Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Communication Special Issues

Fault-tolerant Hamiltonian cycle strategy for fast node fault diagnosis based on PMC in data center networks

  • System-level fault diagnosis model, namely, the PMC model, detects fault nodes only through the mutual testing of nodes in the system without physical equipment. In order to achieve server nodes fault diagnosis in large-scale data center networks (DCNs), the traditional algorithm based on the PMC model cannot meet the characteristics of high diagnosability, high accuracy and high efficiency due to its inability to ensure that the test nodes are fault-free. This paper first proposed a fault-tolerant Hamiltonian cycle fault diagnosis (FHFD) algorithm, which tests nodes in the order of the Hamiltonian cycle to ensure that the test nodes are faultless. In order to improve testing efficiency, a hierarchical diagnosis mechanism was further proposed, which recursively divides high scale structures into a large number of low scale structures based on the recursive structure characteristics of DCNs. Additionally, we proved that 2(n2)nk1 and (n2)tn,k/tn,1 faulty nodes could be detected for BCuben,k and DCelln,k within a limited time for the proposed diagnosis strategy. Simulation experiments have also shown that our proposed strategy has improved the diagnosability and test efficiency dramatically.

    Citation: Zhipeng Zhao, Zhenyu Hu, Zhiyu Zhao, Xiaoyu Du, Tianfei Chen, Lijun Sun. Fault-tolerant Hamiltonian cycle strategy for fast node fault diagnosis based on PMC in data center networks[J]. Mathematical Biosciences and Engineering, 2024, 21(2): 2121-2136. doi: 10.3934/mbe.2024093

    Related Papers:

    [1] Patarawadee Prasertsang, Thongchai Botmart . Improvement of finite-time stability for delayed neural networks via a new Lyapunov-Krasovskii functional. AIMS Mathematics, 2021, 6(1): 998-1023. doi: 10.3934/math.2021060
    [2] Xi-Ming Fang . General fixed-point method for solving the linear complementarity problem. AIMS Mathematics, 2021, 6(11): 11904-11920. doi: 10.3934/math.2021691
    [3] Huahai Qiu, Li Wan, Zhigang Zhou, Qunjiao Zhang, Qinghua Zhou . Global exponential periodicity of nonlinear neural networks with multiple time-varying delays. AIMS Mathematics, 2023, 8(5): 12472-12485. doi: 10.3934/math.2023626
    [4] Ali Algefary . Diagonal solutions for a class of linear matrix inequality. AIMS Mathematics, 2024, 9(10): 26435-26445. doi: 10.3934/math.20241286
    [5] Ali Algefary . A characterization of common Lyapunov diagonal stability using Khatri-Rao products. AIMS Mathematics, 2024, 9(8): 20612-20626. doi: 10.3934/math.20241001
    [6] Zhigang Zhou, Li Wan, Qunjiao Zhang, Hongbo Fu, Huizhen Li, Qinghua Zhou . Exponential stability of periodic solution for stochastic neural networks involving multiple time-varying delays. AIMS Mathematics, 2024, 9(6): 14932-14948. doi: 10.3934/math.2024723
    [7] Zahra Eidinejad, Reza Saadati, Donal O'Regan, Fehaid Salem Alshammari . Measure of quality and certainty approximation of functional inequalities. AIMS Mathematics, 2024, 9(1): 2022-2031. doi: 10.3934/math.2024100
    [8] Panpan Liu, Haifeng Sang, Min Li, Guorui Huang, He Niu . New criteria for nonsingular H-matrices. AIMS Mathematics, 2023, 8(8): 17484-17502. doi: 10.3934/math.2023893
    [9] Wentao Le, Yucai Ding, Wenqing Wu, Hui Liu . New stability criteria for semi-Markov jump linear systems with time-varying delays. AIMS Mathematics, 2021, 6(5): 4447-4462. doi: 10.3934/math.2021263
    [10] Ahmad Y. Al-Dweik, Ryad Ghanam, Gerard Thompson, M. T. Mustafa . Algorithms for simultaneous block triangularization and block diagonalization of sets of matrices. AIMS Mathematics, 2023, 8(8): 19757-19772. doi: 10.3934/math.20231007
  • System-level fault diagnosis model, namely, the PMC model, detects fault nodes only through the mutual testing of nodes in the system without physical equipment. In order to achieve server nodes fault diagnosis in large-scale data center networks (DCNs), the traditional algorithm based on the PMC model cannot meet the characteristics of high diagnosability, high accuracy and high efficiency due to its inability to ensure that the test nodes are fault-free. This paper first proposed a fault-tolerant Hamiltonian cycle fault diagnosis (FHFD) algorithm, which tests nodes in the order of the Hamiltonian cycle to ensure that the test nodes are faultless. In order to improve testing efficiency, a hierarchical diagnosis mechanism was further proposed, which recursively divides high scale structures into a large number of low scale structures based on the recursive structure characteristics of DCNs. Additionally, we proved that 2(n2)nk1 and (n2)tn,k/tn,1 faulty nodes could be detected for BCuben,k and DCelln,k within a limited time for the proposed diagnosis strategy. Simulation experiments have also shown that our proposed strategy has improved the diagnosability and test efficiency dramatically.



    In order to describe the evolution of fecal-oral transmitted diseases in the Mediterranean regions, Capasso and Paveri-Fontana [1] proposed the following model

    {u(t)=au+cv,v(t)=bv+G(u), (1.1)

    where a,b,c are all positive constants, u(t) and v(t) denote the concentration of the infectious agent in the environment and the infective human population respectively. The coefficients a and b are the intrinsic decay rates of the infectious agent and the infective human population respectively, c represents the multiplication rate of the infectious agent due to the human infected population. The function G(u) stands for the force of infection of the human population due to the concentration of infectious agent. We assume that G(u) satisfies the two specific cases: (ⅰ) a monotone increasing function with constant concavity; (ⅱ) a sigmoidal function of bacterial concentration tending to some finite limit, and with zero gradient at zero. These two cases contain most of the features of forces of infection in real epidemics. For some epidemic, if the density of infectious agent is small, the force of infection of the humans will be weak and may tend to zero, and the function G will satisfy case (ⅱ). In this paper, we focus on such case, and assume that the function G:R+R+ satisfies:

    (G1) GC2(R+), G(0)=0, G(z)>0 for any z>0 and limzG(z)=1;

    (G2) there exists ξ>0 such that G"(z)>0 for z(0,ξ) and G"(z)<0 for z(ξ,).

    Denote

    θ=cG(0)ab.

    Under two specific cases stated above, the global dynamics of the cooperative system (1.1) has been described in detail in [2]. It follows from [2, Theorem 4.3] that the global dynamics of (1.1) under conditions (G1) and (G2) can be described as follows:

    (ⅰ) If θ<1 and G(z)z<abc for any z>0, then the trivial solution is the only equilibrium for problem (1.1) and it is globally asymptotically stable in R+×R+.

    (ⅱ) If θ>1, then problem (1.1) has only one nontrivial equilibrium point (u,v) in addition to (0,0) and it is globally asymptotically stable in R+×R+.

    (ⅲ) If θ<1 and G(z1)z1>abc for some z1>0, then problem (1.1) has three equilibrium points:

    E0=(0,0),E1=(K1,aK1c) and E2=(K2,aK2c),

    where 0<K1<K2 are the positive roots of G(z)abcz=0. In this case, E1 is a saddle point, E0 and E2 are stable nodes.

    In 1997, Capasso and Wilson [3] further considered spatial variation and studied the problem

    {ut=dΔuau+cv,(t,x)(0,+)×Ω,vt=bv+G(u),(t,x)(0,+)×Ω,u(t,x)=0,(t,x)(0,+)×Ω,u(0,x)=u0(x), v(0,x)=v0(x),xΩ, (1.2)

    where Ω is bounded. By some numerical simulation, they speculated that the dynamical behavior of system (1.2) is similar to the ODE case. To understand the dispersal process of epidemic from outbreak to an endemic, Xu and Zhao [4] studied the bistable traveling waves of (1.2) in xR.

    The epidemic always spreads gradually, but the works mentioned above are hard to explain this gradual expanding process. To describe such a gradual spreading process, Du and Lin [5] introduced the free boundary condition to study the invasion of a single species. They considered the problem

    {utduxx=u(abu),t>0, 0<x<h(t),ux(t,0)=0, u(t,h(t))=0,t>0,h(t)=μux(t,h(t)),t>0,h(0)=h0, u(0,x)=u0(x),0xh0, (1.3)

    and showed that (1.3) admits a unique solution which is well-defined for all t0 and spreading and vanishing dichotomy holds. Moreover, the criteria for spreading and vanishing are obtained: (ⅰ) for h0π2da, the species will spread; (ⅱ) for h0<π2da and given u0(x), there exists μ such that the species will spread for μ>μ, and the species will vanish for 0<μμ. Finally, they gave the spreading speed of the spreading front when spreading occurs. Since then, many problems with free boundaries and related problems have been investigated, see e.g. [6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22] and their references.

