline{v}V\left( r,\varsigma _{2}\left( r\right) \right) \right\vert \\ &&+\left\vert \overline{u}V\left( r,\varsigma _{2}\left( r\right) \right) - \overline{u}V\left( r,\varsigma _{1}\left( r\right) \right) \right\vert ] \\ &\leq &\max\limits_{\overline{u}\in U}\min\limits_{\overline{v}\in U}[\left\vert \overline{ u}\right\vert \sup\limits_{r\in I}\left\vert V\left( r,\varsigma _{2}\left( r\right) \right) -V\left( r,\varsigma _{1}\left( r\right) \right) \right\vert \\ &&+\left\vert \overline{u}-\overline{v}\right\vert \sup\limits_{r\in I}\left\vert V\left( r,\varsigma _{2}\left( r\right) \right) \right\vert ] \\ & = &\max\limits_{\overline{u}\in U}\left\vert \overline{u}\right\vert \sup\limits_{r\in I}\left\vert V\left( r,\varsigma _{2}\left( r\right) \right) -V\left( r,\varsigma _{1}\left( r\right) \right) \right\vert \\ & = &\alpha _{2}\sup\limits_{r\in I}\left\vert V\left( r,\varsigma _{2}\left( r\right) \right) -V\left( r,\varsigma _{1}\left( r\right) \right) \right\vert . \end{eqnarray*} |
This implies that
\begin{equation} \max\limits_{\overline{a}\in UV_{\hat{U}}\left( r\right) }d\left( \overline{a} ,UV_{y}\left( r\right) \right) \leq \alpha _{2}\sup\limits_{r\in I}\left\vert V\left( r,\varsigma _{2}\left( r\right) \right) -V\left( r,\varsigma _{1}\left( r\right) \right) \right\vert . \end{equation} | (4.3) |
The third one of our results is as follows:
Theorem 4.1. Let \hat{U} = C(I) be the space of all continuous real valued functions and g:\left(\check{C}, d\right) \rightarrow \left(V\left(\check{C }\right), H_{b}\right) be a lower semi-continuous mapping. Suppose that the following assumptions hold:
(i) g is defined for all \varsigma \in \check{C};
(ii) g(\varsigma \left(r\right)) is a compact subset of \check{C} for all \varsigma \in \check{C};
Then the integral equation \left(4.3\right) has a solution on
\begin{equation*} I = \left[ r_{0}-\frac{\alpha _{1}^{h-2}}{\alpha _{1}^{h-1}},r_{0}+\frac{ \alpha _{1}^{h-2}}{\alpha _{1}^{h-1}}\right] . \end{equation*} |
Proof. Let \varkappa \in I . Then \left\vert \varkappa -r_{0}\right\vert \leq \left[ \frac{\alpha _{1}^{h-2}}{\alpha _{1}^{h-1}}\right]. Hence we have \left\vert \varsigma \left(\varkappa \right) -\kappa \right\vert \leq \frac{ 1}{2}\left(\frac{\alpha _{2}}{\alpha _{1}}\right) . If \left(\varkappa, \varsigma \left(\varkappa \right) \right) \in \left(-\infty, +\infty \right) , then the integral equation in (4.1) exists. Since \kappa \in \left(-\infty, +\infty \right) is continuous, \varkappa is defined for all \varkappa \in \check{C}. Next, let \vartheta \left(r\right) \in g(\varsigma \left(r\right)) . Then \vartheta \left(r\right) = \kappa + \overline{u}V_{\hat{U}}\left(r\right) for \overline{u}\in U and so
\begin{eqnarray*} \left\vert \vartheta \left( r\right) -\kappa \right\vert & = &\left\vert \overline{u}V_{\hat{U}}\left( r\right) \right\vert = |\overline{u}|\left\vert V_{\hat{U}}\left( r\right) \right\vert \\ &\leq &\alpha _{1}\int_{r_{0}}^{r}\left\vert V\left( t,\varsigma \left( t\right) \right) dt\right\vert \\ &\leq &\alpha _{1}\int_{r_{0}}^{r}\left\vert V\left( t,\varsigma \left( t\right) \right) \right\vert dt \\ & < &\alpha _{1}\frac{1}{2}\left( \frac{\alpha _{2}}{\alpha _{1}}\right) ^{h} \\ &\leq &\frac{1}{2}\left( \frac{\alpha _{2}}{\alpha _{1}}\right) . \end{eqnarray*} |
