Three-dimensional path planning refers to determining an optimal path in a three-dimensional space with obstacles, so that the path is as close to the target location as possible, while meeting some other constraints, including distance, altitude, threat area, flight time, energy consumption, and so on. Although the bald eagle search algorithm has the characteristics of simplicity, few control parameters, and strong global search capabilities, it has not yet been applied to complex three-dimensional path planning problems. In order to broaden the application scenarios and scope of the algorithm and solve the path planning problem in three-dimensional space, we present a study where five three-dimensional geographical environments are simulated to represent real-life unmanned aerial vehicles flying scenarios. These maps effectively test the algorithm's ability to handle various terrains, including extreme environments. The experimental results have verified the excellent performance of the BES algorithm, which can quickly, stably, and effectively solve complex three-dimensional path planning problems, making it highly competitive in this field.
Citation: Yunhui Zhang, Yongquan Zhou, Shuangxi Chen, Wenhong Xiao, Mingyu Wu. Bald eagle search algorithm for solving a three-dimensional path planning problem[J]. Mathematical Biosciences and Engineering, 2024, 21(2): 2856-2878. doi: 10.3934/mbe.2024127
[1] | Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori . On generalized Hermite polynomials. AIMS Mathematics, 2024, 9(11): 32463-32490. doi: 10.3934/math.20241556 |
[2] | Mohra Zayed, Shahid Wani . Exploring the versatile properties and applications of multidimensional degenerate Hermite polynomials. AIMS Mathematics, 2023, 8(12): 30813-30826. doi: 10.3934/math.20231575 |
[3] | Mohra Zayed, Taghreed Alqurashi, Shahid Ahmad Wani, Cheon Seoung Ryoo, William Ramírez . Several characterizations of bivariate quantum-Hermite-Appell Polynomials and the structure of their zeros. AIMS Mathematics, 2025, 10(5): 11184-11207. doi: 10.3934/math.2025507 |
[4] | Gyung Won Hwang, Cheon Seoung Ryoo, Jung Yoog Kang . Some properties for 2-variable modified partially degenerate Hermite (MPDH) polynomials derived from differential equations and their zeros distributions. AIMS Mathematics, 2023, 8(12): 30591-30609. doi: 10.3934/math.20231564 |
[5] | Mohra Zayed, Shahid Ahmad Wani . Properties and applications of generalized 1-parameter 3-variable Hermite-based Appell polynomials. AIMS Mathematics, 2024, 9(9): 25145-25165. doi: 10.3934/math.20241226 |
[6] | Yunbo Tian, Sheng Chen . Prime decomposition of quadratic matrix polynomials. AIMS Mathematics, 2021, 6(9): 9911-9918. doi: 10.3934/math.2021576 |
[7] | Mohra Zayed, Shahid Ahmad Wani, William Ramírez, Clemente Cesarano . Advancements in q-Hermite-Appell polynomials: a three-dimensional exploration. AIMS Mathematics, 2024, 9(10): 26799-26824. doi: 10.3934/math.20241303 |
[8] | Mdi Begum Jeelani . On employing linear algebra approach to hybrid Sheffer polynomials. AIMS Mathematics, 2023, 8(1): 1871-1888. doi: 10.3934/math.2023096 |
[9] | Young Joon Ahn . An approximation method for convolution curves of regular curves and ellipses. AIMS Mathematics, 2024, 9(12): 34606-34617. doi: 10.3934/math.20241648 |
[10] | Nusrat Raza, Mohammed Fadel, Kottakkaran Sooppy Nisar, M. Zakarya . On 2-variable q-Hermite polynomials. AIMS Mathematics, 2021, 6(8): 8705-8727. doi: 10.3934/math.2021506 |
Three-dimensional path planning refers to determining an optimal path in a three-dimensional space with obstacles, so that the path is as close to the target location as possible, while meeting some other constraints, including distance, altitude, threat area, flight time, energy consumption, and so on. Although the bald eagle search algorithm has the characteristics of simplicity, few control parameters, and strong global search capabilities, it has not yet been applied to complex three-dimensional path planning problems. In order to broaden the application scenarios and scope of the algorithm and solve the path planning problem in three-dimensional space, we present a study where five three-dimensional geographical environments are simulated to represent real-life unmanned aerial vehicles flying scenarios. These maps effectively test the algorithm's ability to handle various terrains, including extreme environments. The experimental results have verified the excellent performance of the BES algorithm, which can quickly, stably, and effectively solve complex three-dimensional path planning problems, making it highly competitive in this field.
In this paper, we are concerned with the sharp decay rates of solutions to the Cauchy problem for the isentropic Navier-Stokes equations:
{∂tρ+div(ρu)=0,(t,x)∈R+×R3,∂t(ρu)+div(ρu⊗u)+∇p(ρ)=divT,(t,x)∈R+×R3,lim|x|→∞ρ=ˉρ,lim|x|→∞u=0,t∈R+,(ρ,u)|t=0=(ρ0,u0),x∈R3, | (1.1) |
which governs the motion of a isentropic compressible viscous fluid. The unknown functions
Using the classical spectral method, the optimal time decay rate (upper bound) of the linearized equations of the isentropic Navier-Stokes equations are well known. One may then expect that the small solution of the nonlinear equations (1.1) have the same decay rate as the linear one. Our work is devoted to proving the sharp time decay rate (for both upper and lower bound) for the nonlinear system.
In the case of one space dimension, Zeng [24] and Liu-Zeng [15] offered a detailed analysis of the solution to a class of hyperbolic-parabolic system through point-wise estimate, including the isentropic Navier-Stokes system. For multi-dimensional Navier-Stokes equations (and/or Navier-Stokes-Fourier system), the
When additional external force is taken into account, the external force does affect the long time behavior of solutions. The upper bound of time decay rates were studied intensively, see for instance [1] and [2] on unbounded domain, [22], [23] on the convergence of the non-stationary flow to the corresponding steady flow when the initial date are small in
The main goal of current paper is to establish the sharp decay rate, on both upper and lower bounds, to the solutions of (1.1) using relatively simple energy method. We remark that similar results had been pursued by M. Schonbek [20], [21] for incompressible Navier-Stokes equations, and by Li, Matsumura-Zhang [13] for isentropic Navier-Stokes-Poisson system. Although they share the same spirit in obtaining the lower bound decay rates, the feature of the spectrum near zero exhibits quite different behaviors, leading to different analysis. For instance, we explored the elegant structure of the higher order nonlinear terms of Navier-Stokes, when choosing conservative variables: density and momentum. The conservative form of the sharp equations provided a natural derivative structure in these terms, leading to the possibility of a faster decay rate estimate. We will make a more detailed comparison later in this paper.
Define
{∂tn+divm=0,(t,x)∈R+×R3,∂tm+c2∇n−ˉμ△m−(ˉμ+ˉν)∇divm=F,(t,x)∈R+×R3,lim|x|→∞n=0,lim|x|→∞m=0,t∈R+,(n,m)|t=0=(ρ0−ˉρ,ρ0u0),x∈R3, | (1.2) |
where
F=−div{m⊗mn+ˉρ+ˉμ∇(nmn+ˉρ)}−∇{(ˉμ+ˉν)div(nmn+ˉρ)+(p(n+ˉρ)−p(ˉρ)−c2n)}. |
It is this structure of
Our aim is to obtain a clear picture of the large time behavior of
{∂t˜n+div˜m=0,(t,x)∈R+×R3,∂t˜m+c2∇˜n−ˉμ△˜m−(ˉμ+ˉν)∇div˜m=0,(t,x)∈R+×R3,lim|x|→∞˜n=0,lim|x|→∞˜m=0,t∈R+,(˜n,˜m)|t=0=(ρ0−ˉρ,ρ0u0),x∈R3, | (1.3) |
where
Notation. For
We now state our main result.
Theorem 1.1. Assume that
∫R3(n0,m0)dx≠0, | (1.4) |
then there is a unique global classical solution
C−1(1+t)−34−k2≤‖∇k˜n(t)‖L2(R3)≤C(1+t)−34−k2,k=0,1,2,3,C−1(1+t)−34−k2≤‖∇k˜m(t)‖L2(R3)≤C(1+t)−34−k2,k=0,1,2,3, |
and the initial value problem (1.2) has a unique solution
‖∇k(nh,mh)(t)‖L2(R3)≲δ20(1+t)−54−k2,k=0,1,2,‖∇3mh(t)‖L2(R3)≲δ20(1+t)−114,‖∇3nh(t)‖L2(R3)≲δ0(1+t)−74. |
As a consequence, there exists a positive constant
C−11(1+t)−34−k2≤‖∇kn(t)‖L2(R3)≤C1(1+t)−34−k2,k=0,1,2,C−11(1+t)−34−k2≤‖∇km(t)‖L2(R3)≤C1(1+t)−34−k2,k=0,1,2,3. |
Remark 1.1. We remark that this theorem is valid under the condition (1.4) which is important in the lower bound estimate to the linearized problem. When (1.4) fails, the decay rate of the linearized system (1.3) depends on the order of the degeneracy of moments. Assume
Remark 1.2. In [13], Li, Matsumura-Zhang proved the lower bound decay rate of the linearized isentropic Navier-Stokes-Poisson system, they only require
In what follows, we will set
{∂tn+ˉρdivu=−ndivu−u⋅∇n,∂tu+γˉρ∇n−ˉμ△u−(ˉμ+ˉν)∇divu=−u⋅∇u−ˉμf(n)△u−(ˉμ+ˉν)f(n)∇divu−g(n)∇n,lim|x|→∞n=0,lim|x|→∞u=0,(n,u)|t=0=(ρ0−ˉρ,u0), | (2.1) |
where
f(n):=nn+ˉρ,g(n):=p′(n+ˉρ)n+ˉρ−p′(ˉρ)ˉρ. | (2.2) |
We assume that there exist a time of existence
‖n(t)‖H3+‖u(t)‖H3≤δ, | (2.3) |
holds for any
ˉρ2≤n+ˉρ≤2ˉρ. |
Hence, we immediately have
|f(n)|,|g(n)|≤C|n|,|∇kf(n)|,|∇kg(n)|≤C∀k∈N+, | (2.4) |
where
Next, we begin with the energy estimates including
Theorem 2.1. Assume that
‖n0‖H3+‖u0‖H3≤δ0, |
then the problem (2.1) admits a unique global solution
‖n(t)‖2H3+‖u(t)‖2H3+∫t0(‖∇n(τ)‖2H2+‖∇u(τ)‖2H3)dτ≤C(‖n0‖2H3+‖u0‖2H3), |
where
The proof of this theorem is divided into several subsections.