    In 2016, Ahn et al. [23] considered (1.2) with monostable nonlinearity and free boundaries. They obtained the global existence and uniqueness of the solution and spreading and vanishing dichotomy. Furthermore, by introducing the so-called spatial-temporal risk index

    RF0(t)=G(0)cba+d(πh(t)g(t))2,

    they proved that: (ⅰ) if R0=cG(0)ab1, the epidemic will vanish; (ⅱ) if RF0(0)1, the epidemic will spread; (ⅲ) if RF0(0)<1, epidemic will vanish for the small initial densities; (ⅳ) if RF0(0)<1<R0, epidemic will spread for the large initial densities. Recently, Zhao et al. [24] determined the spreading speed of the spreading front of problem described in [23].

    Inspired by the work [23], we want to study (1.2) with bistable nonlinearity and free boundaries. Meanwhile, we also want to consider the effect of the advection. In 2009, Maidana and Yang [25] studied the propagation of West Nile Virus from New York City to California. In the summer of 1999, West Nile Virus began to appear in New York City. But it was observed that the wave front traveled 187 km to the north and 1100 km to the south in the second year. Therefore, taking account of the advection movement has the greater realistic significance. Recently, there are some works considering the advection. In 2014, Gu et al. [26] was the first time to consider the long-time behavior of problem (1.3) with small advection. Then, the asymptotic spreading speeds of the free boundaries was given in [27]. For more general reaction term, Gu et al. [10] studied the long time behavior of solutions of Fisher-KPP equation with advection β>0 and free boundaries. For single equation with advection, there are many other works. For example, [28,29,30,31,32,33,34] and their references. Besides, there are also several works devoted to the system with small advection, such as, [35,36,37,38,39,40] and their references.

    Taking account of the effect of advection, we consider

    {ut=duxxβuxau+cv,t>0, g(t)<x<h(t),vt=bv+G(u),t>0, g(t)<x<h(t),u(t,x)=v(t,x)=0,t0, x=g(t) or x=h(t),g(0)=h0, g(t)=μux(t,g(t)),t>0,h(0)=h0, h(t)=μux(t,h(t)),t>0,u(0,x)=u0(x), v(0,x)=v0(x),h0<x<h0, (1.4)

    where we use the changing region (g(t),h(t)) to denote the infective environment of disease, where the free boundaries x=g(t) and x=h(t) represent the spreading fronts of epidemic. Since the diffusion coefficient of v is much smaller than that of u, we assume that the diffusion coefficient of v is zero. When u spreads into a new environment, some humans in the new environment may be infected. Hence, we can use (g(t),h(t)) to represent the habit of infective humans. We use I0(h0,h0) to denote the initial infective environment of epidemic. The initial functions u0(x) and v0(x) satisfy

    u0(x)X1(h0){u0(x)W2p(I0): u0(x)>0 for xI0, u0(x)=0 for xRI0},v0(x)X2(h0){v0(x)C2(I0): v0(x)>0 for xI0, v0(x)=0 for xRI0},

    where p>3. The derivation of the stefan conditions h(t)=μux(t,h(t)) and g(t)=μux(t,g(t)) can be found in [41,42]. In this paper, we always assume that G satisfies (G1)-(G2) and

    (G3) G(z) is locally Lipschitz in zR+, i.e., for any L>0, there exists a constant ρ(L)>0 such that

    |G(z1)G(z2)|ρ(L)|z1z2|,  z1,z2[0,L].

    Furthermore, we assume that 0<β<β with

    β={,θ<1,2d(cG(0)ba),θ>1.

    The rest of this paper is organized as follows. In Section 2, the global existence and uniqueness of solution, comparison principle and some results about the principal eigenvalue are given. Section 3 is devoted to the long time behavior of (u,v). We get a spreading and vanishing dichotomy and give the criteria for spreading and vanishing. Finally, we give some discussions in Section 4.

    Firstly, we prove the existence and uniqueness of the solution.

    Lemma 2.1. For any given (u0,v0)X1(h0)×X2(h0) and any α(0,1), there exists a T>0 such that problem (1.4) admits a unique solution

    (u,v,g,h)(W1,2p(ΩT)C1+α2,1+α(¯ΩT))×C1([0,T];L([g(t),h(t)]))×[C1+α2([0,T])]2, (2.1)

    moreover,

    uW1,2p(ΩT)+uC1+α2,1+α(¯ΩT)+gC1+α2([0,T])+hC1+α2([0,T])C, (2.2)

    where ΩT={(t,x)R2: 0tT, g(t)xh(t)}, C and T depend only on h0, α, u0W2p([h0,h0]) and v0.

    Proof. This proof can be done by the similar arguments in [43]. But there are some differences. Hence, we give the details. Let

    y=2xg(t)h(t)h(t)g(t),w(t,y)=u(t,(h(t)g(t))y+h(t)+g(t)2),

    and

    z(t,y)=v(t,(h(t)g(t))y+h(t)+g(t)2).

    Then problem (1.4) becomes

    {wtdA2wyy+(βAB)wy=aw+cz,0<t<T, 1<y<1,w(t,1)=w(t,1)=0,0t<T,w(0,y)=u0(h0y)w0(y),1<y<1, (2.3)
    {vt=bv+G(u),0<t<T, g(t)<x<h(t),v(t,g(t))=v(t,h(t))=0,0t<T,v(0,x)=v0(x),h0<x<h0, (2.4)

    and

    {g(t)=μAwy(t,1),0<t<T,h(t)=μAwy(t,1),0<t<T,g(0)=h0, h(0)=h0, (2.5)

    where

    A=A(g(t),h(t))=2h(t)g(t) and B=B(g(t),h(t),y)=h(t)+g(t)h(t)g(t)+yh(t)g(t)h(t)g(t).

    Denote g=μh0u0(h0) and h=μh0u0(h0). For 0<Th02(2+g+h), define

    T=[0,T]×[1,1],D1T={wC(T): w(0,y)=w0(y), w(t,±1)=0, ww0C(T)1},D2T={gC1([0,T]): g(0)=h0, g(0)=g, ggC([0,T])1},D3T={hC1([0,T]): h(0)=h0, h(0)=h, hhC([0,T])1}.

    It is easy to see that DTD1T×D2T×D3T is a complete metric space with the metric

    d((w1,g1,h1),(w2,g2,h2))=w1w2C(T)+g1g2C1([0,T])+h1h2C1([0,T]).

    For any given (w,g,h)DT, there exist some ξ1,ξ2(0,t) such that

    |g(t)+h0|+|h(t)h0|=|g(ξ1)|t+|h(ξ2)|tT(2+g+h)h02,

    which implies that

    2h0h(t)g(t)3h0,  t[0,T].

    Thus, A(g(t),h(t)) and B(g(t),h(t),y) are well-defined. By the definition of w, we have

    u(t,x)=w(t,2xg(t)h(t)h(t)g(t)). (2.6)

    Since |w(t,y)|w0L+1 for (t,y)T, we have

    |u(t,x)|w0L+1M1,  (t,x)[0,T]×[g(t),h(t)].

    Define

    ˜v0(x)={v0(x),x(h0,h0),0,xR(h0,h0) and tx:={tgx,x[g(T),h0) and x=g(tgx),0,x[h0,h0],thx,x(h0,h(T)] and x=h(thx).

    For u defined as (2.6) and any given x[g(T),h(T)], we consider the following ODE problem

    {vt=bv+G(u(t,x)),tx<t<T,v(tx,x)=˜v0(x). (2.7)

    By the similar arguments as the step 1 in the proof of [44, Lemma 2.3], it is easy to show that (2.7) admits a unique solution v(t,x) for t[tx,T1], where T1(0,h02(2+g+h)]. Hence, problem (2.4) has a unique solution v(t,x)C1([0,T1];L([g(t),h(t)])). By the continuous dependence of the solution on parameters, we can have

    vxL(ΩT1)C1.

    Then

    vxL(ΩT)vxL(ΩT1)C1,  TT1.

    For this v, we can get

    z(t,y)=v(t,(h(t)g(t))y+h(t)+g(t)2).

    For (w,g,h) and z obtained above, we consider the following problem

    {¯wtdA2¯wyy+(βAB)¯wy=aw+cz,0<t<T, 1<y<1,¯w(t,1)=¯w(t,1)=0,0t<T,¯w(0,y)=u0(h0y),1<y<1. (2.8)

    Applying standard Lp theory and the Sobolev imbedding theorem, we can have there exists T2(0,T1] such that (2.8) admits a unique solution ¯w(t,y) and

    ¯wW1,2p(T2)+¯wC1+α2,1+α(T2)C2,

    where C2 is a constant depending only on h0, α and u0W2p([h0,h0]). Then

    ¯wW1,2p(T)+¯wC1+α2,1+α(T)¯wW1,2p(T2)+¯wC1+α2,1+α(T2)C2,  TT2. (2.9)

    Define

    ¯g(t)=h0t0μA(g(τ),h(τ))¯wy(τ,1)dτ,¯h(t)=h0t0μA(g(τ),h(τ))¯wy(τ,1)dτ,

    then we have ¯g(0)=h0, ¯h(0)=h0,

    ¯g(t)=μA(g(t),h(t))¯wy(t,1), ¯h(t)=μA(g(t),h(t))¯wy(t,1),

    and hence

    ¯gCα2([0,T]), ¯hCα2([0,T])μh10C2C3. (2.10)

    Now, we can define the mapping F:DTC(T)×C1([0,T])×C1([0,T]) by

    F(w,g,h)=(¯w,¯g,¯h).