Thus \left\vert \vartheta \left(r\right) -\kappa \right\vert \leq \frac{1 }{2}\left(\frac{\alpha _{2}}{\alpha _{1}}\right) for all \vartheta \left(r\right) \in g(\varsigma \left(r\right)). So g(\varsigma \left(r\right)) is a subset of \check{C}. Now, let \left\{ \varsigma _{i}\right\} \subset g(\varsigma \left(r\right)) . Then \varsigma = \kappa +\overline{u_{i}}D_{\hat{U}}\left(r\right) for \overline{u_{i}}\in U. Since U is compact, there exists a subsequence \widehat{u_{i^{\ast }}}\in \widehat{u_{i}} such that \{\widehat{u_{i^{\ast }}}\} is convergent to \overline{u}\in U . Let \widehat{u} = \kappa +\widehat{u}V_{\hat{U}}\left(r\right) . Then
\begin{eqnarray*} d\left( \widehat{u_{i^{\ast }}},\widehat{u}\right) & = &\sup\limits_{r\in I}\left( \left\vert \widehat{u_{i^{\ast }}}-\widehat{u}\right\vert \left\vert V_{\hat{ U}}\left( r\right) \right\vert \right) \\ &\leq &\left\vert \widehat{u_{i^{\ast }}}-\widehat{u}\right\vert \sup\limits_{r\in I}\left\vert V_{\hat{U}}\left( r\right) \right\vert \rightarrow 0{\rm{, \;as }}\; i^{\ast }\rightarrow +\infty . \end{eqnarray*} |
Hence g(\varsigma \left(r\right)) is a compact subset of \check{C} for all \varsigma \in \check{C}. Next,
\begin{eqnarray*} \left\vert V\left( r,\varsigma _{1}\left( r\right) \right) -V\left( r,\varsigma _{2}\left( r\right) \right) \right\vert &\leq &\int_{r_{0}}^{r}\left\vert V\left( t,\varsigma _{1}\left( t\right) \right) -V\left( t,\varsigma _{2}\left( t\right) \right) \right\vert dt \\ &\leq &\frac{\alpha _{2}}{\alpha _{1}}\int_{r_{0}}^{r}\left\vert \varsigma _{1}\left( t\right) -\varsigma _{2}\left( t\right) \right\vert ^{h}dt \\ &\leq &\frac{\alpha _{2}}{\alpha _{1}}\sup\limits_{r\in I}\left\vert \varsigma _{1}\left( t\right) -\varsigma _{2}\left( t\right) \right\vert ^{h}\int_{r_{0}}^{r}dt \\ & = &\frac{\alpha _{2}}{\alpha _{1}}\left\vert r-r_{0}\right\vert \left[ d_{b}\left( \varsigma _{1},\varsigma _{2}\right) \right] ^{h} \\ &\leq &\frac{1}{\alpha _{1}}\left( \frac{\alpha _{1}}{\alpha _{2}}\right) ^{h-2}\left[ d_{b}\left( \varsigma _{1},\varsigma _{2}\right) \right] ^{h}. \end{eqnarray*} |
Therefore, we get
\begin{equation*} \max\limits_{\overline{a}\in UV_{\hat{U}}\left( r\right) }d_{b}\left( \overline{a} ,UV_{y}\left( r\right) \right) \leq \left( \frac{\alpha _{1}}{\alpha _{2}} \right) ^{h-2}\left[ d_{b}\left( \varsigma _{1},\varsigma _{2}\right) \right] ^{h}. \label{4.8} \end{equation*} |
Similarly,
\begin{equation*} \max\limits_{\overline{b}\in UV_{y}\left( r\right) }d_{b}\left( \overline{b},UV_{ \hat{U}}\left( r\right) \right) \leq \left( \frac{\alpha _{1}}{\alpha _{2}} \right) ^{h-2}\left[ d_{b}\left( \widehat{\ell }_{1},\widehat{\ell } _{2}\right) \right] ^{h}. \label{4.9} \end{equation*} |
Hence (4.2) implies that
\begin{equation*} H_{b}\left[ d_{b}(g\left( \varpi _{1}\right) ,g\left( \varpi _{2}\right) ) \right] \leq \left( \frac{\alpha _{1}}{\alpha _{2}}\right) ^{h-2}\left[ \check{d}_{b}\left( \varsigma _{1},\varsigma _{2}\right) \right] ^{h}. \end{equation*} |
Taking \varphi \left(\varsigma \right) = \varsigma , \varsigma > 0 and \xi \left(\varsigma \right) = \left(\frac{\alpha _{1}}{\alpha _{2}}\right) ^{h-2}\varsigma ^{h}, \varsigma \in E with d_{b}\left(\varsigma _{1}, \varsigma _{2}\right) < \frac{\alpha _{2}}{\alpha _{1}} , we get
\begin{equation*} \varphi \lbrack H_{b}d_{b}(g\left( \varpi _{1}\right) ,g\left( \varpi _{2}\right) )]\leq \varphi \left[ \xi \left( d_{b}(\varpi _{1},\varpi _{2})\right) \right] \;{\rm{ for \;all }}\;;\varpi _{1},\varpi _{2}\in \check{C} \;{\rm{ with }}\;d_{b}\left( \varsigma _{1},\varsigma _{2}\right) \in E. \end{equation*} |
Hence the requied conditions \left(\rm{i}\right) - \left(\rm{ii} \right) are equivalent to (a)-(b) of Corollary 2.3. So there exists a fixed point c^{\ast }(\in \Lambda) in \check{C} , which is a bounded solution of (4.1).