For
12ddt∫R3(γ|n|2+|u|2)dx+∫R3(ˉμ|∇u|2+(ˉμ+ˉν)|divu|2)dx=∫R3γ(−ndivu−u⋅∇n)n−(u⋅∇u+ˉμf(n)△u+(ˉμ+ˉν)f(n)∇divu+g(n)∇n)⋅udx≲‖n‖L3‖∇u‖L2‖n‖L6+(‖u‖L3‖∇u‖L2+‖n‖L3‖∇n‖L2)‖u‖L6+(‖u‖L∞‖∇n‖L2+‖n‖L∞‖∇u‖L2)‖∇u‖L2≲(‖n‖L3+‖u‖L3+‖n‖L∞+‖u‖L∞)(‖∇n‖2L2+‖∇u‖2L2). | (2.5) |
Now for
12ddt∫R3(γ|∇n|2+|∇u|2)dx+∫R3(ˉμ|∇2u|2+(ˉμ+ˉν)|∇divu|2)dx≲(‖n‖L∞+‖u‖L∞+‖∇n‖L∞+‖∇u‖L∞)(‖∇n‖2L2+‖∇u‖2L2+‖∇2u‖2L2). | (2.6) |
For
12ddt∫R3(γ|∇2n|2+|∇2u|2)dx+∫R3(ˉμ|∇3u|2+(ˉμ+ˉν)|∇2divu|2)dx≲(‖n‖L∞+‖u‖L∞+‖∇n‖L∞+‖∇u‖L∞)(‖∇2n‖2L2+‖∇2u‖2L2+‖∇3u‖2L2). | (2.7) |
For
12ddt∫R3(γ|∇3n|2+|∇3u|2)dx+∫R3(ˉμ|∇4u|2+(ˉμ+ˉν)|∇3divu|2)dx≲(‖n‖L∞+‖u‖L∞+‖∇n‖L∞+‖∇u‖L∞)(‖∇3n‖2L2+‖∇3u‖2L2+‖∇4u‖2L2)+‖∇n‖L3‖∇4u‖L2‖∇2n‖L6+‖∇u‖L3‖∇4u‖L2‖∇2u‖L6+‖∇2n‖L3(‖∇3n‖L2+‖∇4u‖L2)‖∇2u‖L6. | (2.8) |
Summing up the above estimates, noting that
ddt∑0≤k≤3(γ‖∇kn‖2L2+‖∇ku‖2L2)+C1∑1≤k≤4‖∇ku‖2L2≤C2δ∑1≤k≤3‖∇kn‖2L2. | (2.9) |
For
ddt∫R3u⋅∇ndx+γˉρ∫R3|∇n|2dx≲‖∇u‖2L2+‖∇n‖L2‖∇2u‖L2+(‖n‖L∞+‖u‖L∞)(‖∇n‖2L2+‖∇u‖2L2), | (2.10) |
for
ddt∫R3∇u⋅∇2ndx+γˉρ∫R3|∇2n|2dx≲‖∇2u‖2L2+‖∇2n‖L2‖∇3u‖L2+(‖(n,u)‖L∞+‖(∇n,∇u)‖L∞)×(‖∇n‖2L2+‖∇2n‖2L2+‖∇2u‖2L2), | (2.11) |
and for
ddt∫R3∇2u⋅∇3ndx+γˉρ∫R3|∇3n|2dx≲‖∇3u‖2L2+‖∇3n‖L2‖∇4u‖L2+(‖(n,u)‖L∞+‖(∇n,∇u)‖L∞)×(‖∇2n‖2L2+‖∇2u‖2L2+‖∇3n‖2L2+‖∇3u‖2L2). | (2.12) |
Plugging the above estimates, using the smallness of
ddt∑0≤k≤2∫R3∇ku⋅∇k+1ndx+C3∑1≤k≤3‖∇kn‖2L2≤C4∑1≤k≤4‖∇ku‖2L2. | (2.13) |
Proof of Theorem 2.1. Multiplying (2.13) by
ddt{∑0≤k≤3(γ‖∇kn‖2L2+‖∇ku‖2L2)+2C2δC3∑0≤k≤2∫R3∇ku⋅∇k+1ndx}+C5{∑1≤k≤3‖∇kn‖2L2+∑1≤k≤4‖∇ku‖2L2}≤0. | (2.14) |
Next, we define
ddtE(t)+‖∇n(t)‖2H2+‖∇u(t)‖2H3≤0. | (2.15) |
Observe that since
C−16(‖n(t)‖2H3+‖u(t)‖2H3)≤E(t)≤C6(‖n(t)‖2H3+‖u(t)‖2H3). |
Then integrating (2.15) directly in time, we get
sup0≤t≤T(‖n(t)‖2H3+‖u(t)‖2H3)+C6∫T0(‖∇n(τ)‖2H2+‖∇u(τ)‖2H3)dτ≤C26(‖n0‖2H3+‖u0‖2H3). |
Using a standard continuity argument along with classical local wellposedness theory, this closes the a priori assumption (2.3) if we assume
In this section, we consider the initial value problem for the linearized Navier-Stokes system
{∂t˜n+div˜m=0,(t,x)∈R+×R3,∂t˜m+c2∇˜n−ˉμ△˜m−(ˉμ+ˉν)∇div˜m=0,(t,x)∈R+×R3,lim|x|→∞˜n=0,lim|x|→∞˜m=0,t∈R+,(˜n,˜m)|t=0=(ρ0−ˉρ,ρ0u0),x∈R3, | (3.1) |
where
In terms of the semigroup theory for evolutionary equations, the solution
˜Ut=B˜U,t≥0,˜U(0)=˜U0, |
which gives rise to
˜U(t)=S(t)˜U0=etB˜U0,t≥0, |
where
B=(0−div−c2∇ˉμ△angle+(ˉμ+ˉν)∇div). |
What left is to analyze the differential operator
∂tˆ˜U(t,ξ)=A(ξ)ˆ˜U(t,ξ),t≥0,ˆ˜U(0,ξ)=ˆ˜U0(ξ), |
where
A(ξ)=(0−iξt−c2iξ−ˉμ|ξ|2I3×3−(ˉμ+ˉν)ξ⊗ξ). |
The eigenvalues of the matrix
det(A(ξ)−λI)=−(λ+ˉμ|ξ|2)2(λ2+(2ˉμ+ˉν)|ξ|2λ+c2|ξ|2)=0, |
which implies
λ0=−ˉμ|ξ|2(double),λ1=λ1(|ξ|),λ2=λ2(|ξ|). |
The semigroup
etA=eλ0tP0+eλ1tP1+eλ2tP2, |
where the project operators
Pi=∏i≠jA(ξ)−λjIλi−λj. |
By a direct computation, we can verify the exact expression for the Fourier transform
ˆG(t,ξ)=etA=(λ1eλ2t−λ2eλ1tλ1−λ2−iξt(eλ1t−eλ2t)λ1−λ2−c2iξ(eλ1t−eλ2t)λ1−λ2e−λ0t(I−ξ⊗ξ|ξ|2)+ξ⊗ξ|ξ|2λ1eλ1t−λ2eλ2tλ1−λ2)=(ˆNˆM). |
Indeed, we can make the following decomposition for
ˆ˜n=ˆN⋅ˆ˜U0=(ˆN+ˆN)⋅ˆ˜U0,ˆ˜m=ˆM⋅ˆ˜U0=(ˆM+ˆM)⋅ˆ˜U0, |
where
ˆN=(λ1eλ2t−λ2eλ1tλ1−λ20),ˆN=(0−iξt(eλ1t−eλ2t)λ1−λ2),ˆM=(−c2iξ(eλ1t−eλ2t)λ1−λ20),ˆM=(0e−λ0t(I−ξ⊗ξ|ξ|2)+ξ⊗ξ|ξ|2λ1eλ1t−λ2eλ2tλ1−λ2). |
We further decompose the Fourier transform
Define
ˆN=ˆN1+ˆN2,ˆN=ˆN1+ˆN2,ˆM=ˆM1+ˆM2,ˆM=ˆM1+ˆM2, |
where
χ(ξ)={1,|ξ|≤R,0,|ξ|≥R+1. |
Then we have the following decomposition for
ˆ˜n=ˆN⋅ˆ˜U0=ˆN1⋅ˆ˜U0+ˆN2⋅ˆ˜U0=(ˆN1+ˆN1)⋅ˆ˜U0+(ˆN2+ˆN2)⋅ˆ˜U0,ˆ˜m=ˆM⋅ˆ˜U0=ˆM1⋅ˆU0+ˆM2⋅ˆ˜U0=(ˆM1+ˆM1)⋅ˆ˜U0+(ˆM2+ˆM2)⋅ˆ˜U0. | (3.2) |
To derive the long time decay rate of solution, we need to use accurate approximation to the Fourier transform
λ1=−2ˉμ+ˉν2|ξ|2+i2√4c2|ξ|2−(2ˉμ+ˉν)2|ξ|4=a+bi,λ2=−2ˉμ+ˉν2|ξ|2−i2√4c2|ξ|2−(2ˉμ+ˉν)2|ξ|4=a−bi, | (3.3) |
and we have
λ1eλ2t−λ2eλ1tλ1−λ2=e−12(2ˉμ+ˉν)|ξ|2t[cos(bt)+12(2ˉμ+ˉν)|ξ|2sin(bt)b]∼O(1)e−12(2ˉμ+ˉν)|ξ|2t,|ξ|≤η, |
λ1eλ1t−λ2eλ2tλ1−λ2=e−12(2ˉμ+ˉν)|ξ|2t[cos(bt)−12(2ˉμ+ˉν)|ξ|2sin(bt)b]∼O(1)e−12(2ˉμ+ˉν)|ξ|2t,|ξ|≤η, |
eλ1t−eλ2tλ1−λ2=e−12(2ˉμ+ˉν)|ξ|2tsin(bt)b∼O(1)1|ξ|e−12(2ˉμ+ˉν)|ξ|2t,|ξ|≤η, |
where
b=12√4c2|ξ|2−(2ˉμ+ˉν)2|ξ|4∼c|ξ|+O(|ξ|3),|ξ|≤η. |
For the high frequency
λ1=−2ˉμ+ˉν2|ξ|2−12√(2ˉμ+ˉν)2|ξ|4−4c2|ξ|2=a−b,λ2=−2ˉμ+ˉν2|ξ|2+12√(2ˉμ+ˉν)2|ξ|4−4c2|ξ|2=a+b, | (3.4) |
and we have
λ1eλ2t−λ2eλ1tλ1−λ2=12e(a+b)t[1+e−2bt]−a2be(a+b)t[1−e−2bt]∼O(1)e−R0t,|ξ|≥η, |