    Obviously, DT is a bounded and closed convex set of C(T)×C1([0,T])×C1([0,T]), F is continuous in DT, and (w,g,h) is a fixed point of F if and only if (w,v,g,h) solve (2.3), (2.4) and (2.5). By (2.9) and (2.10), we have F is compact and

    ¯ww0C(T)C2T1+α2,¯ggC([0,T])C3Tα2,¯hhC([0,T])C3Tα2.

    Therefore if we take Tmin{T2, C21+α2, C2α3}T3, then F maps DT into itself. It now follows from the Schauder fixed point theorem that F has a fixed point (w,g,h) in DT. Moreover, we have (w,v,g,h) solve (2.3), (2.4) and (2.5),

    wW1,2p(T)+wC1+α2,1+α(T)C2, vxL(ΩT)C1,  TT3.

    Define as before,

    u(t,x)=w(t,2xg(t)h(t)h(t)g(t)).

    Then (u,v,g,h) solve (1.4), and satisfies (2.1) and (2.2).

    In the following, we prove the uniqueness of (u,v,g,h). Let (ui,vi,gi,hi) (i=1,2) be the two solutions of problem (1.4) for T(0,T3] sufficiently small. Let

    wi(t,y)=ui(t,(hi(t)gi(t))y+hi(t)+gi(t)2).

    Then it is easy to see that (wi,vi,gi,hi) solve (2.3), (2.4) and (2.5). Denoting

    Ai=A(gi(t),hi(t)), Bi=B(gi(t),hi(t),y), W=w1w2, Z=z1z2, G=g1g2, H=h1h2,

    we can have

    {WtdA21Wyy+(βA1B1)Wy=aW+cZ                +(dA21dA22)w2yy+[(βA1B1)+(βA2B2)]w2y,0<t<T, 1<y<1,W(t,1)=W(t,1)=0,0t<T,W(0,y)=0,1<y<1,

    and

    {G=μA1Wy(t,1)+μ(A2A1)w2y(t,1),0<t<T,H=μA1Wy(t,1)+μ(A2A1)w2y(t,1),0<t<T,G(0)=0, H(0)=0. (2.11)

    Using the Lp estimates for parabolic equations and Sobolev imbedding theorem, we obtain

    WW1,2p(T)C4(ZC(T)+GC1([0,T])+HC1([0,T])), (2.12)

    where C4 depends on C2, C3 and the functions A and B. Next we should estimate z1z2C(T). For convenience, we define

    Hm(t)min{h1(t),h2(t)}, HM(t)max{h1(t),h2(t)},Gm(t)min{g1(t),g2(t)}, GM(t)max{g1(t),g2(t)},ΩGm,HMT[0,T]×[Gm(t),HM(t)].

    By direct calculations, we have

    z1(t,y)z2(t,y)C(T)= v1(t,(h1(t)g1(t))y+h1(t)+g1(t)2)v2(t,(h2(t)g2(t))y+h2(t)+g2(t)2)C(T) v1(t,(h1(t)g1(t))y+h1(t)+g1(t)2)v2(t,(h1(t)g1(t))y+h1(t)+g1(t)2)C(T)+v2(t,(h1(t)g1(t))y+h1(t)+g1(t)2)v2(t,(h2(t)g2(t))y+h2(t)+g2(t)2)C(T) v1(t,x)v2(t,x)C(ΩGm,HMT)+v2xL(ΩGm,HMT)(GC([0,T])+HC([0,T])). (2.13)

    Now we estimate |(v1v2)(t,x)| for any fixed (t,x)ΩGm,HMT. It will be divided into the following three cases.

    Case 1. x[h0,h0].

    Since (2.4) is equivalent to the following integral equation:

    v(t,x)=ebt[v0(x)+t0ebsG(u)(s,x)ds],

    we have

    v1(t,x)v2(t,x)= ebt[t0ebs(G(u1)G(u2))(s,x)ds].

    Then,

    |v1(t,x)v2(t,x)|ρ(M1)bu1u2C(ΩGm,HMT). (2.14)

    Case 2. x(h0,Hm(t)).

    In this case, there exist t1, t2(0,t) such that h1(t1)=h2(t2)=x. Without loss of generality, we may assume that 0t1t2. Then,

    v1(t,x)v2(t,x)= ebt[v1(t2,x)ebt2+tt2ebs(G(u1)G(u2))(s,x)ds].

    Thus,

    |v1(t,x)v2(t,x)||v1(t2,x)|+ρ(M1)bu1u2C(ΩGm,HMT).

    By (G1) and (G2), we can have that there exists γ such that G(z)γz for z0. Now we estimate v1(t2,x). Direct calculations give that

    v1(t2,x)=ebt2t2t1ebsG(u1)(s,x)dsγbmaxt[t1,t2]|u1(t,x)|=γbmaxt[t1,t2]|(u1u2)(t,x)|.

    Hence,

    |v1(t,x)v2(t,x)|γ+ρ(M1)bu1u2C(ΩGm,HMT). (2.15)

    Case 3. x[Hm(t),HM(t)].

    Without loss of generality, we assume that h2(t)<h1(t). In this case, there exists t1 such that h1(t1)=x. Then v1(t1,x)=0, u2(t,x)=v2(t,x)=0 for t[t1,t]. Hence, V(t,x)=v1(t,x) and

    v1(t,x)=ebttt1ebsG(u1)(s,x)dsγbmaxt[t1,t]|u1(t,x)|=γbmaxt[t1,t]|(u1u2)(t,x)|.

    Hence,

    |v1(t,x)v2(t,x)|γbu1u2C(ΩGm,HMT). (2.16)

    By (2.14), (2.15) and (2.16), we have

    v1v2C(ΩGm,HMT)C5u1u2C(ΩGm,HMT), (2.17)

    where C5 depends on b, ρ, M1 and γ. Now we estimate u1(t,x)u2(t,x)C(ΩGm,HMT).

    u1(t,x)u2(t,x)C(ΩGm,HMT)= w1(t,2xg1(t)h1(t)h1(t)g1(t))w2(t,2xg2(t)h2(t)h2(t)g2(t))C(ΩGm,HMT) w1(t,2xg1(t)h1(t)h1(t)g1(t))w2(t,2xg1(t)h1(t)h1(t)g1(t))C(ΩGm,HMT)+w2(t,2xg1(t)h1(t)h1(t)g1(t))w2(t,2xg2(t)h2(t)h2(t)g2(t))C(ΩGm,HMT) w1(t,y)w2(t,y)C(T)+C6(GC([0,T])+HC([0,T])), (2.18)

    where C6 only depends on h0 and w2xC(T3). By ¯W(0,y)=0 and Sobolev imbedding theorem, we have

    W(t,y)C(T)[W]Cα2,0(T)Tα2C7Tα2[W]Cα2,α(T)C8Tα2WW1,2p(T), (2.19)

    where C7 and C8 do not depend on T. By (2.12), (2.13), (2.17), (2.18) and (2.19), we can get

    WW1,2p(T)C9Tα2WW1,2p(T)+C10(GC1([0,T])+HC1([0,T])),

    where C9 depends on C4, C5 and C8; C10 depends on C1, C5 and C6. If Tmin{T3,(2C9)2α}T4,

    WW1,2p(T)2C10(GC1([0,T])+HC1([0,T])). (2.20)

    In the following, we estimate GC1([0,T]) and HC1([0,T]). Since G(0)=G(0)=0, we have

    GC1([0,T])= maxt[0,T]G(t)+maxt[0,T]G(t)maxξ[0,T]G(ξ)T+maxt[0,T]G(t) (1+T)maxt[0,T]G(t)G(0)(t0)α2Tα2=Tα2(1+T)[G]Cα2([0,T]).

    By (2.11), we have

    [G]Cα2([0,T])=C11[[Wy(t,1)]Cα2,0([0,T])+(GC1([0,T])+HC1([0,T]))[w2y(t,1)]Cα2([0,T])],

    where C11 depends on μ, A and h0. It follows from the proof of [45, Theorem 1.1] that we have

    [Wy(t,y)]Cα2,0(T)C12[Wy(t,y)]Cα2,α(T)C13WW1,2p(T),

    where C12 and C13 do not depend on T. Therefore, we have

    GC1([0,T])C14Tα2(1+T)(GC1([0,T])+HC1([0,T])), (2.21)

    where C14 depends on C2, C10, C11 and C13. Similarly, there exists C15 such that

    HC1([0,T])C15Tα2(1+T)(GC1([0,T])+HC1([0,T])). (2.22)

    It follows from (2.21) and (2.22) that

    GC1([0,T])+HC1([0,T])=C16Tα2(1+T)(GC1([0,T])+HC1([0,T]))12(GC1([0,T])+HC1([0,T]))

    if Tmin{T4, 1, (4C16)2α}T5, where C16=C14+C15. Hence, G=H=0 for TT5. It follows from (2.20) that W=0. This implies that u1u2. By (2.17), we have v1v2. The uniqueness is obtained.