The paper deals with the pre-existing results of fixed point for multi-valued maps satisfying \varphi -contraction via b -B-GGF in the context of b -metric space. Within this frame work, we introduced two related fixed point results in b -metric space. Afterwards, the results have been explained by rendering concrete examples and some foremost corollaries have been deduced from the main results. At the end, we have proved existence theorem for the system of multi-valued integral inclusion.
We would like to express our sincere gratitude to the anonymous referee for his/her helpful comments that will help to improve the quality of the manuscript.
The authors declare that they have no competing interests.
[1] |
M. A. Fuentes, A. Gerig, J. Vicente, Universal behavior of extreme price movements in stock markets, PLoS ONE, 4 (2009), e8243. https://doi.org/10.1371/journal.pone.0008243 doi: 10.1371/journal.pone.0008243
![]() |
[2] |
M. T. J. Heino, K. Knittle, C. Noone, F. Hasselman, N. Hankonen, Studying behaviour change mechanisms under complexity, Behav. Sci., 11 (2021), 1–22. https://doi.org/10.3390/bs11050077 doi: 10.3390/bs11050077
![]() |
[3] |
S. Bowles, E. A. Smith, M. B. Mulder, The Emergence and Persistence of Inequality in Premodern Societies Introduction to the Special Section, Curr. Anthropol., 51 (2010), 7–17. https://doi.org/10.1086/649206 doi: 10.1086/649206
![]() |
[4] |
S. Bartolucci, F. Caccioli, P. Vivo, A percolation model for the emergence of the Bitcoin Lightning Network, Sci. Rep.-UK, 10 (2020), 4488. https://doi.org/10.1038/s41598-020-61137-5 doi: 10.1038/s41598-020-61137-5
![]() |
[5] | C. Hesp, M. Ramstead, A. Constant, P. Badcock, M. Kirchhoff, K. Friston, A multi-scale view of the emergent complexity of life: A free-energy proposal, in Evolution, Development and Complexity. Springer Proceedings in Complexity, (eds G. Georgiev, J. Smart, C. Flores Martinez, M. Price), Springer, Cham, (2019), 195–227. https://doi.org/10.1007/978-3-030-00075-2_7 |
[6] |
J. P. Bagrow, D. Wang, A. L Barabasi, Collective response of human populations to large-scale emergencies, PLoS One, 6 (2011), e17680. https://doi.org/10.1371/journal.pone.0017680 doi: 10.1371/journal.pone.0017680
![]() |
[7] |
E. I. Badano, P. A. Marquet, L. A. Cavieres, Predicting effects of ecosystem engineering on species richness along primary productivity gradients, Acta. Oecol., 36 (2010), 46–54. https://doi.org/10.1016/j.actao.2009.09.008 doi: 10.1016/j.actao.2009.09.008
![]() |
[8] |
F. Brauer, Z. L. Feng, C. Castillo-Chavez, Discrete epidemic models, Math. Biosci. Eng., 7 (2010), 1–15. https://doi.org/10.3934/mbe.2010.7.1 doi: 10.3934/mbe.2010.7.1
![]() |
[9] |
S. E. Kreps, D. L. Kriner, Model uncertainty, political contestation, and public trust in science: Evidence from the COVID-19 pandemic, Sci. Adv., 6 (2020), eabd4563. https://doi.org/10.1126/sciadv.abd4563 doi: 10.1126/sciadv.abd4563
![]() |
[10] |
G. F. D. Arruda, L. G. S. Jeub, A. S. Mata, F. A. Rodrigues, Y. Moreno, From subcritical behavior to elusive transition in rumor models, Nat. Commun., 13 (2022), 3049. https://doi.org/10.1038/s41467-022-30683-z doi: 10.1038/s41467-022-30683-z
![]() |
[11] |