λ1eλ1t−λ2eλ2tλ1−λ2=a+b2be(a+b)t[1−e−2bt]+e(a−b)t∼O(1)e−R0t,|ξ|≥η, |
eλ1t−eλ2tλ1−λ2=12be(a+b)t[1−e−2bt]∼O(1)1|ξ|2e−R0t,|ξ|≥η, |
where
b=12√(2ˉμ+ˉν)2|ξ|4−4c2|ξ|2∼12(2ˉμ+ˉν)|ξ|2−2c22ˉμ+ˉν+O(|ξ|−2),|ξ|≥η. |
Here
In this section, we apply the spectral analysis to the semigroup for the linearized Navier-Stokes system. We will establish the
With the help of the formula for Green's function in Fourier space and the asymptotic analysis on its elements, we are able to establish the
Proposition 4.1. Let
‖∇k(˜n,˜m)(t)‖L2(R3)≤C(1+t)−34−k2(‖U0‖L1(R3)+‖∇kU0‖L2(R3)), |
where
Proof. A straightforward computation together with the formula of the Green's function
ˆ˜n(t,ξ)=λ1eλ2t−λ2eλ1tλ1−λ2ˆn0−iξ⋅ˆm0(eλ1t−eλ2t)λ1−λ2∼{O(1)e−12(2ˉμ+ˉν)|ξ|2t(|ˆn0|+|ˆm0|),|ξ|≤η,O(1)e−R0t(|ˆn0|+|ˆm0|),|ξ|≥η,ˆ˜m(t,ξ)=−c2iξ(eλ1t−eλ2t)λ1−λ2ˆn0+e−λ0tˆm0+(λ1eλ1t−λ2eλ2tλ1−λ2−e−λ0t)ξ(ξ⋅ˆm0)|ξ|2∼{O(1)e−ˉμ|ξ|2t(|ˆn0|+|ˆm0|),|ξ|≤η,O(1)e−R0t(|ˆn0|+|ˆm0|),|ξ|≥η, |
here and below,
‖(ˆ˜n,ˆ˜m)(t)‖2L2(R3)=∫|ξ|≤η|(ˆ˜n,ˆ˜m)(t,ξ)|2dξ+∫|ξ|≥η|(ˆ˜n,ˆ˜m)(t,ξ)|2dξ≲∫|ξ|≤ηe−2ˉμ|ξ|2t(|ˆn0|2+|ˆm0|2)dξ+∫|ξ|≥ηe−2R0t(|ˆn0|2+|ˆm0|2)dξ≲(1+t)−32‖(n0,m0)‖2L1(R3)∩L2(R3). |
And the
‖(^∇k˜n,^∇k˜m)(t)‖2L2(R3)=∫|ξ|≤η|ξ|2k|(ˆ˜n,ˆ˜m)(t,ξ)|2dξ+∫|ξ|≥η|ξ|2k|(ˆ˜n,ˆ˜m)(t,ξ)|2dξ≲∫|ξ|≤ηe−2ˉμ|ξ|2t|ξ|2k(|ˆn0|2+|ˆm0|2)dξ+∫|ξ|≥ηe−2R0t|ξ|2k(|ˆn0|2+|ˆm0|2)dξ≲(1+t)−32−k(‖(n0,m0)‖2L1(R3)+‖(∇kn0,∇km0)‖2L2(R3)). |
The proof of the Proposition 4.1 is completed.
It should be noted that the
Proposition 4.2. Let
C−1(1+t)−34−k2≤‖∇k˜n(t)‖L2(R3)≤C(1+t)−34−k2,C−1(1+t)−34−k2≤‖∇k˜m(t)‖L2(R3)≤C(1+t)−34−k2, |
where
Proof. We only show the case of
ˆ˜n(t,ξ)=λ1eλ2t−λ2eλ1tλ1−λ2ˆn0−iξ⋅ˆm0(eλ1t−eλ2t)λ1−λ2=e−12(2ˉμ+ˉν)|ξ|2t[cos(bt)ˆn0−iξ⋅ˆm0sin(bt)b]+e−12(2ˉμ+ˉν)|ξ|2t[12(2ˉμ+ˉν)|ξ|2sin(bt)bˆn0]=T1+T2,for|ξ|≤η, |
ˆ˜m(t,ξ)=−c2iξ(eλ1t−eλ2t)λ1−λ2ˆn0+e−λ0tˆm0+(λ1eλ1t−λ2eλ2tλ1−λ2−e−λ0t)ξ(ξ⋅ˆm0)|ξ|2=[e−12(2ˉμ+ˉν)|ξ|2t[cos(bt)ξ(ξ⋅ˆm0)|ξ|2−c2iξsin(bt)bˆn0]+e−ˉμ|ξ|2t[ˆm0−ξ(ξ⋅ˆm0)|ξ|2]]−e−12(2ˉμ+ˉν)|ξ|2t[12(2ˉμ+ˉν)|ξ|2sin(bt)bξ(ξ⋅ˆm0)|ξ|2]=S1+S2,for|ξ|≤η, |
here and below,
It is easy to check that
‖ˆ˜n(t,ξ)‖2L2=∫|ξ|≤η|ˆ˜n(t,ξ)|2dξ+∫|ξ|≥η|ˆ˜n(t,ξ)|2dξ≥∫|ξ|≤η|T1+T2|2dξ≥∫|ξ|≤η12|T1|2−|T2|2dξ. | (4.1) |
We then calculate that
∫|ξ|≤η|T2|2dξ≲‖ˆn0‖2L∞∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2t|ξ|4(sin(bt)b)2dξ≲‖ˆn0‖2L∞∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2t|ξ|2dξ≲(1+t)−52‖n0‖2L1. | (4.2) |
Since
|ˆn0(ξ)|2≥1C|∫R3n0(x)dx|2≥M2nC,for|ξ|≤η. |
For
|ξ⋅ˆm0(ξ)|2|ξ|2≥|ξ⋅Mm|2C|ξ|2,for|ξ|≤η. |
When
∫|ξ|≤η|T1|2dξ≥M2nC∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2tcos2(bt)dξ+1C∫|ξ|≤η|ξ⋅Mm|2b2e−(2ˉμ+ˉν)|ξ|2tsin2(bt)dξ |
≥min{M2n,M2m3c2}C∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2t(cos2(bt)+sin2(bt))dξ≥C1∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2tdξ≥C−1(1+t)−32. | (4.3) |
If
|ˆm0(ξ)|2<ϵ,for|ξ|≤η. |
We thus use the help of spherical coordinates and the change of variables
∫|ξ|≤η|T1|2dξ≥M2nC∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2tcos2(bt)dξ−ϵCc2∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2tsin2(bt)dξ≥M2nCt−32∫η√t0e−(2ˉμ+ˉν)r2cos2(cr√t)r2dr−ϵCc2t−32∫η√t0e−(2ˉμ+ˉν)r2sin2(cr√t)r2dr≥M2nCt−32[cηtπ]−1∑k=0∫kπ+π4c√tkπc√te−(2ˉμ+ˉν)r2cos2(cr√t)r2dr−ϵCc2(1+t)−32≥M2n2Ct−32[cηtπ]−1∑k=0∫kπ+π4c√tkπc√te−(2ˉμ+ˉν)r2r2dr−ϵCc2(1+t)−32≥C−11(1+t)−32−C−12ϵ(1+t)−32.≥C−1(1+t)−32 | (4.4) |
In the case of
∫|ξ|≤η|T1|2dξ≥−ϵC∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2tcos2(bt)dξ+M2m3Cc2∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2tsin2(bt)dξ≥C−1(1+t)−32. | (4.5) |
Combining the above estimates (4.1), (4.2), (4.3), (4.4) and (4.5), we obtain the lower bound of the time decay rate for
‖˜n(t,x)‖2L2=‖ˆ˜n(t,ξ)‖2L2≥C−1(1+t)−32. |
The lower bound of the time decay rate for
‖ˆ˜m(t,ξ)‖2L2≥∫|ξ|≤η12|S1|2−|S2|2dξ, | (4.6) |
then we find that
∫|ξ|≤η|S2|2dξ≲(1+t)−52‖m0‖2L1. | (4.7) |
We then calculate that
∫|ξ|≤η|S1|2dξ≥{c4M2nC∫|ξ|≤η|ξ|2b2e−(2ˉμ+ˉν)|ξ|2tsin2(bt)dξ+1C∫|ξ|≤η|ξ⋅Mm|2|ξ|2e−(2ˉμ+ˉν)|ξ|2tcos2(bt)dξ}+{∫|ξ|≤ηe−12(4ˉμ+ˉν)|ξ|2tcos(bt)ξ(ξ⋅ˆm0)|ξ|2(ˆm0−ξ(ξ⋅ˆm0)|ξ|2)dξ}=J1+J2. |
A direct computation gives rise to
J1≥C−1(1+t)−32,J2=0. | (4.8) |
Combining the above estimates (4.6), (4.7) and (4.8), we obtain the lower bound of the time decay rate for
‖˜m(t,x)‖2L2=‖ˆ˜m(t,ξ)‖2L2≥C−1(1+t)−32. |
Then the proof of Proposition 4.2 is completed.