    Then it follows from the arguments in [23] that we can get the following estimates.

    Lemma 2.2. Let (u,v,g,h) be a solution of problem (1.4) defined for t(0,T0], where T0(0,+). Then there exist M1, M2 and M3 independent of T0 such that

    (ⅰ) 0<u(t,x)M1, 0<v(t,x)M2 for t(0,T0] and x[g(t),h(t)].

    (ⅱ) 0<g(t), h(t)M3 for t(0,T0].

    Just like the proof of [37, Theorem 3.2], we can obtain the global existence and uniqueness.

    Theorem 2.3. The solution exists and is unique for all t>0.

    Then, we exhibit the following comparison principle, which can be proven by the similar argument in [23,Lemma 2.5].

    Theorem 2.4. Assume that

    ¯g, ¯hC1([0,+)), ¯u(t,x), ¯v(t,x)C(¯D)C1,2(D),¯u(0,x)X1(h0), ¯v(0,x)X2(h0)

    with

    D:={(t,x)R2: 0<t<, ¯g(t)<x<¯h(t)},

    and (¯u,¯v,¯g,¯h) satisfies

    {¯utd¯uxxβ¯uxa¯u+c¯v,t>0, ¯g(t)<x<¯h(t),¯vtb¯v+G(¯u),t>0, ¯g(t)<x<¯h(t),¯u(t,¯g(t))=¯u(t,¯h(t))=0,t0,¯v(t,¯g(t))=¯v(t,¯h(t))=0,t0,¯g(0)h0, ¯g(t)μ¯ux(t,¯g(t)),t>0,¯h(0)h0, ¯h(t)μ¯ux(t,¯h(t)),t>0,¯u(0,x)u0(x), ¯v(0,x)v0(x),h0<x<h0.

    Then the solution (u,v,g,h) of the free boundary problem (1.4) satisfies

    h(t)¯h(t), g(t)¯g(t),  t0,
    u(t,x)¯u(t,x), v(t,x)¯v(t,x),  t0, g(t)xh(t).

    Remark 2.5. The pair (¯u,¯v,¯g,¯h) in Theorem 2.4 is usually called an upper solution of problem (1.4). Similarly, we can define a lower solution by reversing all the inequalities in the suitable places.

    In the following part, we consider the following eigenvalue problem

    {λϕ=dϕxxβϕxaϕ+cG(0)bϕ,l<x<l,ϕ(l)=ϕ(l)=0. (2.23)

    Denote by λ0(l) the principal eigenvalue of problem (2.23) with some fixed l.

    Lemma 2.6. λ0(l) has the following form:

    λ0(l)=β24d+dπ24l2(cG(0)ba).

    Proof. We choose β to be small and determine it later. By a simple calculation, we can achieve the characteristic equation

    dμ2βμ+λa+cG(0)b=0, (2.24)

    and let μi (i=1,2) be the roots of (2.24). Then the solution of (2.23) is

    ϕ(x)=c1eμ1x+c2eμ2x,

    where c1 and c2 will be determined later. Since ϕ(l)=ϕ(l)=0, we can derive that

    Δ=β24d(λa+cG(0)b)<0.

    In fact, if Δ=β24d(λa+cG(0)b)0, we have ϕ0, which is a contradiction. Hence, (2.24) has two complex roots:

    μ1=β+i4d(λa+cG(0)b)β22d, μ2=βi4d(λa+cG(0)b)β22d.

    Then

    ϕ(x)= c1eβ2dx[cos4d(λa+cG(0)b)β22dx+isin4d(λa+cG(0)b)β22dx]+c2eβ2dx[cos4d(λa+cG(0)b)β22dxisin4d(λa+cG(0)b)β22dx].

    By ϕ(l)=ϕ(l)=0, we have c1=c2 and

    4d(λa+cG(0)b)β22dl=π2+kπ,  kN.

    When k=0, λ attain its minimum, we have

    λ0(l)=β24d+dπ24l2(cG(0)ba),

    and the corresponding eigenfunction ϕ(x)=eβ2dxcos(π2lx).

    Then we have the following properties about λ0(l).

    Lemma 2.7. The following assertions hold:

    (ⅰ) λ0(l) is continuous and strictly decreasing in l,

    liml0λ0(l)=, limlλ0(l)=β24d(cG(0)ba).

    (ⅱ) If cG(0)ab>1 and 0<β<2d(cG(0)ba), then there exists

    l=2dπ/4d(cG(0)ba)β2

    such that λ0(l)=0. Furthermore, λ0(l)>0 for 0<l<l, and λ0(l)<0 for l>l.

    (ⅲ) If cG(0)ab1, then λ0(l)>β24d(cG(0)ba)>0.

    Proof. By the expression of λ0(l) in Lemma 2.6, the proof of lemma is obvious. We omit it here.

    Firstly, we give the definitions of spreading and vanishing of the disease:

    Definition 3.1. We say that vanishing happens if

    hg< and limt(u(t,)C([g(t),h(t)])+v(t,)C([g(t),h(t)]))=0,

    and spreading happens if

    hg= and lim supt(u(t,)C([g(t),h(t)])+v(t,)C([g(t),h(t)]))>0.

    Then, we give the following lemmas.

    Lemma 3.2. Let (u,v,g,h) be the solution of (1.4). If hg<, then there exists a constant C>0 such that

    u(t,)C1([g(t),h(t)])C,  t>1. (3.1)

    Moreover,

    limtg(t)=limth(t)=0. (3.2)

    Proof. We can use the method in [46, Theorem 2.1] to get (3.1). Then the proof of (3.2) can be done as [16,Theorem 4.1].

    Lemma 3.3. Let d, μ and h0 be positive constants, wC1+α2,1+α([0,)×[g(t),h(t)]) and g, hC1+α2([0,)) for some α>0. We further assume that w0(x)X1(h0). If (w,g,h) satisfies

    {wtdwxxβwxaw,t>0, g(t)<x<h(t),w(t,x)=0,t0, xg(t),w(t,x)=0,t0, xh(t),g(0)=h0, g(t)μwx(t,g(t)),t>0,h(0)=h0, h(t)μwx(t,h(t)),t>0,w(0,x)=w0(x), (3.3)

    and

    \begin{align*} &\lim\limits_{t\rightarrow\infty}g(t) = g_{\infty} \gt -\infty, \ \lim\limits_{t\rightarrow\infty}g'(t) = 0, \; \lim\limits_{t\rightarrow\infty}h(t) = h_{\infty} \lt \infty, \ \lim\limits_{t\rightarrow\infty}h'(t) = 0, \\ &\|w(t, \cdot)\|_{C^{1}([g(t), h(t)])}\leq M, \ \forall\ t \gt 1 \end{align*}

    for some constant M > 0 . Then

    \lim\limits_{t\rightarrow\infty}\max\limits_{g(t)\leq x\leq h(t)}w(t, x) = 0.

    Proof. It can be proved by the similar arguments in [16,Theorem 4.2].

    By above Lemmas 3.2 and 3.3, we can derive the following result.

    Theorem 3.4. If h_{\infty}-g_{\infty} < \infty , then

    \lim\limits_{t\rightarrow\infty} (\|u(t, \cdot)\|_{C([g(t), h(t)])}+\|v(t, \cdot)\|_{C([g(t), h(t)])}) = 0.

    Proof. Firstly, we can use the method in the proof of [46,Theorem 2.1] to get

    \|u\|_{C^{\frac{1+\alpha}{2}, 1+\alpha}([0, \infty)\times[g(t), h(t)])} +\|g\|_{C^{1+\frac{\alpha}{2}}([0, \infty))} +\|h\|_{C^{1+\frac{\alpha}{2}}([0, \infty))}\leq C.

    Recall that u satisfies (3.3). By Lemmas 3.2 and 3.3, we can get \lim\limits_{t\rightarrow\infty}\|u(t, \cdot)\|_{C([g(t), h(t)])} = 0 .

    Noting that v(t, x) satisfies

    v_{t} = -bv+G(u), \ t \gt 0, \ g(t) \lt x \lt h(t)

    and G(u)\rightarrow 0 uniformly for x\in[g(t), h(t)] as t\rightarrow\infty , we have \lim\limits_{t\rightarrow\infty}\|v(t, \cdot)\|_{C([g(t), h(t)])} = 0 .

    Lemma 3.5. If \frac{G(z)}{z} < \frac{ab}{c} for any z > 0 , then h_{\infty}-g_{\infty} < \infty .