J. Andreoni, N. Nikiforakis, S. Siegenthaler, Predicting social tipping and norm change in controlled experiments, P. Natl. A. Sci., 118 (2021), 2014893118. https://doi.org/10.1073/pnas.2014893118 doi: 10.1073/pnas.2014893118
![]() |
[12] | I. Kozic, Role of symmetry in irrational choice, preprint, arXiv: 1806.02627[physics.pop-ph]. |
[13] |
R. M. D'Souza, M. di Bernardo, Y. Y. Liu, Controlling complex networks with complex nodes, Nat. Rev. Phys., 5 (2023), 250–262. https://doi.org/10.1038/s42254-023-00566-3 doi: 10.1038/s42254-023-00566-3
![]() |
[14] |
J. Li, C. Xia, G. Xiao, Y. Moreno, Crash dynamics of interdependent networks, Sci. Rep.-UK, 9 (2019), 14574. https://doi.org/10.1038/s41598-019-51030-1 doi: 10.1038/s41598-019-51030-1
![]() |
[15] |
N. Biderman, D. Shohamy, Memory and decision making interact to shape the value of unchosen options, Nat. Commun., 12 (2021), 4648. https://doi.org/10.1038/s41467-021-24907-x doi: 10.1038/s41467-021-24907-x
![]() |
[16] |
P. Rizkallah, A. Sarracino, Microscopic theory for the diffusion of an active particle in a crowded environment, Phys. Rev. Lett., 128 (2022), 038001. https://doi.org/10.1103/PhysRevLett.128.038001 doi: 10.1103/PhysRevLett.128.038001
![]() |
[17] |
D. Fernex, B. R. Noack, R Semaan, Cluster-based network modeling—From snapshots to complex dynamical systems, Sci. Adv., 7 (2021), eabf5006. https://doi.org/10.1126/SCIADV.ABF5006 doi: 10.1126/SCIADV.ABF5006
![]() |
[18] |
L. Gavassino, M. Antonelli, B. Haskell, Thermodynamic stability implies causality, Phyl. Rev. Lett., 128 (2021), 010606. https://doi.org/10.48550/arXiv.2105.14621 doi: 10.48550/arXiv.2105.14621
![]() |
[19] |
P. Cardaliaguet, C. Rainer, Stochastic differential games with asymmetric information, Appl. Math. Opt., 59(2009), 1–36. https://doi.org/10.1007/s00245-008-9042-0 doi: 10.1007/s00245-008-9042-0
![]() |
[20] |
P. Mertikopoulos, A. L. Moustakas, The emergence of rational behavior in the presence of stochastic perturbations, Ann. Appl. Probab., 20 (2010), 1359–1388. https://doi.org/10.1214/09-AAP651 doi: 10.1214/09-AAP651
![]() |
[21] |
I. Durham, A formal model for adaptive free choice in complex systems, Entropy, 22 (2020), 568. https://doi.org/10.3390/e22050568 doi: 10.3390/e22050568
![]() |
[22] |
R. Atar, A. Budhiraja, On near optimal trajectories for a game associated with the ∞-Laplacian, Probab. Theory. Rel., 151(2011), 509–528. https://doi.org/10.1007/s00440-010-0306-7 doi: 10.1007/s00440-010-0306-7
![]() |
[23] |
W. Brian, Foundations of complexity economics, Nat. Rev. Phys., 3 (2021), 136–145. https://doi.org/10.1038/s42254-020-00273-3 doi: 10.1038/s42254-020-00273-3
![]() |
[24] |
J. H. Jiang, K. Ranabhat, X. Y. Wang, Active transformations of topological structures in light-driven nematic disclination networks, P. Natl. Acad. Sci., 119 (2022), 2122226119. https://doi.org/10.1073/pnas.2122226119 doi: 10.1073/pnas.2122226119
![]() |
[25] |
H. P Maia, S. C Ferreira, M. L Martins, Adaptive network approach for emergence of societal bubbles, Phys. A, 572 (2021), 125588. https://doi.org/10.1016/j.physa.2020.125588 doi: 10.1016/j.physa.2020.125588
![]() |
[26] |