In this subsection, we establish the following
Proposition 4.3. Let
‖∇k(˜n,˜m)(t)‖Lp(R3)≤C(1+t)−32(1−1p)−k2(‖U0‖L1(R3)+‖∇kU0‖Lp(R3)), |
where
To prove Proposition 4.3, the following two lemmas in [6] are helpful.
Lemma 4.1. Let
|∇αξˆf(ξ)|≤C′{|ξ|−|α|+σ1,|ξ|≤R,|α|=n,|ξ|−|α|−σ2,|ξ|≥R,|α|=n−1,n,n+1, |
where
f=m1+m2δ, |
where
m2=(2π)−n2lim|ξ|→∞ˆf(ξ), |
and
‖f∗g‖Lp≤C‖g‖Lp,1≤p≤∞, |
where
Lemma 4.2. Let
|∇βξˆf(ξ)|≤C′|ξ|−|β|,|β|≤n+1. |
Then
‖∇αxg(t,⋅)‖Lp≤C(|α|)t−n2(1−1p)−|α|2. |
In particular,
Now let us turn to the proof of Proposition 4.3.
Proof of Proposition 4.3. We first analyze above higher frequency terms denoted by
λ1=−(2ˉμ+ˉν)|ξ|2+2c22ˉμ+ˉν+O(|ξ|−2),λ2=−2c22ˉμ+ˉν+O(|ξ|−2),|ξ|≥η. |
We shall prove that the higher frequency terms are
λ1eλ2t−λ2eλ1tλ1−λ2=eλ2t+λ2eλ2tλ1−λ2−λ2eλ1tλ1−λ2. |
By a direct computation, it is easy to verify
|∇kξλ2|≲|ξ|−2−k,|ξ|≥η, |
which gives rise to
|∇kξ[(1−χ(⋅))eλ2t]|,|∇kξ[(1−χ(⋅))λ2eλ2tλ1−λ2]|≲{0,|ξ|≤R,e−c1t|ξ|−2−k,|ξ|≥R, |
here and below,
(1−χ(⋅))λ2eλ1tλ1−λ2∼e−12(2ˉμ+ˉν)|ξ|2t[(1−χ(⋅))e(−λ2−12(2ˉμ+ˉν)|ξ|2)tλ1−λ2]. |
We can regard
‖(∇kx(N2∗f),∇kx(N2∗f),∇kx(M2∗f),∇kx(M2∗f))(t)‖Lp≤Ce−c1t‖∇kxf‖Lp, | (4.9) |
for all integer
We also need to deal with the corresponding lower frequency terms denoted by
λ1eλ2t−λ2eλ1tλ1−λ2,λ1eλ1t−λ2eλ2tλ1−λ2,|ξ|(eλ1t−eλ2t)λ1−λ2∼O(1)e−12(2ˉμ+ˉν)|ξ|2t,|ξ|≤η, |
which imply that for
|ˆN1|∼O(1)e−c2|ξ|2t,|ˆN1|∼O(1)e−c2|ξ|2t,|ˆM1|∼O(1)e−c2|ξ|2t,|ˆM1|∼O(1)e−c2|ξ|2t, |
for some constants
‖(∇kN1,∇kN1,∇kM1,∇kM1)(t)‖Lp≤C(∫|ξ|≤η||ξ|ke−c2|ξ|2t|qdξ)1q≤C(1+t)−32(1−1p)−k2. | (4.10) |
Combining (4.9) and (4.10), we finally have for
‖(∇k(N∗f),∇k(M∗f))(t)‖Lp=‖(∇k((N1+N2)∗f),∇k((M1+M2)∗f))(t)‖Lp≤C(1+t)−32(1−1p)−k2‖f‖L1+Ce−c1t‖∇kf‖Lp≤C(1+t)−32(1−1p)−k2(‖f‖L1+‖∇kf‖Lp). |
The proof of Proposition 4.3 is completed.
We are ready to prove Theorem 1.1 on the sharp time decay rate of the global solution to the initial value problem for the nonlinear Navier-Stokes system.
In what follows, we will set
{∂tnh+divmh=0,(t,x)∈R+×R3,∂tmh+c2∇nh−ˉμ△mh−(ˉμ+ˉν)∇divmh=F,(t,x)∈R+×R3,lim|x|→∞nh=0,lim|x|→∞mh=0,t∈R+,(nh,mh)|t=0=(0,0),x∈R3, | (5.1) |
where
F=−div{(mh+˜m)⊗(mh+˜m)nh+˜n+ˉρ+ˉμ∇((nh+˜n)(mh+˜m)nh+˜n+ˉρ)}−∇{(ˉμ+ˉν)div((nh+˜n)(mh+˜m)nh+˜n+ˉρ)+(p(nh+˜n+ˉρ)−p(ˉρ)−c2(nh+˜n))}. |
Denote
∂tUh=BUh+H,t≥0,Uh(0)=0, |
where the nonlinear term
Uh(t)=S(t)∗Uh(0)+∫t0S(t−τ)∗H(˜U,Uh)(τ)dτ, |
which
nh=N∗Uh(0)+∫t0N(t−τ)∗H(τ)dτ, | (5.2) |
mh=M∗Uh(0)+∫t0M(t−τ)∗H(τ)dτ. | (5.3) |
Furthermore, in view of the above definition for
|ˆN(ξ)|∼O(1)e−c3|ξ|2t,|ˆM(ξ)|∼O(1)e−c3|ξ|2t,|ξ|≤η, |
|ˆN(ξ)|∼O(1)1|ξ|e−R0t,|ˆM(ξ)|∼O(1)1|ξ|2e−R0t+O(1)e−c4|ξ|2t,|ξ|≥η. |
Thus, applying a similar argument as in the proof of Proposition 4.1, we have
‖(∇kN∗H,∇kM∗H)(t)‖L2≤C(1+t)−32(1q−12)−12−k2(‖Q‖Lq+‖∇k+1Q‖L2),q=1,2, | (5.4) |
‖(∇kN∗H,∇kM∗H)(t)‖L2≤C(1+t)−32(1q−12)−12−k2(‖Q‖Lq+‖∇kQ‖L2),q=1,2, | (5.5) |
‖∇kM∗H(t)‖L2≤C(1+t)−32(1q−12)−12−k2(‖Q‖Lq+‖∇k−1Q‖L2),q=1,2, | (5.6) |
for any non-negative integer
Q=|(mh+˜m)⊗(mh+˜m)nh+˜n+ˉρ+ˉμ∇((nh+˜n)(mh+˜m)nh+˜n+ˉρ)|+|(ˉμ+ˉν)div((nh+˜n)(mh+˜m)nh+˜n+ˉρ)+(p(nh+˜n+ˉρ)−p(ˉρ)−c2(nh+˜n))|. | (5.7) |
For readers' convenience, we show how to estimate
‖∇kM∗H(t)‖2L2≲∫|ξ|≤ηe−2c3|ξ|2t|ξ|2k|ˆH|2dξ+∫|ξ|≥ηe−2R0t|ξ|2k−4|ˆH|2dξ+∫|ξ|≥ηe−2c4|ξ|2t|ξ|2k|ˆH|2dξ≲∫|ξ|≤ηe−2c3|ξ|2t|ξ|2k+2|ˆQ|2dξ+∫|ξ|≥ηe−2R0t|ξ|2k−2|ˆQ|2dξ+∫|ξ|≥ηe−2c4|ξ|2t|ξ|2k+2|ˆQ|2dξ≲(1+t)−3(1q−12)−1−k(‖Q‖2Lq(R3)+‖∇˜kQ‖2L2(R3)),q=1,2,k−1≤˜k∈N+. |
In this subsection, we establish the faster decay rate for
We begin with following Lemma.