    Proof. Direct calculations yield

    \begin{align*} &\frac{d}{dt}\int_{g(t)}^{h(t)}\left(u(t, x)+\frac{c}{b}v(t, x)\right)dx\\ = \ &\int_{g(t)}^{h(t)}\left(u_{t}+\frac{c}{b}v_{t}\right)dx\\ = \ &\int_{g(t)}^{h(t)}\left(du_{xx}-\beta u_{x}-au+\frac{c}{b}G(u)\right)dx\\ = \ &-\frac{d}{\mu}(h'(t)-g'(t)) +\int_{g(t)}^{h(t)}\left(-au+\frac{c}{b}G(u)\right)dx. \end{align*}

    Integrating from 0 to t gives

    \begin{align*} &\int_{g(t)}^{h(t)}\left(u(t, x)+\frac{c}{b}v(t, x)\right)dx\\ = \ &\int_{-h_{0}}^{h_{0}}\left(u_{0}(x)+\frac{c}{b}v_{0}(x)\right)dx -\frac{d}{\mu}(h(t)-g(t))\\ &+\frac{d}{\mu}2h_{0} +\int_{0}^{t}\int_{g(s)}^{h(s)}\left(-au+\frac{c}{b}G(u)\right)dxds. \end{align*}

    Since u\geq0 , v\geq0 and G(u)\leq\frac{ab}{c}u for u\geq0 , we have

    h(t)-g(t)\leq\frac{\mu}{d}\int_{-h_{0}}^{h_{0}} \left(u_{0}(x)+\frac{c}{b}v_{0}(x)\right)dx+2h_{0} \lt \infty.

    Letting t\rightarrow\infty , we have h_{\infty}-g_{\infty} < \infty .

    Lemma 3.6. Assume that \frac{G(z_1)}{z_1} > \frac{ab}{c} for some z_1 > 0 . If \lambda_{0}(h_{0}) > 0 holds, then vanishing will happen provided that u_{0} and v_{0} are sufficiently small.

    Proof. We prove this result by constructing the appropriate upper solution. Let \phi be the corresponding eigenfunction of \lambda_{0}(h_0) . Since \lambda_{0}(h_{0}) > 0 , we can choose some small \delta such that

    -\delta-\frac{\beta h_{0}\delta^{2}}{2d(2+\delta)} +\frac{3}{4}\lambda_{0}\frac{1}{(1+\delta)^{2}} \gt 0.

    Set

    \begin{align*} &\sigma(t) = h_{0}(1+\delta-\frac{\delta}{2}e^{-\delta t}), \ t\geq 0, \\ &\overline{u}(t, x) = \varepsilon e^{-\delta t} \phi\left(\frac{xh_{0}}{\sigma(t)}\right) e^{\frac{\beta}{2d}\left(1-\frac{h_{0}}{\sigma(t)}\right)x}, \ t\geq 0, \ -\sigma(t)\leq x\leq\sigma(t), \\ &\overline{v}(t, x) = \left(\frac{G'(0)}{b}+\frac{\lambda_{0}}{4c}\right)\frac{h_{0}^{2}}{\sigma^{2}}\overline{u}, \ t\geq 0, \ -\sigma(t)\leq x\leq\sigma(t). \end{align*}

    Direct computations yield

    \begin{align*} &\overline{u}_{t}-d\overline{u}_{xx}+\beta\overline{u}_{x}+a\overline{u} -c\overline{v}\\ = \ &\overline{u}\left(-\delta-\frac{\phi'}{\phi}\frac{xh_{0}\sigma'}{\sigma^{2}}+ \frac{\beta h_{0}x}{2d}\frac{\sigma'}{\sigma^{2}}\right)\\ &-d\varepsilon e^{-\delta t}e^{\frac{\beta}{2d}(1-\frac{h_{0}}{\sigma})x} \left[\phi''\left(\frac{h_{0}}{\sigma}\right)^{2}+2\phi'\frac{h_{0}}{\sigma} \frac{\beta}{2d}\left(1-\frac{h_{0}}{\sigma}\right) +\phi\left(\frac{\beta}{2d}\right)^{2}\left(1-\frac{h_{0}}{\sigma}\right)^{2}\right]\\ &+\beta\varepsilon e^{-\delta t}e^{\frac{\beta}{2d}(1-\frac{h_{0}}{\sigma})x} \left[\phi'\frac{h_{0}}{\sigma}+\phi\frac{\beta}{2d} \left(1-\frac{h_{0}}{\sigma}\right)\right]+a\overline{u} -c\left(\frac{G'(0)}{b}+\frac{\lambda_{0}}{4c}\right)\frac{h_{0}^{2}}{\sigma^{2}} \overline{u}\\ = \ &\overline{u}\left(-\delta-\frac{\phi'}{\phi} \frac{xh_{0}\sigma'}{\sigma^{2}}+ \frac{\beta h_{0}x}{2d}\frac{\sigma'}{\sigma^{2}}\right)\\ &+\varepsilon e^{-\delta t}e^{\frac{\beta}{2d}(1-\frac{h_{0}}{\sigma(t)})x} \left[\frac{h_{0}^{2}}{\sigma^{2}}(-d\phi''+\beta\phi')+ \phi\frac{\beta^{2}}{4d}\left(1-\frac{h_{0}^{2}}{\sigma^{2}}\right)\right] +a\overline{u} -c\left(\frac{G'(0)}{b}+\frac{\lambda_{0}}{4c}\right)\frac{h_{0}^{2}}{\sigma^{2}} \overline{u}\\ \geq\ &\overline{u}\left(-\delta -\frac{\beta h_{0}}{2d}\frac{\sigma'}{\sigma} +\frac{3}{4}\lambda_{0}\frac{h_{0}^{2}}{\sigma^{2}}\right) +\left(1-\frac{h_{0}^{2}}{\sigma^{2}}\right) \left(\frac{\beta^{2}}{4d}\overline{u}+a\overline{u}\right)\\ \gt \ &\overline{u}\left[-\delta -\frac{\beta h_{0}\delta^{2}}{2d(2+\delta)} +\frac{3}{4}\lambda_{0}\frac{1}{(1+\delta)^{2}}\right] \gt \ 0, \end{align*}

    and

    \begin{align*} &\overline{v}_{t}+b\overline{v}-G(\overline{u})\\ = \ &-\left(\frac{G'(0)}{b}+\frac{\lambda_{0}}{4c}\right) \frac{2h_{0}^{2}\sigma'}{\sigma^{3}}\overline{u} +\left(\frac{G'(0)}{b}+\frac{\lambda_{0}}{4c}\right)\frac{h_{0}^{2}}{\sigma^{2}} (\overline{u}_{t}+b\overline{u}) -G'(\xi)\overline{u}\\ \geq\ &-\left(\frac{G'(0)}{b}+\frac{\lambda_{0}}{4c}\right) \frac{2h_{0}^{2}}{\sigma^{2}}\frac{\delta^{2}}{2+\delta}\overline{u} +\left(\frac{G'(0)}{b}+\frac{\lambda_{0}}{4c}\right)\frac{h_{0}^{2}}{\sigma^{2}} \left[-\delta-\frac{\beta h_{0}\delta^{2}}{2d(2+\delta)}+b\right]\overline{u} -G'(\xi)\overline{u}\\ = \ &\overline{u}\left\{ \left(\frac{G'(0)}{b}+\frac{\lambda_{0}}{4c}\right)\frac{h_{0}^{2}}{\sigma^{2}} \left[-\delta-\frac{\beta h_{0}\delta^{2}}{2d(2+\delta)}\right] +G'(0)\frac{h_{0}^{2}}{\sigma^{2}}\left[1-\frac{2\delta^{2}}{b(2+\delta)}\right]\right.\\ &\left.-G'(\xi)+\frac{\lambda_{0}h_{0}^{2}}{4c\sigma^{2}} \left(b-\frac{2\delta^{2}}{2+\delta}\right)\right\} \doteq B \end{align*}

    for all t > 0 and -\sigma(t) < x < \sigma(t) , where \xi\in(0, \overline{u}) . Let

    \varepsilon = \frac{\delta^{2}h_{0}(1+\frac{\delta}{2})}{2\mu} \min\left\{-\frac{1}{\phi'(h_{0})}e^{-\frac{\beta}{2d}\delta h_{0}}, \frac{1}{\phi'(-h_{0})}e^{\frac{\beta}{4d}\delta h_{0}}\right\}.

    Since \overline{u}\leq\varepsilon e^{\frac{\beta}{2d}h_{0}\delta} , we can choose \delta to be sufficiently small such that B > 0 . Noting that

    \begin{align*} &\sigma'(t) = h_{0}\frac{\delta^{2}}{2}e^{-\delta t}, \ \overline{u}_{x}(t, \sigma(t)) = \varepsilon e^{-\delta t}\phi'(h_{0}) \frac{h_{0}}{\sigma}e^{\frac{\beta}{2d}(\sigma(t)-h_{0})}, \\ &\overline{u}_{x}(t, -\sigma(t)) = \varepsilon e^{-\delta t}\phi'(-h_{0}) \frac{h_{0}}{\sigma}e^{\frac{\beta}{2d}(h_{0}-\sigma(t))}, \end{align*}

    then we have

    \begin{equation*} \begin{cases} \overline{u}_{t}\geq d\overline{u}_{xx}-\beta\overline{u}_{x} -a\overline{u}+c\overline{v}, &t \gt 0, \ -\sigma(t) \lt x \lt \sigma(t), \\ \overline{v}_{t}\geq -b\overline{v}+G(\overline{u}), &t \gt 0, \ -\sigma(t) \lt x \lt \sigma(t), \\ \overline{u}(t, -\sigma(t)) = \overline{u}(t, \sigma(t)) = 0, &t\geq 0, \\ \overline{v}(t, -\sigma(t)) = \overline{v}(t, \sigma(t)) = 0, &t\geq 0, \\ -\sigma(0)\leq -h_{0}, \ -\sigma'(t)\leq -\mu \overline{u}_{x}(t, -\sigma(t)), &t \gt 0, \\ \sigma(0)\geq h_{0}, \ \sigma'(t)\geq -\mu \overline{u}_{x}(t, \sigma(t)), &t \gt 0. \end{cases} \end{equation*}

    If u_{0} and v_{0} are sufficiently small such that

    u_{0}(x)\leq \varepsilon\phi\left(\frac{x}{1+\delta/2}\right) e^{\frac{\beta\delta x}{2d(2+\delta)}}, \ \forall\ x\in\left[-h_0\left(1+\delta/2\right), h_0\left(1+\delta/2\right)\right]

    and

    v_{0}(x)\leq\left(\frac{G'(0)}{b} +\frac{\lambda_{0}}{4c}\right) \frac{1}{\left(1+\delta/2\right)^{2}} \varepsilon\phi\left(\frac{x}{1+\delta/2}\right) e^{\frac{\beta\delta x}{2d(2+\delta)}}, \ \forall\ x\in\left[-h_0\left(1+\delta/2\right), h_0\left(1+\delta/2\right)\right],

    then

    u_{0}(x)\leq\overline{u}(0, x), \ v_{0}(x)\leq\overline{v}(0, x), \ \forall\ x\in(-h_{0}, h_{0}).