W. Zou, D. V. Senthikumar, M. Zhan, J. Kurths, Quenching, aging, and reviving in coupled dynamical networks, Phys. Rep., 931 (2021), 1–72. https://doi.org/10.1016/j.physrep.2021.07.004 doi: 10.1016/j.physrep.2021.07.004
![]() |
[27] |
Z. Fulker, P. Forber, R. Smead, C. Riedl, Spite is contagious in dynamic networks, Nat. Commun., 12 (2021), 1–9. https://doi.org/10.1038/s41467-020-20436-1 doi: 10.1038/s41467-020-20436-1
![]() |
[28] | M. Colnaghi, F. P. Santos, P. A. M. V. Lange, D. Balliet, Adaptations to infer fitness interdependence promote the evolution of cooperation. P. Natl. Acad. Sci. USA, 120 (2023). https://doi.org/10.1073/pnas.2312242120 |
[29] | S. Carozza, D. Akarca, D. Astle, The adaptive stochasticity hypothesis: Modeling equifinality, multifinality, and adaptation to adversity, P. Natl. Acad. Sci. USA, 120 (2023). https://doi.org/10.1073/pnas.2307508120 |
[30] |
R. Berner, S. Vock, E. Schöll, S. Yanchuk, Desynchronization transitions in adaptive networks, Phys. Rev. Lett., 126 (2021), 028301. https://doi.org/10.1103/PhysRevLett.126.028301 doi: 10.1103/PhysRevLett.126.028301
![]() |
[31] | M. C. Miguel, J. T. Parley, R. Pastor-Satorras, Effects of heterogeneous social interactions on flocking dynamics Phys. Rev. Lett., 120 (2018), 068303. https://doi.org/10.1103/PhysRevLett.120.068303 |
[32] |
T. Hassler, J. Ullrich, M. Bernardino, N. Shnabel, C. V. Laar, D. Valdenegro, et.al., A large-scale test of the link between intergroup contact and support for social change, Nat. Hum. Behav., 4 (2020), 380–386. https://doi.org/10.1038/s41562-019-0815-z doi: 10.1038/s41562-019-0815-z
![]() |
[33] | P. DeLellis, M. D. Bemardo, T. E. Gorochowski, G. Russo, Synchronization and control of complex networks via contraction, adaptation and evolution, IEEE Circ. Syst. Mag., 10 (2010), 64–82. https://doi.org/10.1109/MCAS.2010.937884 |
[34] |
F. M. Neffke, The value of complementary co-workers, Sci. Adv., 5 (2019), eaax3370. https://doi.org/10.1126/sciadv.aax3370 doi: 10.1126/sciadv.aax3370
![]() |
[35] |
S. A. Levin, H. V. Milner, C. Perrings, The dynamics of political polarization, P. Natl. Acad. Sci. USA, 118 (2021), e2116950118. https://doi.org/10.1073/pnas.2116950118 doi: 10.1073/pnas.2116950118
![]() |
[36] |
C. Le Priol, P. Le Doussal, A. Rosso, Spatial clustering of depinning avalanches in presence of long-range interactions, Phys. Rev. Lett., 126 (2021), 025702. https://doi.org/10.1103/PhysRevLett.126.025702 doi: 10.1103/PhysRevLett.126.025702
![]() |
[37] |
M. Pirani, S. Baldi, K. H. Johansson, Impact of network topology on the resilience of vehicle platoons, IEEE T. Intell. Transp., 23 (2022), 15166–15177. https://doi.org/10.1109/TITS.2021.3137826 doi: 10.1109/TITS.2021.3137826
![]() |
[38] |
T. Narizuka, Y. Yoshihiro, Lifetime distributions for adjacency relationships in a vicsek Yamazaki model, Phys. Rev. E, 100 (2019), 032603. https://doi.org/10.1103/PhysRevE.100.032603 doi: 10.1103/PhysRevE.100.032603
![]() |
[39] | L. Tiokhin, M. Yan, T. J. Morgan, Competition for priority harms the reliability of science, but reforms can help, Nat. Hum. Behav., 5 (2021), 857–867. https://doi.org/10.1038/s41562-020-01040-1 |
[40] |