Lemma 5.1. Let
∫t20(1+t−τ)−r1(1+τ)−r2dτ=∫t20(1+t2+τ)−r1(1+t2−τ)−r2dτ≲{(1+t)−r1,forr2>1,(1+t)−(r1−ϵ),forr2=1,(1+t)−(r1+r2−1),forr2<1, |
and
∫tt2(1+t−τ)−r1(1+τ)−r2dτ=∫t20(1+t−τ)−r2(1+τ)−r1dτ≲{(1+t)−r2,forr1>1,(1+t)−(r2−ϵ),forr1=1,(1+t)−(r1+r2−1),forr1<1, |
where
Proposition 5.1. Under the assumptions of Theorem 1.1, the solution
‖(∇knh,∇kmh)‖L2≤Cδ20(1+t)−54−k2,‖∇3mh‖L2≤Cδ20(1+t)−114,‖∇3nh‖L2≤Cδ0(1+t)−74, |
where
From (5.7), we deduce
Q(˜U,Uh)=Q1+Q2+Q3+Q4, |
which implies for a smooth solution
Q1=Q1(˜U,Uh)∼O(1)(n2h+mh⊗mh+˜n2+˜m⊗˜m),Q2=Q2(˜U,Uh)∼O(1)(˜nnh+˜m⊗mh),Q3=Q3(˜U,Uh)∼O(1)(∇(nh⋅mh)+∇(˜n⋅˜m)),Q4=Q4(˜U,Uh)∼O(1)(∇(˜n⋅mh)+∇(nh⋅˜m)). |
Define
Λ(t)=:sup0≤s≤t{2∑k=0(1+s)54+k2δ0−34‖(∇knh,∇kmh)(s)‖L2+(1+s)74‖(∇3nh,∇3mh)(s)‖L2}. | (5.8) |
Proposition 5.2. Under the assumptions of Theorem 1.1, if for some
Λ(t)≤Cδ340,t∈[0,T], |
where
The proof of this Proposition 5.2 consists of following three steps.
Starting with (5.4), (5.5), (5.6) and (5.8), we have after a complicate but straightforward computation that
‖(nh,mh)‖L2≲∫t0‖(N(t−τ)∗H(τ),M(t−τ)∗H(τ))‖L2dτ≲∫t0(1+t−τ)−54(‖Q(τ)‖L1+‖Q(τ)‖L2)dτ≲(δ20+δ320Λ2(t))∫t0(1+t−τ)−54(1+τ)−32dτ≲(1+t)−54(δ20+δ320Λ2(t)). | (5.9) |
It is easy to verify that
‖Q(t)‖L1≲‖Q1‖L1+‖Q2‖L1+‖Q3‖L1+‖Q4‖L1≲‖(˜n,˜m)‖2L2+‖(nh,mh)‖2L2+‖(nh,mh)‖L2(‖(∇˜n,∇˜m)‖L2+‖(∇nh,∇mh)‖L2)+‖(˜n,˜m)‖L2(‖(∇˜n,∇˜m)‖L2+‖(∇nh,∇mh)‖L2)≲(1+t)−32(δ20+δ320Λ2(t)). |
Indeed, by virtue of Hölder's inequality and Gagliardo-Nirenberg's inequality, we obtain that
‖u‖L∞≲‖∇u‖12L2‖∇2u‖12L2, |
which implies that
‖Q(t)‖L2≲‖(˜n,˜m)‖L∞(‖(˜n,˜m)‖L2+‖(∇˜n,∇˜m)‖L2+‖(nh,mh)‖L2+‖(∇nh,∇mh)‖L2)+‖(nh,mh)‖L∞(‖(nh,mh)‖L2+‖(∇nh,∇mh)‖L2)+‖(∇˜n,∇˜m)‖L∞‖(nh,mh)‖L2≲(1+t)−94(δ20+δ320Λ2(t)). |
Furthermore, exactly as in the estimate of the high order derivatives, we have
‖(∇nh,∇mh)‖L2≲∫t20‖(∇N,∇M)(t−τ)∗H(τ)‖L2dτ+∫tt2‖(N,M)(t−τ)∗∇H(τ)‖L2dτ≲∫t20(1+t−τ)−74(‖Q(τ)‖L1+‖∇Q(τ)‖L2)dτ+∫tt2(1+t−τ)−12‖∇Q(τ)‖L2dτ≲(δ20+δ980Λ2(t))(∫t20(1+t−τ)−74(1+τ)−32dτ+∫tt2(1+t−τ)−12(1+τ)−114dτ)≲(1+t)−74(δ20+δ980Λ2(t)), | (5.10) |
Similarly, it holds that
‖∇Q(t)‖L2≲‖(˜n,˜m)‖L∞(‖(∇˜n,∇˜m)‖L2+‖(∇2˜n,∇2˜m)‖L2+‖(∇nh,∇mh)‖L2 |
+‖(∇2nh,∇2mh)‖L2)+‖(∇˜n,∇˜m)‖L∞(‖(∇˜n,∇˜m)‖L2+‖(nh,mh)‖L2+‖(∇nh,∇mh)‖L2)+‖(nh,mh)‖L∞(‖(∇2˜n,∇2˜m)‖L2+‖(∇nh,∇mh)‖L2+‖(∇2nh,∇2mh)‖L2)+‖(∇nh,∇mh)‖L∞‖(∇nh,∇mh)‖L2≲(1+t)−114(δ20+δ980Λ2(t)). |
Thus, we also get that
‖(∇2nh,∇2mh)(t)‖L2≲∫t20‖(∇2N,∇2M)(t−τ)∗H(τ)‖L2dτ+∫tt2‖(N,M)(t−τ)∗∇2H(τ)‖L2dτ≲∫t20(1+t−τ)−94(‖Q(τ)‖L1+‖∇2Q(τ)‖L2)dτ+∫tt2(1+t−τ)−12‖∇2Q(τ)‖L2dτ≲(δ20+δ0Λ(t)+δ340Λ2(t))(∫t20(1+t−τ)−94(1+τ)−32dτ+∫tt2(1+t−τ)−12(1+τ)−134dτ)≲(1+t)−94(δ20+δ0Λ(t)+δ340Λ2(t)). | (5.11) |
Finally, we have
‖∇2Q(t)‖L2≲(‖(˜n,˜m)‖L∞+‖(nh,mh)‖L∞)(‖(∇3˜n,∇3˜m)‖L2+‖(∇3nh,∇3mh)‖L2)+(‖(∇˜n,∇˜m)‖L∞+‖(∇nh,∇mh)‖L∞)(‖(∇˜n,∇˜m)‖L2+‖(∇nh,∇mh)‖L2)+(‖(˜n,˜m)‖L∞+‖(nh,mh)‖L∞+‖(∇˜n,∇˜m)‖L∞+‖(∇nh,∇mh)‖L∞)×(‖(∇2˜n,∇2˜m)‖L2+‖(∇2nh,∇2mh)‖L2)≲(1+t)−134(δ20+δ0Λ(t)+δ340Λ2(t)). |
In this subsection, we will close the a priori estimates and complete the proof of Proposition 5.2. For this purpose, we need to derive the time decay rate of higher order derivatives of
Lemma 5.2. Under the assumption of Theorem 1.1, one has
‖∇2n(t)‖H1+‖∇2u(t)‖H1≲(1+t)−74(δ0+δ340Λ(t)). |
In particular, it holds that
\begin{eqnarray*} \|{\nabla}^3 (n_h, m_h)(t)\|_{L^2}\lesssim (1+t)^{-\frac74}\left(\delta_0+\delta_0^{\frac34}\Lambda(t)\right). \end{eqnarray*} |
Proof. First of all, in view of (2.12), recovering the dissipation estimate for
\begin{equation} \begin{split} &\frac{d}{dt}\int_{{\mathop{\mathbb R\kern 0pt}\nolimits}^3} {\nabla}^2 u\cdot {\nabla}^3 n dx +C_1\|{\nabla}^3 n\|_{L^2}^2 dx\\ \leq &C_2\left(\|{\nabla}^3 u\|_{L^2}^2+\|{\nabla}^4 u\|_{L^2}^2\right)+C(1+t)^{-\frac{3}2}\left(\delta_0+\delta_0^{\frac38}\Lambda(t)\right)\\ &\quad\times\left(\|{\nabla}^2 n\|_{L^2}^2+\|{\nabla}^2 u\|_{L^2}^2+\|{\nabla}^3 u\|_{L^2}^2\right). \end{split} \end{equation} | (5.12) |
Summing up (2.7) and (2.8) in the energy estimate for
\begin{equation} \begin{split} &\frac{d}{dt}\int_{{\mathop{\mathbb R\kern 0pt}\nolimits}^3} \left(\gamma |{\nabla}^2 n|^2+|{\nabla}^2 u|^2 + \gamma|{\nabla}^3 n|^2 +|{\nabla}^3 u|^2 \right)dx + C_3\left(\|{\nabla}^3 u|^2 _{L^2}+\|{\nabla}^4 u\|^2 _{L^2}\right) \\ \leq &C(1+t)^{-\frac{3}2}\left(\delta_0+\delta_0^{\frac38}\Lambda(t)\right)\left(\|{\nabla}^2 n\|_{L^2}^2+\|{\nabla}^2 u\|_{L^2}^2+\|{\nabla}^3 n\|_{L^2}^2\right). \end{split} \end{equation} | (5.13) |
Multiplying (5.12) by
\begin{eqnarray*} \begin{split} &\frac{d}{dt}\bigg\{\sum\limits_{2\leq k\leq3}\left(\gamma \|{\nabla}^k n\|^2_{L^2}+\|{\nabla}^k u\|^2_{L^2} \right)+\epsilon_1\frac{C_3}{C_2}\int_{{\mathop{\mathbb R\kern 0pt}\nolimits}^3} {\nabla}^2 u\cdot {\nabla}^{3} n dx \bigg\}\\ &\quad+ C_4\Big(\|{\nabla}^{3} n\|_{L^2}^2+\sum\limits_{3\leq k\leq4}\|{\nabla}^{k} u\|^2_{L^2}\Big)\\ \leq &C(1+t)^{-\frac{3}2}\left(\delta_0+\delta_0^{\frac38}\Lambda(t)\right)\left(\|{\nabla}^2 n\|_{L^2}^2+\|{\nabla}^2 u\|_{L^2}^2\right). \end{split} \end{eqnarray*} |