    Applying Theorem 2.4 gives that h(t)\leq\sigma(t) and g(t)\geq-\sigma(t) . Hence, h_{\infty}-g_{\infty}\leq 2h_{0}(1+\delta) < \infty . By Theorem 3.4, we have \lim\limits_{t\rightarrow\infty} (\|u(t, \cdot)\|_{C([g(t), h(t)])}+\|v(t, \cdot)\|_{C([g(t), h(t)])}) = 0 .

    By Lemma 3.6, we can derive the following corollary directly.

    Corollary 3.7. Assume that \frac{G(z_1)}{z_1} > \frac{ab}{c} for some z_1 > 0 , then the following statements holds:

    (ⅰ) If \frac{cG'(0)}{ab} < 1 , then vanishing will happen for u_{0} and v_{0} sufficiently small.

    (ⅱ) If \frac{cG'(0)}{ab} > 1 and h_0 < l^\ast , then vanishing will happen for u_{0} and v_{0} sufficiently small.

    Lemma 3.8. Assume that \frac{G(z_1)}{z_1} > \frac{ab}{c} for some z_1 > 0 and \frac{cG'(0)}{ab} > 1 . If h_{0} > l^{\ast} , then spreading will happen.

    Proof. Let \phi be the corresponding eigenfunction of \lambda_{0}(h_0) . Since \frac{cG'(0)}{ab} > 1 and h_{0} > l^{\ast} , we have \lambda_{0}(h_0) < 0 . Then we construct a suitable lower solution. Since

    \frac{cG'(0)}{b}+\frac{\lambda_0}{4} = \frac{\beta^{2}}{4d}+\frac{d\pi^{2}}{4l^{2}}+a-\frac{3\lambda_0}{4} \gt 0,

    we can define

    \begin{equation*} \begin{aligned} &\underline{u}(t, x) = \epsilon\phi(x), \ t\geq 0, \ -h_{0}\leq x\leq h_{0}, \\ &\underline{v}(t, x) = \left(\frac{G'(0)}{b}+\frac{\lambda_{0}}{4c}\right) \epsilon\phi(x), \ t\geq 0, \ -h_{0}\leq x\leq h_{0}. \end{aligned} \end{equation*}

    Direct computations yield

    \begin{align*} \underline{u}_{t}-d\underline{u}_{xx}+\beta\underline{u}_{x}+a\underline{u} -c\underline{v} = \ &\epsilon\left(-d\phi_{xx}+\beta\phi_{x}+a\phi-\frac{cG'(0)}{b}\phi -\frac{\lambda_{0}}{4}\phi\right) = \frac{3}{4}\lambda_{0}\epsilon\phi \lt 0, \end{align*}

    and

    \begin{align*} &\underline{v}_{t}+b\underline{v}-G(\underline{u}) = \epsilon\phi\left(G'(0)-G'(\xi)+\frac{b\lambda_{0}}{4c}\right) \end{align*}

    for all t > 0 and -h_{0} < x < h_{0} , where \xi\in(0, \underline{u}) . We can choose \epsilon small enough such that

    \begin{align*} &G'(0)-G'(\xi)+\frac{b\lambda_{0}}{4c}\leq0, \ \epsilon\phi(x)\leq u_0(x), \ \left(\frac{G'(0)}{b}+\frac{\lambda_{0}}{4c}\right) \epsilon\phi(x)\leq v_0(x). \end{align*}

    Then

    \begin{equation*} \begin{cases} \underline{u}_{t}\leq d\underline{u}_{xx}-\beta\underline{u}_{x} -a\underline{u}+c\underline{v}, &t \gt 0, \ -h_{0} \lt x \lt h_{0}, \\ \underline{v}_{t}\leq -b\underline{v}+G(\underline{u}), &t \gt 0, \ -h_{0} \lt x \lt h_{0}, \\ \underline{u}(t, -h_{0}) = \underline{u}(t, h_{0}) = 0, &t\geq 0, \\ \underline{v}(t, -h_{0}) = \underline{v}(t, h_{0}) = 0, &t\geq 0, \\ 0\geq -\mu \underline{u}_{x}(t, -h_{0}), \ 0\leq -\mu \underline{u}_{x}(t, h_{0}), &t \gt 0, \\ \underline{u}(0, x)\leq u(0, x), \ \underline{v}(0, x)\leq v(0, x), &-h_{0} \lt x \lt h_{0}. \end{cases} \end{equation*}

    It follows from Remark 2.5 that u(t, x)\geq\underline{u}(t, x) in [0, \infty)\times[-h_{0}, h_{0}] . Hence,

    \lim\limits_{t\rightarrow\infty}\|u(t, \cdot)\|_{C([g(t), h(t)])} \geq\epsilon\phi(x) \gt 0.

    By Theorem 3.4, we have h_{\infty}-g_{\infty} = \infty .

    Lemma 3.9. Assume that \frac{G(z_1)}{z_1} > \frac{ab}{c} for some z_1 > 0 and \frac{cG'(0)}{ab} > 1 . If h_{0} < l^{\ast} , then h_{\infty}-g_{\infty} = \infty provided that u_{0} and v_{0} are sufficiently large.

    Proof. We first note that there exists \sqrt{T^{\ast}} > l^\ast such that \lambda_{0}(\sqrt{T^{\ast}}) < 0 .

    Inspired by the argument of [8,proposition 5.3], we consider

    \begin{equation} \begin{cases} -d\varphi'' -\left(\frac{1}{2}+\sqrt{T^{\ast}+1}\right)\varphi' = \widetilde{\lambda}_{0}\varphi, &0 \lt x \lt 1, \\ \varphi'(0) = \varphi(1) = 0. \end{cases} \end{equation} (3.4)

    It is well-known that the first eigenvalue \widetilde{\lambda}_{0} of (3.4) is simple and the corresponding eigenfunction \varphi can be chosen positive in [0, 1) and \|\varphi\|_{L^{\infty}(-1, 1)} = 1 . Moreover, one can easily see that \widetilde{\lambda}_{0} > 0 and \varphi'(x) < 0 in (0, 1] . We extend \varphi to [-1, 1] as an even function. Then clearly

    \begin{equation*} \begin{cases} -d\varphi'' -\left(\frac{1}{2}+\sqrt{T^{\ast}+1}\right){\rm sgn}(x)\varphi' = \widetilde{\lambda}_{0}\varphi, &-1 \lt x \lt 1, \\ \varphi(-1) = \varphi(1) = 0. \end{cases} \end{equation*}

    Now we construct a suitable lower solution to (1.4). Define

    \begin{align*} &\eta(t) = \sqrt{t+\varrho}, \ 0\leq t\leq T^\ast, \\ &\underline{u}(t, x) = \begin{cases} \frac{m}{(t+\varrho)^{k}}\varphi\left(\frac{x}{\sqrt{t+\varrho}}\right), &0\leq t\leq T^\ast, \ -\eta(t) \lt x \lt \eta(t), \\ 0, &0\leq t\leq T^\ast, \ |x|\geq\eta(t), \end{cases} \end{align*}

    where the constants \varrho, \ m, \ k are chosen as follows:

    0 \lt \varrho\leq\min\left\{1, h_{0}^{2}\right\}, \ k\geq\widetilde{\lambda}_{0}+a(T^{\ast}+1), \ m\geq\frac{(T^{\ast}+1)^{k}} {2\mu\min\{\varphi'(-1), -\varphi'(1)\}}.