R. K. Colwell, Spatial scale and the synchrony of ecological disruption, Nature, 599 (2021), E8–E10. https://doi.org/10.1038/s41586-021-03759-x doi: 10.1038/s41586-021-03759-x
![]() |
[41] |
J. E. Allgeier, T. J. Cline, T. E. Walsworth, G. Wathen, C. A. Layman, D. E. Schindler, Individual behavior drives ecosystem function and the impacts of harvest, Sci. Adv., 6 (2020), eaax8329. https://doi.org/10.1126/sciadv.aax8329 doi: 10.1126/sciadv.aax8329
![]() |
[42] | B. J. Tóth, G. Palla, E. Mones, G. Havadi, N. Pall, P. Pollner, T. Vicsek, Emergence of leader-follower hierarchy among players in an on-line experiment, in 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), (IEEE), (2018), 1184–1190. https://doi.org/10.1109/ASONAM.2018.8508278 |
[43] |
A. N. Tump, T. J. Pleskac, R. H. Kurvers, Wise or mad crowds? The cognitive mechanisms underlying information cascades, Sci. Adv., 6 (2020), eabb0266. https://doi.org/10.1126/sciadv.abb0266 doi: 10.1126/sciadv.abb0266
![]() |
[44] |
R. Berner, S. Vock, E. Schöll, S. Yanchuk, Desynchronization transitions in adaptive networks, Phys. Rev. Lett., 126 (2021), 028301. https://doi.org/10.1103/physrevlett.126.028301 doi: 10.1103/physrevlett.126.028301
![]() |
[45] | L. Zhang, W. Chen, M. Antony, K. Y. Szeto, Phase diagram of symmetric iterated prisoner's dilemma of two companies with partial imitation rule. preprint, arXiv: 1103.6103[physics.soc-ph]. |
[46] |
G. Chen, Small noise may diversify collective motion in Vicsek model, IEEE T. Automat. Contr., 62 (2016), 636–651. https://doi.org/10.1109/tac.2016.2560144 doi: 10.1109/tac.2016.2560144
![]() |
[47] |
M. Staudigi, Co-evolutionary dynamics and Bayesian interaction games, Int. J. Game Theory, 42 (2013), 179–210. https://doi.org/10.1007/s00182-012-0331-0 doi: 10.1007/s00182-012-0331-0
![]() |
1. | Muhammad Tariq, Mujahid Abbas, Aftab Hussain, Muhammad Arshad, Amjad Ali, Hamid Al-Sulami, Fixed points of non-linear set-valued \left(\alpha _{\ast }, \phi _{M}\right) -contraction mappings and related applications, 2022, 7, 2473-6988, 8861, 10.3934/math.2022494 | |
2. | Sumaiya Tasneem Zubair, Kalpana Gopalan, Thabet Abdeljawad, Nabil Mlaiki, Novel fixed point technique to coupled system of nonlinear implicit fractional differential equations in complex valued fuzzy rectangular b -metric spaces, 2022, 7, 2473-6988, 10867, 10.3934/math.2022608 | |
3. | Amjad Ali, Eskandar Ameer, Muhammad Arshad, Hüseyin Işık, Mustafa Mudhesh, Padmapriya Praveenkumar, Fixed Point Results of Dynamic Process D ˇ ϒ , μ 0 through F I C -Contractions with Applications, 2022, 2022, 1099-0526, 1, 10.1155/2022/8495451 | |
4. | Amjad Ali, Muhammad Arshad, Eskandar Emeer, Hassen Aydi, Aiman Mukheimer, Kamal Abodayeh, Certain dynamic iterative scheme families and multi-valued fixed point results, 2022, 7, 2473-6988, 12177, 10.3934/math.2022677 | |
5. | Maryam Iqbal, Afshan Batool, Aftab Hussain, Hamed Alsulami, Fuzzy Fixed Point Theorems in S-Metric Spaces: Applications to Navigation and Control Systems, 2024, 13, 2075-1680, 650, 10.3390/axioms13090650 | |
6. | Amjad Ali, Muhammad Arshad, Eskandar Ameer, Asim Asiri, Certain new iteration of hybrid operators with contractive M -dynamic relations, 2023, 8, 2473-6988, 20576, 10.3934/math.20231049 |