Next, we define
\mathcal E_1(t) = \bigg\{\sum\limits_{2\leq k\leq3}\left(\gamma \|{\nabla}^k n\|^2_{L^2}+\|{\nabla}^k u\|^2_{L^2} \right)+\epsilon_1\frac{C_3}{C_2}\int_{{\mathop{\mathbb R\kern 0pt}\nolimits}^3} {\nabla}^2 u\cdot {\nabla}^{3} n dx \bigg\}. |
Observe that since
\begin{eqnarray*} C_5^{-1}\left(\|{\nabla}^2 n(t)\|^2_{H^1}+\|{\nabla}^2 u(t)\|^2_{H^1}\right) \leq\mathcal E_1(t)\leq C_5\left(\|{\nabla}^2 n(t)\|^2_{H^1}+\|{\nabla}^2 u(t)\|^2_{H^1}\right). \end{eqnarray*} |
Then we arrive at
\begin{eqnarray*} \frac{d}{dt}\mathcal E_1(t)+C_4\Big(\|{\nabla}^{3} n(t)\|_{L^2}^2+\|{\nabla}^3 u(t)\|^2_{H^1}\Big) \leq C(1+t)^{-5}\left(\delta_0+\delta_0^{\frac38}\Lambda(t)\right)\left(\delta_0^2+\delta_0^{\frac32}\Lambda^2(t)\right). \end{eqnarray*} |
Denote
\begin{eqnarray*} \begin{split} &\frac{C_4}{3}\|{\nabla}^{3} (n, u)(x)\|_{L^2}^2 \geq\frac{C_4}{3}\int_{S(t)^c} |\xi|^6|(\widehat{n}, \widehat{u})(\xi)|^2d\xi\\ \geq&(1+\gamma)(1+t)^{-1}\int_{{\mathop{\mathbb R\kern 0pt}\nolimits}^3} |\xi|^4|(\widehat{n}, \widehat{u})(\xi)|^2d\xi-(1+\gamma)(1+t)^{-1}\int_{S(t)} |\xi|^4|(\widehat{n}, \widehat{u})(\xi)|^2d\xi. \end{split} \end{eqnarray*} |
Hence we have
\begin{eqnarray*} \begin{split} &\frac{d}{dt}\mathcal E_1(t)+(1+t)^{-1}\mathcal E_1(t)+\|{\nabla}^{3} n\|_{L^2}^2+\|{\nabla}^3 u\|^2_{H^1}\\ \lesssim&(1+t)^{-5}\left(\delta_0+\delta_0^{\frac38}\Lambda(t)\right)\left(\delta_0^2+\delta_0^{\frac32}\Lambda^2(t)\right)+(1+t)^{-1}\int_{S(t)} |\xi|^4|(\widehat{n}, \widehat{u})(\xi)|^2d\xi\\ &\quad+(1+t)^{-1}\int_{{\mathop{\mathbb R\kern 0pt}\nolimits}^3} {\nabla}^2 u\cdot {\nabla}^{3} n dx. \end{split} \end{eqnarray*} |
Multiplying the above equation by
\begin{eqnarray*} \begin{split} &\frac{d}{dt}\Big\{(1+t)^5\mathcal E_1(t)\Big\}+(1+t)^5\Big(\|{\nabla}^{3} n\|_{L^2}^2+\|{\nabla}^3 u\|^2_{H^1}\Big) \lesssim(1+t)^{\frac12}\left(\delta_0^2+\delta_0^{\frac32}\Lambda^2(t)\right). \end{split} \end{eqnarray*} |
Integrating it with respect to time from
\begin{eqnarray*} \begin{split} &(1+t)^5\mathcal E_1(t)+\int_0^T(1+t)^5\Big(\|{\nabla}^{3} n\|_{L^2}^2+\|{\nabla}^3 u\|^2_{H^1}\Big)dt\\ \lesssim& \mathcal E_1(0)+(1+t)^{\frac32}\left(\delta_0^2+\delta_0^{\frac32}\Lambda^2(t)\right), \end{split} \end{eqnarray*} |
which implies that
\begin{eqnarray*} \|{\nabla}^3 n\|^2_{L^2}+\|{\nabla}^3 u\|^2_{L^2}\lesssim\mathcal E_1(t)\lesssim (1+t)^{-5}\delta_0^2+(1+t)^{-\frac72}\left(\delta_0^2+\delta_0^{\frac32}\Lambda^2(t)\right). \end{eqnarray*} |
Finally, we have
\begin{eqnarray*} \|{\nabla}^3 n_h\|_{L^2}+\|{\nabla}^3 m_h\|_{L^2}\lesssim (1+t)^{-\frac74}\left(\delta_0+\delta_0^{\frac34}\Lambda(t)\right). \end{eqnarray*} |
This completes the proof of this Lemma.
In this subsection, we first combine the above a priori estimates of (5.8), (5.9), (5.10), (5.11) and Lemma 5.2 together to give the proof of the Proposition 5.2. In deed, for any
\begin{equation} \Lambda(t)\leq C\left(\delta_0+\delta_0^{\frac14}\Lambda(t)+\Lambda^2(t)\right) \leq C\delta_0^{\frac34}. \end{equation} | (5.14) |
With the help of standard continuity argument, Proposition 5.2 and the smallness of
\begin{eqnarray*} \begin{split} &\|({\nabla}^k n_h, {\nabla}^k m_h)\|_{L^2}\lesssim \delta_0^2(1+t)^{-\frac54-\frac k2},\quad k = 0,1,\\ &\|{\nabla}^2 (n_h, m_h)\|_{L^2}\lesssim\delta_0^{\frac74}(1+t)^{-\frac94},\quad \|{\nabla}^3 (n_h, m_h)\|_{L^2}\lesssim\delta_0(1+t)^{-\frac74}. \end{split} \end{eqnarray*} |
Consequently, for any
\begin{equation} \Lambda(t)\leq C\delta_0. \end{equation} | (5.15) |
From (5.11) and (5.15), thus we also get that
\begin{eqnarray*} \|{\nabla}^2 (n_h, m_h)\|_{L^2}\lesssim\delta_0^2(1+t)^{-\frac94}. \end{eqnarray*} |
For
\begin{eqnarray*} \begin{split} &\|{\nabla}^3 m_h(t)\|_{L^2} \\\lesssim &\int_0^{\frac t 2}(1+t-\tau)^{-\frac{11}4}\big(\|Q(\tau)\|_{L^1}+\|{\nabla}^2 Q(\tau)\|_{L^2}\big)d\tau\\ &\quad+\int_{\frac t 2}^t (1+t-\tau)^{-\frac12}\|{\nabla} ^2Q(\tau)\|_{L^2}d\tau\\ \lesssim& \delta_0^2\bigg(\int_0^{\frac t 2} (1+t-\tau)^{-\frac{11}4}(1+\tau)^{-\frac32}d\tau+\int_{\frac t 2}^t (1+t-\tau)^{-\frac12}(1+\tau)^{-\frac{13}4}d\tau\bigg)\\ \lesssim&\delta_0^2(1+t)^{-\frac{11}4}. \end{split} \end{eqnarray*} |
Hence, we finish the proof of the Proposition 5.1. Theorem 1.1 follows.
Y. Chen is partially supported by the China Postdoctoral Science Foundation under grant 2019M663198, Guangdong Basic and Applied Basic Research Foundation under grant 2019A1515110733, NNSF of China under grants 11801586, 11971496 and China Scholarship Council. The research of R. Pan is partially supported by National Science Foundation under grants DMS-1516415 and DMS-1813603, and by National Natural Science Foundation of China under grant 11628103. L. Tong's research is partially supported by China Scholarship Council.
[1] | J. B. Hiriart-Urruty, W. Oettli, J. Stoer, Optimization: Theory and Algorithms, CRC Press, 2020. https://doi.org/10.1201/9781003065098 |
[2] | M. Tyagi, A. Sachdeva, V. Sharma, Optimization Methods in Engineering, Springer, 2021. https://doi.org/10.1007/978-981-15-4550-4 |
[3] | P. Adby, Introduction to Optimization Methods, Springer Science & Business Media, 2013. |
[4] | A. P. Engelbrecht, Computational Intelligence: An Introduction, John Wiley & Sons, 2007. https://doi.org/10.1002/9780470512517 |
[5] |
J. S. Raj, A comprehensive survey on the computational intelligence techniques and its applications, J. ISMAC, 01 (2019), 147–159. https://doi.org/10.36548/jismac.2019.3.002 doi: 10.36548/jismac.2019.3.002
![]() |
[6] |
K. Hussain, M. N. Mohd Salleh, S. Cheng, Y. Shi, Metaheuristic research: a comprehensive survey, Artif. Intell. Rev., 52 (2019), 2191–2233. https://doi.org/10.1007/s10462-017-9605-z doi: 10.1007/s10462-017-9605-z
![]() |
[7] |
S. Yin, Q. Luo, Y. Zhou, EOSMA: An equilibrium optimizer slime mould algorithm for engineering design problems, Arab. J. Sci. Eng., 47 (2022), 10115–10146. https://doi.org/10.1007/s13369-021-06513-7 doi: 10.1007/s13369-021-06513-7
![]() |
[8] |
Y. Zhang, Y. Zhou, G. Zhou, Q. Luo, B. Zhu, A curve approximation approach using bio-inspired polar coordinate bald eagle search algorithm, Int. J. Comput. Intell. Sys., 15 (2022), 30. https://doi.org/10.1007/s44196-022-00084-7 doi: 10.1007/s44196-022-00084-7
![]() |
[9] |
N. Du, Y. Zhou, W. Deng, Q. Luo, Improved chimp optimization algorithm for three-dimensional path planning problem, Mul. Tools Appl., 81 (2022), 27397–27422. https://doi.org/10.1007/s11042-022-12882-4 doi: 10.1007/s11042-022-12882-4
![]() |
[10] |
M. Kumar, M. Husain, N. Upreti, D. Gupta, Genetic algorithm: Review and application, J. SSRN Elec., 2010 (2010). https://doi.org/10.2139/ssrn.3529843 doi: 10.2139/ssrn.3529843
![]() |
[11] |
R. Storn, K. Price, Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11 (1997), 341–359. https://doi.org/10.1023/A:1008202821328 doi: 10.1023/A:1008202821328
![]() |
[12] | J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN'95–International Conference on Neural Networks, (1995), 1942–1948. |
[13] |
M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of cooperating agents, IEEE Trans. Syst. Man Cybern. Part B, 26 (1996), 29–41. https://doi.org/10.1109/3477.484436 doi: 10.1109/3477.484436
![]() |
[14] |
S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008
![]() |
[15] |
X. S. Yang, S. Deb, Cuckoo search: recent advances and applications, Neural Comput. Appl., 24 (2014), 169–174. https://doi.org/10.1007/s00521-013-1367-1 doi: 10.1007/s00521-013-1367-1
![]() |
[16] |
S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: A new method for stochastic optimization, Future Gener. Comput. Syst., 111 (2020), 300–323. https://doi.org/10.1016/j.future.2020.03.055 doi: 10.1016/j.future.2020.03.055
![]() |
[17] |
A. Faramarzi, M. Heidarinejad, S. Mirjalili, A. H. Gandomi, Marine predators algorithm: A nature-inspired metaheuristic, Exp. Syst. Appl., 152 (2020), 113377. https://doi.org/10.1016/j.eswa.2020.113377 doi: 10.1016/j.eswa.2020.113377
![]() |
[18] |
B. Abdollahzadeh, F. S. Gharehchopogh, S. Mirjalili, African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems, Comput. Ind. Eng., 158 (2021), 107408. https://doi.org/10.1016/j.cie.2021.107408 doi: 10.1016/j.cie.2021.107408
![]() |
[19] |
H. A. Alsattar, A. A. Zaidan, B. B. Zaidan, Novel meta-heuristic bald eagle search optimisation algorithm, Artif. Intell. Rev., 53 (2020), 2237–2264. https://doi.org/10.1007/s10462-019-09732-5 doi: 10.1007/s10462-019-09732-5
![]() |
[20] | D. Huang, X. Zhu, A novel method based on chemical reaction optimization for pairwise sequence alignment, in Parallel Computational Fluid Dynamics, Springer Berlin Heidelberg, (2014), 429–439. https://doi.org/10.1007/978-3-642-53962-6_38 |
[21] |
F. A. Hashim, K. Hussain, E. H. Houssein, M. S. Mabrouk, W. Al-Atabany, Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems, Appl. Intell., 51 (2021), 1531–1551. https://doi.org/10.1007/s10489-020-01893-z doi: 10.1007/s10489-020-01893-z
![]() |
[22] |
A. Rabehi, B. Nail, H. Helal, A. Douara, A. Ziane, M. Amrani, et al., Optimal estimation of Schottky diode parameters using a novel optimization algorithm: Equilibrium optimizer, Superlattices Microstruct., 146 (2020), 106665. https://doi.org/10.1016/j.spmi.2020.106665 doi: 10.1016/j.spmi.2020.106665
![]() |
[23] |
R. V. Rao, V. J. Savsani, D. P. Vakharia, Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems, Comput. Aided Des., 43 (2011), 303–315. https://doi.org/10.1016/j.cad.2010.12.015 doi: 10.1016/j.cad.2010.12.015
![]() |
[24] |
A. W. Mohamed, A. A. Hadi, A. K. Mohamed, Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm, Int. J. Mach. Learn. Cybern., 11 (2020), 1501–1529. https://doi.org/10.1007/s13042-019-01053-x doi: 10.1007/s13042-019-01053-x
![]() |
[25] |
Y. B. Chen, Y. S., Mei, J. Q. Yu, X. L. Su, N. Xu, Three-dimensional unmanned aerial vehicle path planning using modified wolf pack search algorithm, Neurocomputing, 266 (2017), 445–457. https://doi.org/10.1016/j.neucom.2017.05.059 doi: 10.1016/j.neucom.2017.05.059
![]() |
[26] |
H. Duan, Y. Yu, X. Zhang, S. Shao, Three-dimension path planning for UCAV using hybrid meta-heuristic ACO-DE algorithm, Simul. Modell. Pract. Theory, 18 (2010), 1104–1115. https://doi.org/10.1016/j.simpat.2009.10.006 doi: 10.1016/j.simpat.2009.10.006
![]() |
[27] |
P. Saxena, S. Tayal, R. Gupta, A. Maheshwari, G. Kaushal, R. Tiwari, Three dimensional route planning for multiple unmanned aerial vehicles using salp swarm algorithm, J. Exp. Theor. Artif. Intell., 35 (2023), 1059–1078. https://doi.org/10.1080/0952813X.2022.2059107 doi: 10.1080/0952813X.2022.2059107
![]() |
[28] |
U. Goel, S. Varshney, A. Jain, S. Maheshwari, A. Shukla, Three dimensional path planning for UAVs in dynamic environment using glow-worm swarm optimization, Proc. Comput. Sci., 133 (2018), 230–239. https://doi.org/10.1016/j.procs.2018.07.028 doi: 10.1016/j.procs.2018.07.028
![]() |
[29] |
Y. Zhang, Y. Zhou, G. Zhou, Q. Luo, An effective multi-objective bald eagle search algorithm for solving engineering design problems, Appl. Soft Comput., 145 (2023), 110585. https://doi.org/10.1016/j.asoc.2023.110585 doi: 10.1016/j.asoc.2023.110585
![]() |
[30] |
S. Yin, Q. Luo, Y. Zhou, IBMSMA: An indicator-based multi-swarm slime mould algorithm for multi-objective truss optimization problems, J. Bionic Eng., 20 (2023), 1333–1360. https://doi.org/10.1007/s42235-022-00307-9 doi: 10.1007/s42235-022-00307-9
![]() |
[31] |
G. I. Sayed, M. M. Soliman, A. E. Hassanien, A novel melanoma prediction model for imbalanced data using optimized SqueezeNet by bald eagle search optimization, Comput. Bio. Med., 136 (2021), 104712. https://doi.org/10.1016/j.compbiomed.2021.104712 doi: 10.1016/j.compbiomed.2021.104712
![]() |
[32] |
H. A. Almashhadani, X. Deng, S. N. A. Latif, M. M. Ibrahim, O. H. R. Al-hwaidi, Deploying an efficient and reliable scheduling for mobile edge computing for IoT applications, Mater. Today Proc., 80 (2023), 2850–2857. https://doi.org/10.1016/j.matpr.2021.07.050 doi: 10.1016/j.matpr.2021.07.050
![]() |
[33] |
A. M. Nassef, A. Fathy, H. Rezk, D. Yousri, Optimal parameter identification of supercapacitor model using bald eagle search optimization algorithm, J. Energy Storage, 50 (2022), 104603. https://doi.org/10.1016/j.est.2022.104603 doi: 10.1016/j.est.2022.104603
![]() |
[34] |
A. D. Algarni, N. Alturki, N. F. Soliman, S. Abdel-Khalek, A. A. A. Mousa, An improved bald eagle search algorithm with deep learning model for forest fire detection using hyperspectral remote sensing images, Can. J. Remote Sens, 48 (2022), 609–620. https://doi.org/10.1080/07038992.2022.2077709 doi: 10.1080/07038992.2022.2077709
![]() |
[35] |
A. Eid, S. Kamel, H. M. Zawbaa, M. Dardeer, Improvement of active distribution systems with high penetration capacities of shunt reactive compensators and distributed generators using bald eagle search, Ain Shams Eng. J., 13 (2022), 101792. https://doi.org/10.1016/j.asej.2022.101792 doi: 10.1016/j.asej.2022.101792
![]() |
[36] |
S. Alsubai, M. Hamdi, S. Abdel-Khalek, A. Alqahtani, A. Binbusayyis, R. F. Mansour, Bald eagle search optimization with deep transfer learning enabled age-invariant face recognition model, Image Vis. Comput., 126 (2022), 104545. https://doi.org/10.1016/j.imavis.2022.104545 doi: 10.1016/j.imavis.2022.104545
![]() |
[37] |
M. Elsisi, M. E. S. M. Essa, Improved bald eagle search algorithm with dimension learning-based hunting for autonomous vehicle including vision dynamics, Appl. Intell., 53 (2023), 11997–12014. https://doi.org/10.1007/s10489-022-04059-1 doi: 10.1007/s10489-022-04059-1
![]() |
[38] |
Y. Chen, W. Wu, P. Jiang, C. Wan, An improved bald eagle search algorithm for global path planning of unmanned vessel in complicated waterways, J. Mar. Sci. Eng., 11 (2023), 118. https://doi.org/10.3390/jmse11010118 doi: 10.3390/jmse11010118
![]() |
[39] |
S. Dian, J. Zhong, B. Guo, J. Liu, R. Guo, A smooth path planning method for mobile robot using a BES-incorporated modified QPSO algorithm, Expert Syst. Appl., 208 (2022), 118256. https://doi.org/10.1016/j.eswa.2022.118256 doi: 10.1016/j.eswa.2022.118256
![]() |
[40] |
Y. Niu, X. Yan, Y. Wang, Y. Niu, Three-dimensional collaborative path planning for multiple UCAVs based on improved artificial ecosystem optimizer and reinforcement learning, Knowl. Based Syst., 276 (2023), 110782. https://doi.org/10.1016/j.knosys.2023.110782 doi: 10.1016/j.knosys.2023.110782
![]() |
[41] |
G. Hu, B. Du, G. Wei, HG-SMA: hierarchical guided slime mould algorithm for smooth path planning, Artif. Intell. Rev., 56 (2023), 9267–9327. https://doi.org/10.1007/s10462-023-10398-3 doi: 10.1007/s10462-023-10398-3
![]() |
[42] |
D. Agarwal, P. S. Bharti, Implementing modified swarm intelligence algorithm based on Slime moulds for path planning and obstacle avoidance problem in mobile robots, Appl. Soft Comput., 107 (2021), 107372. https://doi.org/10.1016/j.asoc.2021.107372 doi: 10.1016/j.asoc.2021.107372
![]() |
[43] |
Y. Cui, W. Hu, A. Rahmani, Multi-robot path planning using learning-based artificial bee colony algorithm, Eng. Appl. Artif. Intell., 129 (2024), 107579. https://doi.org/10.1016/j.engappai.2023.107579 doi: 10.1016/j.engappai.2023.107579
![]() |
[44] |
C. Miao, G. Chen, C. Yan, Y. Wu, Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm, Comput. Ind. Eng., 156 (2021), 107230. https://doi.org/10.1016/j.cie.2021.107230 doi: 10.1016/j.cie.2021.107230
![]() |
[45] |
X. Yu, C. Li, J. Zhou, A constrained differential evolution algorithm to solve UAV path planning in disaster scenarios, Knowl. Based Syst., 204 (2020), 106209. https://doi.org/10.1016/j.knosys.2020.106209 doi: 10.1016/j.knosys.2020.106209
![]() |
[46] |
R. Wang, M. Lungu, Z. Zhou, X. Zhu, Y. Ding, Q. Zhao, Least global position information based control of fixed-wing UAVs formation flight: Flight tests and experimental validation, Aerosp. Sci. Technol., 140 (2023), 108473. https://doi.org/10.1016/j.ast.2023.108473 doi: 10.1016/j.ast.2023.108473
![]() |
[47] |
P. C. Song, J. S. Pan, S. C. Chu, A parallel compact cuckoo search algorithm for three-dimensional path planning, Appl. Soft Comput., 94 (2020), 106443. https://doi.org/10.1016/j.asoc.2020.106443 doi: 10.1016/j.asoc.2020.106443
![]() |
[48] | T. Ren, R. Zhou, J. Xia, Z. Dong, Three-dimensional path planning of UAV based on an improved A* algorithm, in 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), (2016), 140–145. https://doi.org/10.1109/CGNCC.2016.7828772 |
[49] | H. Daryanavard, A. Harifi, UAV path planning for data gathering of IoT nodes: ant colony or simulated annealing optimization, in 2019 3rd International Conference on Internet of Things and Applications (IoT), (2019), 1–4. https://doi.org/10.1109/IICITA.2019.8808834 |
[50] | Q. Wang, A. Zhang, L. Qi, Three-dimensional path planning for UAV based on improved PSO algorithm, in the 26th Chinese Control and Decision Conference (2014 CCDC), (2014), 3981–3985. https://doi.org/10.1109/CCDC.2014.6852877 |
[51] |
C. Qu, W. Gai, J. Zhang, M. Zhong, A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning, Knowl. Based Syst., 194 (2020), 105530. https://doi.org/10.1016/j.knosys.2020.105530 doi: 10.1016/j.knosys.2020.105530
![]() |
[52] | U. Cekmez, M. Ozsiginan, O. K. Sahingoz, A UAV path planning with parallel ACO algorithm on CUDA platform, in 2014 International Conference on Unmanned Aircraft Systems (ICUAS), (2014), 347–354. https://doi.org/10.1109/ICUAS.2014.6842273 |
[53] | S. Ghambari, L. Idoumghar, L. Jourdan, J. Lepagnot, An improved TLBO algorithm for solving UAV path planning problem, in 2019 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, (2019), 2261–2268. https://doi.org/10.1109/SSCI44817.2019.9003160 |
[54] | S. Ghambari, J. Lepagnot, L. Jourdan, L. Idoumghar, A comparative study of meta-heuristic algorithms for solving UAV path planning, in 2018 IEEE Symposium Series on Computational Intelligence (SSCI), (2018), 174–181. https://doi.org/10.1109/SSCI.2018.8628807 |
[55] |
S. Zhang, Y. Zhou, Z. Li, W. Pan, Grey wolf optimizer for unmanned combat aerial vehicle path planning, Adv. Eng. Software, 99 (2016), 121–136. https://doi.org/10.1016/j.advengsoft.2016.05.015 doi: 10.1016/j.advengsoft.2016.05.015
![]() |
[56] |
S. Yin, Q. Luo, Y. Du, Y. Zhou, DTSMA: Dominant swarm with adaptive T-distribution mutation-based slime mould algorithm, Math. Biosci. Eng., 19 (2022), 2240–2285. https://doi.org/10.3934/mbe.2022105 doi: 10.3934/mbe.2022105
![]() |
[57] |
C. J. M. Moctezuma, J. Mora, M. G. Mendoza, A self-adaptive mechanism using weibull probability distribution to improve metaheuristic algorithms to solve combinatorial optimization problems in dynamic environments, Math. Biosci. Eng., 17 (2020), 975–997. https://doi.org/10.3934/mbe.2020052 doi: 10.3934/mbe.2020052
![]() |
[58] |
G. Zhou, Y. Zhou, W. Deng, S. Yin, Y. Zhang, Advances in teaching–learning-based optimization algorithm: A comprehensive survey (ICIC2022), Neurocomputing, 561 (2023), 126898. https://doi.org/10.1016/j.neucom.2023.126898 doi: 10.1016/j.neucom.2023.126898
![]() |
[59] |
A. E. Ezugwu, A. M. Ikotun, O. O. Oyelade, L. Abualigah, J. O. Agushaka, C. I. Eke, et al., A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects, Eng. Appl. Artif. Intell., 110 (2022), 104743. https://doi.org/10.1016/j.engappai.2022.104743 doi: 10.1016/j.engappai.2022.104743
![]() |
[60] |
P. Singh, N. Mittal, An efficient localization approach to locate sensor nodes in 3D wireless sensor networks using adaptive flower pollination algorithm, Wireless Networks, 27 (2021), 1999–2014. https://doi.org/10.1007/s11276-021-02557-7 doi: 10.1007/s11276-021-02557-7
![]() |
[61] |
K. Hu, L. Wang, J. Cai, L. Cheng, An improved genetic algorithm with dynamic neighborhood search for job shop scheduling problem, Math. Biosci. Eng., 20 (2023), 17407–17427. https://doi.org/10.3934/mbe.2023774 doi: 10.3934/mbe.2023774
![]() |
[62] |
T. Zhang, Y. Zhou, G. Zhou, W. Deng, Q. Luo, Discrete Mayfly Algorithm for spherical asymmetric traveling salesman problem, Exp. Syst. Appl., 221 (2023), 119765. https://doi.org/10.1016/j.eswa.2023.119765 doi: 10.1016/j.eswa.2023.119765
![]() |