    Let

    \begin{equation*} t_{x}: = \begin{cases} t_x^1, &x\in[-\eta(T^\ast), -\sqrt{\varrho}) \text{ and } x = -\eta(t_x^1), \\ 0, &x\in[-\sqrt{\varrho}, \sqrt{\varrho}], \\ t_x^2, &x\in(\sqrt{\varrho}, \eta(T^\ast)] \text{ and } x = \eta(t_x^2) \end{cases} \end{equation*}

    and

    \begin{equation*} \underline{v}_0(x) = \begin{cases} \frac{\varepsilon}{2}+\frac{\varepsilon}{2} \cos\left(\frac{\pi}{\sqrt{\varrho}}x\right), &-\sqrt{\varrho}\leq x\leq\sqrt{\varrho}, \\ 0, &|x| \gt \sqrt{\varrho}, \end{cases} \end{equation*}

    where we choose \varepsilon small enough such that

    \underline{v}_0(x)\leq v_0(x), \ \forall\ x\in(-\sqrt{\varrho}, \sqrt{\varrho}).

    Then we define

    \underline{v}(t, x) = e^{-bt} \left(\int_{t_x}^{t}e^{b\tau}G(\underline{u}(\tau, x))d\tau +\underline{v}_0(x)\right), \ t_x\leq t\leq T^\ast, \ -\eta(t)\leq x\leq\eta(t).

    Direct computations yield

    \begin{align*} &\underline{u}_{t}-d\underline{u}_{xx}+\beta\underline{u}_{x} +a\underline{u}-c\underline{v}\\ \leq\ &-\frac{m}{(t+\varrho)^{k+1}}\left[k\varphi +\frac{x}{2\sqrt{t+\varrho}}\varphi'+d\varphi''-\sqrt{t+\varrho}\varphi' -a(t+\varrho)\varphi\right]\\ \leq\ &-\frac{m}{(t+\varrho)^{k+1}}\left[k\varphi +\left(\frac{1}{2}+\sqrt{T^{\ast}+1}\right){\rm sgn}(x)\varphi' +d\varphi''-a(T^{\ast}+1)\varphi\right]\\ \leq\ &-\frac{m}{(t+\varrho)^{k+1}}\left[d\varphi'' +\left(\frac{1}{2}+\sqrt{T^{\ast}+1}\right){\rm sgn}(x)\varphi' +\widetilde{\lambda}_{0}\varphi\right] = 0, \end{align*}

    and

    \underline{v}_{t}+b\underline{v}-G(\underline{u}) = 0, \ 0 \lt t\leq T^{\ast}, \ -\eta(t) \lt x \lt \eta(t).

    For x\in[-\sqrt{\varrho}, \sqrt{\varrho}] , we have t_x = 0 . Then

    \underline{v}(0, x) = \underline{v}_0(x)\leq v_0(x), \ \forall\ x\in[-\sqrt{\varrho}, \sqrt{\varrho}].

    Moreover,

    \begin{align*} &\eta'(t)+\mu\underline{u}_{x}(t, \eta(t)) = \frac{1}{2\sqrt{t+\varrho}} +\frac{\mu m}{(t+\varrho)^{k+\frac{1}{2}}}\varphi'(1)\leq 0, \ \forall\ t\in(0, T^{\ast}), \\ &\eta'(t)-\mu\underline{u}_{x}(t, -\eta(t)) = \frac{1}{2\sqrt{t+\varrho}} -\frac{\mu m}{(t+\varrho)^{k+\frac{1}{2}}}\varphi'(-1)\leq 0, \ \forall\ t\in(0, T^{\ast}). \end{align*}

    If u_{0} is sufficiently large such that \underline{u}(0, x) = \frac{m}{\varrho^{k}}\varphi\left(\frac{x}{\sqrt{\varrho}}\right) \leq u_{0}(x) for x\in[-\sqrt{\varrho}, \sqrt{\varrho}] , then we have

    \begin{equation*} \begin{cases} \underline{u}_{t}\leq d\underline{u}_{xx}-\beta\underline{u}_{x} -a\underline{u}+c\underline{v}, &0 \lt t\leq T^{\ast}, \ -\eta(t) \lt x \lt \eta(t), \\ \underline{v}_{t}\leq-b\underline{v}+G(\underline{u}), &0 \lt t\leq T^{\ast}, \ -\eta(t) \lt x \lt \eta(t), \\ \underline{u}(t, x) = \underline{v}(t, x) = 0, &0\leq t\leq T^{\ast}, \ x\leq -\eta(t), \\ \underline{u}(t, x) = \underline{v}(t, x) = 0, &0\leq t\leq T^{\ast}, \ x\geq \eta(t), \\ -\eta'(t)\geq -\mu \underline{u}_{x}(t, -\eta(t)), &0 \lt t\leq T^{\ast}, \\ \eta'(t)\leq -\mu \underline{u}_{x}(t, \eta(t)), &0 \lt t\leq T^{\ast}, \\ \underline{u}(0, x)\leq u_{0}(x), \ \underline{v}(0, x)\leq v_{0}(x), &-\eta(0) \lt x \lt \eta(0). \end{cases} \end{equation*}

    Noting that \eta(0) = \sqrt{\varrho}\leq h_{0} , we can use Remark 2.5 to conclude that h(t)\geq\eta(t) and g(t)\leq-\eta(t) in [0, T^{\ast}] . Specially, we obtain h(T^{\ast})\geq\eta(T^{\ast}) = \sqrt{T^{\ast}+\varrho} > \sqrt{T^{\ast}} and g(T^{\ast}) < -\sqrt{T^{\ast}} . Then

    (-l^{\ast}, l^{\ast})\subseteq (-\sqrt{T^{\ast}}, \sqrt{T^{\ast}})\subseteq (g(t), h(t)), \ \forall\ t\geq T^{\ast}.

    Hence, we have h_{\infty}-g_{\infty} = +\infty by Lemma 3.8.

    Next, we present the sharp criteria on initial value, which separates spreading and vanishing.

    Theorem 3.10. For some \gamma > 0 and \omega_{1} and \omega_{2} in \mathscr{X}(h_{0}) , let (u, v, g, h) be a solution of (1.4) with (u_0, v_0) = \gamma(\omega_{1}, \omega_{2}) , then the following statements holds:

    (ⅰ) Assume that \frac{cG'(0)}{ab} < 1 . If \frac{G(z)}{z} < \frac{ab}{c} for any z > 0 , then vanishing will happen. If \frac{G(z_1)}{z_1} > \frac{ab}{c} for some z_1 > 0 , then vanishing will happen for u_{0} and v_{0} sufficiently small.

    (ⅱ) Assume that \frac{cG'(0)}{ab} > 1 and 0 < \beta < 2\sqrt{d\left(\frac{cG'(0)}{b}-a\right)} . If \frac{G(z)}{z} < \frac{ab}{c} for any z > 0 , then vanishing will happen. If \frac{G(z_1)}{z_1} > \frac{ab}{c} for some z_1 > 0 , then the following will hold:

    (a) If h_0>l^\ast , then spreading will happen; (b) If h_0<l^\ast , then there exists \gamma^{\ast}\in(0, \infty) such that spreading occurs for \gamma>\gamma^{\ast} , and vanishing happens for 0<\gamma\leq\gamma^{\ast} .

    Proof. This theorem follows from Lemma 3.5, Corollary 3.7, Lemmas 3.8 and 3.9. The conclusion (b) can be proven by the same arguments in [23,Theorem 4.3].

    Finally, we give the asymptotic behavior of (1.4) when spreading happens.

    Theorem 3.11. Assume that \frac{cG'(0)}{ab}>1 , 0<\beta<2\sqrt{d\left(\frac{cG'(0)}{b}-a\right)} and \frac{G(z_1)}{z_1}>\frac{ab}{c} for some z_1>0 . If h_{\infty}-g_{\infty} = \infty , then

    (\underline{u}^\ast(x), \underline{v}^\ast(x))\leq \liminf\limits_{t\rightarrow\infty}(u(t, x), v(t, x))\leq \limsup\limits_{t\rightarrow\infty}(u(t, x), v(t, x))\leq(u^{\ast}, v^{\ast})

    for x\in\mathbb{R} , where (\underline{u}^\ast(x), \underline{v}^\ast(x)) will be given in the proof.

    Proof. We denote by (u(t), v(t)) the solution of (1.1) with

    u(0) = \|u_{0}\|_{L^{\infty}([-h_{0}, h_{0}])}\; \text{ and }\; v(0) = \|v_{0}\|_{L^{\infty}([-h_{0}, h_{0}])}.

    Applying the comparison principle gives

    (u(t, x), v(t, x))\leq(u(t), v(t)) \text{ for } t \gt 0 \text{ and } g(t)\leq x\leq h(t).

    Since \frac{cG'(0)}{ab} > 1 , \lim\limits_{t\rightarrow\infty}(u(t), v(t)) = (u^{\ast}, v^{\ast}) . Hence,

    \limsup\limits_{t\rightarrow\infty}(u(t, x), v(t, x)) \leq(u^{\ast}, v^{\ast}) \text{ uniformly for } x\in\mathbb{R}.

    By Lemma 2.7, we can find some L > l^\ast such that \lambda_0(L) < 0 , where \lambda_0(L) is the principal eigenvalue of problem (2.23) with l = L and \phi(x) is the corresponding eigenfunction. For such L , it follows from h_\infty-g_\infty = \infty that there exists T_L such that

    [-L, L]\subset[g(t), h(t)], \forall\ t\geq T_L.

    Let (\underline{u}(t, x), \underline{v}(t, x)) = \delta\left(\phi(x), \left(\frac{G'(0)}{b}+\frac{\lambda_0}{4c}\right)\phi(x)\right) , then we can choose small \delta such that

    \begin{equation*} \begin{cases} \underline{u}_{t}-d\underline{u}_{xx}+\beta \underline{u}_{x}+a\underline{u}-c\underline{v}\leq0, &t \gt T_L, \ -L \lt x \lt L, \\ \underline{v}_{t}+b\underline{v}-G(\underline{u})\leq0, &t \gt T_L, \ -L \lt x \lt L, \\ \underline{u}(t, x) = \underline{v}(t, x) = 0, &t\geq T_L, \ x = -L \text{ or } x = L, \\ \underline{u}(T_L, x)\leq u(T_L, x), \ \underline{v}(T_L, x)\leq v(T_L, x), &-L \lt x \lt -L. \end{cases} \end{equation*}

    Applying the comparison principle gives that

    (u(t, x), v(t, x))\geq\delta\left(\phi(x), \left(\frac{G'(0)}{b}+\frac{\lambda_0}{4c}\right)\phi(x)\right), \ t\geq T_L, \ -L\leq x\leq L.

    We extend \delta\left(\phi(x), \left(\frac{G'(0)}{b}+\frac{\lambda_0}{4c}\right)\phi(x)\right) to (\underline{u}^\ast(x), \underline{v}^\ast(x)) by defining

    \begin{equation*} (\underline{u}^\ast(x), \underline{v}^\ast(x)) = \begin{cases} \delta\left(\phi(x), \left(\frac{G'(0)}{b}+\frac{\lambda_0}{4c}\right) \phi(x)\right), &-L\leq x\leq L, \\ 0, &x \lt -L \text{ or } x \gt L. \end{cases} \end{equation*}

    Then we have \liminf\limits_{t\rightarrow\infty}(u(t, x), v(t, x)) \geq(\underline{u}^\ast(x), \underline{v}^\ast(x)) for x\in \mathbb R .

    In this paper, we have dealt with a partially degenerate epidemic model with free boundaries and small advection. At first, we obtain the global existence and uniqueness of the solution. Then the effect of small advection is considered. We have proved that the results is similar to that in [20,23] under the condition 0 < \beta < \beta^{\ast} . But we should explain that, for the case that \frac{cG'(0)}{ab} > 1 and \beta\geq2\sqrt{d\left(\frac{cG'(0)}{b}-a\right)} , the criteria for spreading and vanishing is hard to get by using the results of eigenvalue problem to construct the suitable upper and lower solution. We will study it in the future. When spreading occurs, the precise long-time behavior also needs a further consideration.

    In order to study the spreading of disease, the asymptotic spreading speed of the spreading fronts is one of the most important subjects. To estimate the precise asymptotic spreading speed, we need to study the corresponding semi-wave problem or some other new technique. This may be not an easy task and deserves further study. We will consider it in another paper.

    Due to the advection term, we find that the spreading barrier l^{\ast} becomes larger if we increase the size of \beta for \beta\in(0, \beta^{\ast}) . This means that if \beta\in(0, \beta^{\ast}) , the more lager the size of advection is, the more difficult the disease will spread. This result may provide us a suggestion in controlling and preventing the disease. It may be an effective measure to make the infectious agents move along a certain direction by artificial means.

    We are very grateful to the anonymous referee for careful reading and helpful comments which led to improvements of our original manuscript. The first author was supported by FRFCU (lzujbky-2017-it55) and the second author was partially supported by NSF of China (11731005, 11671180).

    The authors declare there is no conflict of interest.



    [1] Z. P. Zhao, W. D. Yang, B. Wu, Flow aggregation through dynamic routing overlaps in software defined networks, Elsevier Comput. Networks, 176 (2020), 107293. https://doi.org/10.1016/j.comnet.2020.107293 doi: 10.1016/j.comnet.2020.107293
    [2] N. W. Chang, S. Y. Hsieh, Conditional diagnosability of augmented cubes under the PMC model, IEEE Transact. Dependable Secure Comput., 9 (2011), 46–60. https://doi.org/10.1109/TDSC.2010.59 doi: 10.1109/TDSC.2010.59
    [3] F. P. Preparata, G. Metze, F. P. Chien, On the connection assignment problem of diagnosable systems, IEEE Transact. Electron. Comput., 16 (2006), 848–854.
    [4] S. Karunanithi, A. D. Friedman, Analysis of digital systems using a new measure of system diagnosis, IEEE Transact. Comput., 28 (2006), 121-133. https://doi.org/10.1109/TC.1979.1675301 doi: 10.1109/TC.1979.1675301
    [5] A. K. Somani, O. Peleg, On diagnosability of large fault sets in regular topology-based computer systems, IEEE Transact. Computers, 45 (1996), 892–903. https://doi.org/10.1109/12.536232 doi: 10.1109/12.536232
    [6] H. Zhuang, S. Zheng, X. Liu, C. K. Lin, X. Li, Reliability evaluation of generalized exchanged hypercubes based on imprecise diagnosis strategies, Parallel Process. Letters, 31 (2021), 2150005.
    [7] C. H. Tsai, A quick pessimistic diagnosis algorithm for hypercube-Like multiprocessor systems under the PMC model, IEEE Transact. Computers, 62 (2013), 259–267. https://doi.org/10.1109/TC.2011.228 doi: 10.1109/TC.2011.228
    [8] S. Zhou, L. Lin, L. Xu, D. Wang, The t/k -diagnosability of star graph networks, IEEE Transact. Comput., 64 (2015), 547–555. https://doi.org/10.1109/TC.2013.228 doi: 10.1109/TC.2013.228
    [9] D. Cheng, The pessimistic diagnosability of graphs and its applications to four kinds of interconnection networks, Int. J. Computer Math. Computer Syst. Theory, 4 (2019), 37–47. https://doi.org/10.1080/23799927.2019.1567593 doi: 10.1080/23799927.2019.1567593
    [10] L. Lin, Y. Huang, L. Xu, S. Y. Hsieh, A pessimistic fault diagnosability of large-scale connected networks via extra connectivity, IEEE Transact. Parallel Distributed Syst., 33 (2021), 415–428. https://doi.org/10.1109/TPDS.2021.3093243 doi: 10.1109/TPDS.2021.3093243
    [11] X. Li, J. Fan, C. K. Lin, X. Jia, Diagnosability evaluation of the data center network DCell, Computer J., 61 (2018), 129–143. https://doi.org/10.1093/comjnl/bxx057 doi: 10.1093/comjnl/bxx057
    [12] X. Li, J. Fan, C. K. Lin, B. Cheng, X. Jia, The extra connectivity, extra conditional diagnosability and t/k-diagnosability of the data center network DCell, Theor. Computer Sci., 766 (2019), 16–29.
    [13] H. Huang, Y. Chen, X. Liu, Z. Han, F. Xiao, t-diagnosability and conditional diagnosability of BCube networks, in IEEE 21st International Conference on High Performance Computing and Communications, (2019). https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00328
    [14] N. X. Heng, C. Z. Run, Z. Miao, A hierarchical fault diagnosis algorithm for data center networks, J. Electron., 42 (2014), 2536–2542. https://doi.org/10.3969/j.issn.0372-2112.2014.12.029 doi: 10.3969/j.issn.0372-2112.2014.12.029
    [15] T. K. Li, C. H. Tsai, A fast fault-identification algorithm for bijective connection graphs using the PMC model, Inform. Sci., 187 (2012), 291–297. https://doi.org/10.1016/j.ins.2011.10.022 doi: 10.1016/j.ins.2011.10.022
    [16] L. C. Ye, J. R. Ye, Five-round adaptive diagnosis in hamiltonian networks, IEEE Transact. Parallel Distributed Syst., 26 (2015), 2459–2464. https://doi.org/10.1109/TPDS.2014.2350480 doi: 10.1109/TPDS.2014.2350480
    [17] X. L. Sun, J X Fan, B L Cheng, Y. Wang, L. Zhang, Probabilistic fault diagnosis of clustered faults for multiprocessor systems, J. Comput. Sci. Technol., 38 (2023), 821–833.
    [18] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, S. Lu, Dcell: A scalable and Fault-tolerant network structure for data centers, SIGCOMM, (2008), 75–86.
    [19] X. Wang, A. Erickson, J. Fan, X. Jia, Hamiltonian properties of DCell networks, Comput. J., 11 (2015), 1–11. https://doi.org/10.1093/comjnl/bxv019 doi: 10.1093/comjnl/bxv019
    [20] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, et al., BCube: A high performance, server-centric network architecture for modular data centers, SIGCOMM, (2009), 63–74. https://doi.org/10.1145/1594977.1592577
    [21] C. H. Huang, J. F. Fang, The pancyclicity and the hamiltonian-connectivity of the generalized base-b hypercube, J. Supercomput., 34 (2008), 263–269.
    [22] G. J. Wang, C. K. Lin, J. X. Lin, J. Y. Lin, B. L. Lin, Fault-tolerant hamiltonicity and hamiltonian connectivity of BCube with various faulty elements, J. Comput. Sci. Technol., 35 (2020), 1064–1083.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1519) PDF downloads(38) Cited by(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog