Research article Special Issues

Developing a Deep Neural Network model for COVID-19 diagnosis based on CT scan images

  • Received: 26 May 2023 Revised: 05 July 2023 Accepted: 13 July 2023 Published: 14 August 2023
  • COVID-19 is most commonly diagnosed using a testing kit but chest X-rays and computed tomography (CT) scan images have a potential role in COVID-19 diagnosis. Currently, CT diagnosis systems based on Artificial intelligence (AI) models have been used in some countries. Previous research studies used complex neural networks, which led to difficulty in network training and high computation rates. Hence, in this study, we developed the 6-layer Deep Neural Network (DNN) model for COVID-19 diagnosis based on CT scan images. The proposed DNN model is generated to improve accurate diagnostics for classifying sick and healthy persons. Also, other classification models, such as decision trees, random forests and standard neural networks, have been investigated. One of the main contributions of this study is the use of the global feature extractor operator for feature extraction from the images. Furthermore, the 10-fold cross-validation technique is utilized for partitioning the data into training, testing and validation. During the DNN training, the model is generated without dropping out of neurons in the layers. The experimental results of the lightweight DNN model demonstrated that this model has the best accuracy of 96.71% compared to the previous classification models for COVID-19 diagnosis.

    Citation: Javad Hassannataj Joloudari, Faezeh Azizi, Issa Nodehi, Mohammad Ali Nematollahi, Fateme Kamrannejhad, Edris Hassannatajjeloudari, Roohallah Alizadehsani, Sheikh Mohammed Shariful Islam. Developing a Deep Neural Network model for COVID-19 diagnosis based on CT scan images[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 16236-16258. doi: 10.3934/mbe.2023725

    Related Papers:

    [1] Mahmoud Saleh, Endre Kovács, Nagaraja Kallur . Adaptive step size controllers based on Runge-Kutta and linear-neighbor methods for solving the non-stationary heat conduction equation. Networks and Heterogeneous Media, 2023, 18(3): 1059-1082. doi: 10.3934/nhm.2023046
    [2] Danielle Hilhorst, Hideki Murakawa . Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium. Networks and Heterogeneous Media, 2014, 9(4): 669-682. doi: 10.3934/nhm.2014.9.669
    [3] Changli Yuan, Mojdeh Delshad, Mary F. Wheeler . Modeling multiphase non-Newtonian polymer flow in IPARS parallel framework. Networks and Heterogeneous Media, 2010, 5(3): 583-602. doi: 10.3934/nhm.2010.5.583
    [4] Robert Carlson . Myopic models of population dynamics on infinite networks. Networks and Heterogeneous Media, 2014, 9(3): 477-499. doi: 10.3934/nhm.2014.9.477
    [5] Verónica Anaya, Mostafa Bendahmane, David Mora, Ricardo Ruiz Baier . On a vorticity-based formulation for reaction-diffusion-Brinkman systems. Networks and Heterogeneous Media, 2018, 13(1): 69-94. doi: 10.3934/nhm.2018004
    [6] Thomas Geert de Jong, Georg Prokert, Alef Edou Sterk . Reaction–diffusion transport into core-shell geometry: Well-posedness and stability of stationary solutions. Networks and Heterogeneous Media, 2025, 20(1): 1-14. doi: 10.3934/nhm.2025001
    [7] Steinar Evje, Aksel Hiorth, Merete V. Madland, Reidar I. Korsnes . A mathematical model relevant for weakening of chalk reservoirs due to chemical reactions. Networks and Heterogeneous Media, 2009, 4(4): 755-788. doi: 10.3934/nhm.2009.4.755
    [8] Narcisa Apreutesei, Vitaly Volpert . Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, 8(1): 23-35. doi: 10.3934/nhm.2013.8.23
    [9] Matthieu Alfaro, Thomas Giletti . Varying the direction of propagation in reaction-diffusion equations in periodic media. Networks and Heterogeneous Media, 2016, 11(3): 369-393. doi: 10.3934/nhm.2016001
    [10] Claudio Canuto, Anna Cattani . The derivation of continuum limits of neuronal networks with gap-junction couplings. Networks and Heterogeneous Media, 2014, 9(1): 111-133. doi: 10.3934/nhm.2014.9.111
  • COVID-19 is most commonly diagnosed using a testing kit but chest X-rays and computed tomography (CT) scan images have a potential role in COVID-19 diagnosis. Currently, CT diagnosis systems based on Artificial intelligence (AI) models have been used in some countries. Previous research studies used complex neural networks, which led to difficulty in network training and high computation rates. Hence, in this study, we developed the 6-layer Deep Neural Network (DNN) model for COVID-19 diagnosis based on CT scan images. The proposed DNN model is generated to improve accurate diagnostics for classifying sick and healthy persons. Also, other classification models, such as decision trees, random forests and standard neural networks, have been investigated. One of the main contributions of this study is the use of the global feature extractor operator for feature extraction from the images. Furthermore, the 10-fold cross-validation technique is utilized for partitioning the data into training, testing and validation. During the DNN training, the model is generated without dropping out of neurons in the layers. The experimental results of the lightweight DNN model demonstrated that this model has the best accuracy of 96.71% compared to the previous classification models for COVID-19 diagnosis.



    Reaction-diffusion phenomena is ubiquitous occurring mostly in different fields of science and engineering in which the system components interact [1,2,3,4,5]. They are used to describe population growth, propagation of travelling waves, pattern formation, other intriguing phenomena arising in combustion theory, tumor invasion, and neural networks spanning across various temporal and spatial scales [6,7,8,9]. Mathematically, the reaction-diffusion model is a parabolic partial differential equation (PDE) involving terms which denote diffusion and local reaction kinetics as given below:

    tYD2Y=Q(Y), (1.1)

    where the first term on the left side represents the temporal part, the second term represents the diffusion component, and the term on the right side of equation denotes the local reaction kinetics. For the choice of Q(Y)=Y(1Y), the resultant model is Fisher's equation that can be used to describe population evolution and how the wave propagates in certain medium [10]. If Q(Y)=Y(1Y2), the reaction-diffusion is called Newell-Whitehead-Segel (NWS) equation which is primarily used to describe convection phenomena in fluid thermodynamics [11]. Zeldovich-Frank-Kamenetskii equation (ZFK) is obtained for the choice of Q(Y)=Y(1Y)eβ(1Y). In combustion theory, the ZFK equation is used to describe how flames propagate [12].

    In theoretical neuroscience, the most well-studied reaction diffusion equation is the FitzHugh-Nagumo (FHN) model [13,14]. The FHN model is the simplification of the Hodgkin-Huxley model for the action potentials in squid giant axon [15,16,17]. Although FHN is not phenomenological (the involved parameters are not biophysical), it is a good candidate for studying how an action potential is generated and propagated. The main advantage of the FHN is that the solution space is two-dimensional and hence geometrical phase plane tools can be utilized to show how the trajectory evolves, which gives rise to the excitability and spike mechanism of spike generation. In the phase plane diagram of the FHN neuronal model, one of the nullclines has cubic nonlinearity. Over the last few decades, due to its model simplicity, FHN gained a lot of attention in the scientific community. Besides the generation and propagation of a train of spikes, FHN is also used to explained the dynamics of various physical systems in several fields of science, typically in the propagation of flame, Brownian motion process, autocatalytic chemical reaction, growth of logistic population, and neurophysiology [18,19].

    Consider the following scaler reaction diffusion model with constant coefficients:

    tYξξY=Y(1Y)(Yη), (1.2)

    where η is a known real number and Y(ξ,t) is an unknown function to be determined. In this equation, the local reaction kinetics is denoted by the cubic function Y(1Y)(Yη). For η=1, Eq (1.2) reduces to the NWS equation.

    In literature, various analytical and numerical strategies have been used to solve FHN-type equation. Shih et al. [20] used approximate conditional Lie point symmetry method for the numerical solution of the perturbed FHN-type equations. Mehta et al. [21] solved such nonlinear time dependent problems by using a novel block method coupled with compact finite difference schemes. In the perturbed model, the term ϵY has been added to the cubic term and for ϵ=0, the problem reduces to an unperturbed FHN-type model. Li and Guo implemented an integral approach for the exact solution of FHN-type equations [22]. Abbasbandy proposed a homotopy analysis method (HAM) to calculate a solitary-type solution of the nonlinear FHN-type model [23]. Kawahara and Tanaka derived the exact solution for the interaction of traveling fronts [24]. Gorder and Vajravelua obtained exact solutions for FHN-type equations and Nagumo telegraph equation using a variational method for fixed initial conditions in order to control the error [25]. Ali et al. proposed a Galerkin finite element method for the numerical solutions of FHN-type equation[26]. Mehran and Sadegh used a non-conventional finite difference scheme for the numerical solutions of FHN-type equations [27]. Gorder implemented HAM for the approximate solutions of FHN-type reaction diffusion equations [28].

    Reaction-diffusion of FHN-type equations discusses previously involved constant coefficients. However, in general, time-dependent coefficients and dispersion-reaction terms involved in such models are more realistic physically [29,30,31]. Due to variation in problem geometry and taking into account the factor of heterogeneity in the propagating medium, FHN-type models with time-dependent coefficients are quite sophisticated to study.

    The main goal of this work is to demonstrate the numerical solutions of the generalized FitzHugh Nagumo (GFHN) equation with a linear dispersion term and time-dependent coefficients, which are given below:

    tY+α(t)ξYϑ(t)ξξYδ(t)Y(1Y)(Yη)=0,(ξ,t)[a,b]×[0,t], (1.3)

    where α(t), ϑ(t), and δ(t) are time-dependent coefficients. The associated initial condition is:

    Y(ξ,0)=ψ0(ξ),ξ[a,b], (1.4)

    and the boundary conditions are:

    Y(a,t)=ψa(t),Y(b,t)=ψb(t),t0, (1.5)

    where ψ0(ξ),ψa(t), and ψb(t) are the known functions.

    In recent literature, various authors computed the numerical solutions of GFHN equation with time-dependent coefficients. For instance, tanh and the Jacobi Gauss Lobatto collocation technique [18,29], the polynomial differential quadrature method [32], and the mixed-types discontinuous Galerkin method [33,34] were used.

    Recently, wavelet numerical procedures attracted different researchers in various scientific communities because of their good properties and easy implementation. Some interesting aspects of wavelet methods include, compact support, localization in time and space, and multi-resistant analysis. Among different families of wavelet, Haar wavelet (HW) is simple and popular. The importance of the HW has been explored in various articles: Lepik proposed HW-based methods for different problems [35], Jiwari [36] utilized the HW method for the solution of Burger's equation, Kumar and Pandit [37] solved coupled Burger's equations using the HW method, Shiralashetti et al. [38] used the HW scheme for the numerical solutions of the initial valued problems. For further analysis of the HW, interested readers are referred to [39,40,41]. The remaining parts of the paper are presented in the following pattern:

    ● The underlying motivation and preliminaries are given in Sections 2 and 3, respectively.

    ● The proposed methodology is presented in Section 4.

    ● Numerical results and stability are reported in Sections 5 and 6.

    ● Finally, conclusions are drawn in Section 7.

    The analytical solution of the time-dependent coefficients partial differential equations is quite complicated to compute. Therefore, numerical treatment is an alternative and an efficient way to cope with this issue. According to our analysis, the method of lines using the HW is not proposed for FHN-type models. In this work, we propose an HW-based method of lines for the solutions of FHN-type equations. The theoretical stability and its numerical verification will also be a part of this work.

    Here, we address some basic results. Consider an arbitrary interval [a,b) and divide it into 2L equal subintervals of length ξ=ba2L, where L=2J represents the maximum level of resolution. Define the dilation and translational parameters as j=0,1,...,J, K=0,1,...,l1, where l=2j, respectively. Using the dilation and translational parameters, define the wavelet number ι=l+K+1. Now the first and ι-th HW are given below [35]:

    h1(ξ)={1,ξ[a,b),0,elsewhere. (3.1)
    hι(ξ)={1,ξ[ζ1(ι),ζ2(ι)),1,ξ[ζ2(ι),ζ3(ι)),0,elsewhere, (3.2)

    where ζ1(ι)=a+2Kωξ, ζ1(ι)=a+(2K+1)ωδξ, ζ3(ι)=a+2(K+1)ωξ, and ω=Ll.

    In our analysis, we will use the following integrals:

    βι,α(ξ)=ξaξa,...,ξahι(z)dzα=1(α1)!ξa(ξz)α1hι(z)dz, (3.3)

    where α=1,2,3,...,n and ι=1,2,3,...,2L. Analytically, the evaluation of these integrals for Eqs (3.1) and (3.2) are given below:

    β1,α(ξ)=(ξa)αα!, (3.4)
    βι,α(ξ)={0,ξ<ζ1(ι),1α![ξζ1(ι)]α,ξ[ζ1(ι),ζ2(ι)],1α![(ξζ1(ι))α2(ξζ2(ι))α],ξ[ζ2(ι),ζ3(ι)],1α![(ξζ1(ι))α2(ξζ2(ι))α+(ξζ3(ι))α],ξ>ζ3(ι).  (3.5)

    In this section, the proposed method is described in detail. Here, an integral approach is utilized, therefore, the greatest order spatial derivative in Eq (1.3) can be approximated via the HW series as:

    ξξY(ξ,t)=2Lι=1λι(t)hι(ξ), (4.1)

    where λι(t) denotes the unknown HW coefficients and hι(ξ) are HW basis. From Eq (4.1), we deduce the following equations via twice integration:

    ξY(ξ,t)=2Lι=1λι(t)β1,ι(ξ)+ξY(ξ,t)|ξ=a, (4.2)
    Y(ξ,t)=2Lι=1λιβ2,ι(ξ)+(ξa)ξY(ξ,t)|ξ=a+Y(ξ,t)|ξ=a. (4.3)

    The evaluation of Eq (4.3) at ξ=b gives:

    ξY(a,t)=ψb(t)ψa(t)ba1ba2Lι=1λι(t)β2,ι(b). (4.4)

    Plugging ξY(a,t) in Eqs (4.2) and (4.3), we get:

    ξY(ξ,t)=2Lι=1λι(t)[β1,ι(ξ)1(ba)β2,ι(b)]+1(ba)(ψb(t)ψa(t)), (4.5)
    Y(ξ,t)=2Lι=1λι(t)[β2,ι(ξ)(ξa)(ba)β2,ι(b)]+(ξa)(ba)ψb(t)+(bξ)(ba)ψa(t). (4.6)

    Now, the corresponding matrix form of Eqs (4.1)–(4.5), and (4.6) by using ξξm are:

    ξξY(ξ,t)=H(ξm)λ(t), (4.7)
    ξY(ξ,t)=M1(ξm)λ(t)+M2(t), (4.8)
    Y(ξ,t)=N1(ξm)λ(t)+N2(t), (4.9)

    where

    M1(ξm)=2Lι=1[β1,ι(ξm)1(ba)β2,ι(b)],M2(t)=1(ba)(ψb(t)ψa(t)),
    N1(ξm)=[β2,ι(ξm)(ξma)(ba)β2,ι(b)],N2(t)=(ξma)(ba)ψb(t)+(bξm)(ba)ψa(t).

    From Eqs (4.7)–(4.9) and (1.3), the following equation can be obtained:

    dYm(t)dt=α(t)(M1(ξm)λ(t)M2(t))+ϑ(t)H(ξm))+δ(t)[(N1(ξm)λ(t)+N2(t))(1(N1(ξm)λ(t)+N2(t)))((N1(ξm)λ(t)+N2(t))η)],ξ[a,b],t>0, (4.10)

    where "*" represents an element wise product. In a more compact form, Eq (4.10) can be written as:

    dYdt=F(t,Y),Y(0)=ψ0, (4.11)

    where F(t,Y)=ϑ(t)(hλ(t))α(t)(M1λ(t)+M2(t))-δ(t)[(N1λ(t)+N2(t))(1(N1λ(t)+N2(t)))((N1λ(t)+N2(t))η)].

    Here, Eq (4.11) represents the system of first-order ordinary differential equations, which can be solved via the RK-4 scheme discussed in a later section.

    To obtain the solutions of Eq (4.11), we use the following RK-4 scheme:

    K1=F(tm,Ym),K2=F(tm+t2,Ym+K12),K3=F(tm+t2,Ym+K22),K4=F(tm+t,Y+K3).Ym+1=Ym+t6(K1+2(K2+K3)+K4),m0, (4.12)

    where t is the time step size.

    In this section, numerical solutions of GFHN with constant and time-dependent coefficient are listed. The efficiency of the proposed scheme is checked by applying different error measures, namely: L2, L, and Lrms as described below:

    L2=YEYN2δξ2Lι=1YEιYNι2, (5.1)
    L=YEYNmaxYEιYNι, (5.2)
    Lrms=2Lι=1(YEYN2L)2. (5.3)

    Here, we consider Eq (1.2) with constant coefficients and various choices of the exact solutions:

    case(i):Y(ξ,t)=12+12tanh[122(ξ2η12t)],case(ii):Y(ξ,t)=12(1+α)+12(1α)tanh[(1α)22ξ+(1α2)22t],case(iii):Y(ξ,t)=11+exp[ξ+(2(12η))t2],case(iv):Y(ξ,t)=[12][1coth(ξ22+2η14t+π4)].

    The associated initial and boundary conditions for all cases are used from the exact solutions. Simulations are done in different spatial domains to test the technique, and a comparison is made with the previously published work. The spatial domains used for case (i) are [0,1] and [10,10], for case (ii) is [22,22], for case (iii) are [0,1] and [10,10], while for case (iv) is the interval [10,10]. The obtained results of case (i) in [10,10] with different values of η are given in Tables 13, while the outcomes in the interval [0,1] with various values of η are given in Table 4.

    Table 1.  Outcomes of problem 1 for case (i) with η=0.75.
    Present (t=0.0001) Present (t=0.001) Present (t=0.1)
    t L Lrms CPU time (Seconds) L Lrms CPU time (Seconds) L Lrms CPU time (Seconds)
    0.2 6.387×106 1.844×107 6.240240 1.203×105 1.782×106 2.195968 8.339×104 1.835×104 1.624090
    0.5 1.414×105 4.959×107 8.821217 2.809×105 4.515×106 2.954488 2.027×103 4.626×104 1.805044
    1.0 2.419×105 1.124×106 13.053880 5.211×105 9.234×106 3.111479 3.917×103 9.362×104 1.839039
    1.5 3.230×105 1.899×106 18.199838 7.429×105 1.415×105 5.149131 5.822×103 1.418×103 1.942381
    2.0 3.926×105 2.816×106 23.565382 9.548×105 1.924×105 4.562245 7.718×103 1.906×103 1.919129
    5.0 7.276×105 1.0461×105 54.294368 2.174×104 5.217×105 8.126805 1.840×102 4.896×103 2.256312
    [42] (t=0.0001) [32] (t=0.001) [43] (t=0.1)
    t L Lrms L Lrms L Lrms
    0.2 1.889×105 2.196×107 4.741×105 1.588×105 1.887×105 7.455×106
    0.5 4.155×105 1.569×106 1.231×104 3.843×105 4.151×105 1.641×105
    1.0 6.989×105 7.144×106 2.626×104 8.187×105 6.973×105 2.743×105
    1.5 9.168×105 1.726×105 4.209×104 1.338×104 9.118×105 3.534×105
    2.0 1.096×104 3.185×105 5.999×103 1.943×104 1.085×104 4.128×105
    5.0 1.896×104 1.880×104 2.305×103 7.863×104 1.800×104 6.134×105

     | Show Table
    DownLoad: CSV
    Table 2.  Outcomes of problem 1 for case (i) with η=1.
    t=0.1 t=0.5 t=1.0
    ξ Exact Numerical Error Exact Numerical Error Exact Numerical Error
    Present
    -10 1.013383×103 1.013382×103 8.713×1010 1.844968×103 1.844963×103 4.687×109 3.897765×103 3.897749×103 1.573×108
    -7 8.209472×103 8.209430×103 4.275×108 1.485835×102 1.485800×102 3.444×107 3.094160×102 3.094052×102 1.078×106
    -3 1.216556×101 1.216557×101 1.920×107 2.015162×101 2.015188×101 2.553×106 3.482263×101 3.482340×101 7.646×106
    0 5.305565×101 5.305566×101 1.619×107 6.731305×101 6.731300×101 5.918×107 8.134186×101 8.134174×101 1.247×106
    3 9.069410×101 9.069410×101 2.120×107 9.466898×101 9.466899×101 1.552×107 9.740892×101 9.740895×101 3.233×107
    7 9.939053×101 9.939053×101 3.713×108 9.966459×101 9.966460×101 1.017×107 9.984128×101 9.984129×101 9.444×108
    10 9.992490×101 9.992490×101 7.370×1010 9.995877×101 9.995877×101 1.214×109 9.998052×101 9.998052×101 9.589×1010
    [33]
    -10 0.123172E×102 0.123147×102 2.974×106 0.273123×102 0.273299×102 1.086×106 0.639709×102 0.639771×102 4.544×106
    -7 0.799954×102 0.800058×102 1.005×106 0.149620×101 0.149662×101 1.086×106 0.639709×102 0.639771×102 4.544×106
    -3 0.122814×10+0 0.122808×10+0 1.352×106 0.198331×10+0 0.198340×10+0 2.984×106 0.351539×10+0 0.351533×10+0 9.543×103
    0 0.537579×10+0 0.537585×10+0 1.550×106 0.680017×10+0 0.680007×10+0 8.287×106 0.819036×10+0 0.819048×10+0 4.715×106
    3 0.909059×10+0 0.909004×10+0 2.442×106 0.9487161×10+0 0.948717×10+0 9.415×106 0.975932×10+0 0.975967×10+0 3.343×106
    7 0.994343×10+0 0.994331×10+0 2.683×106 0.997526×10+0 0.997569×10+0 9.821×107 0.999603×10+0 0.999694×10+0 1.900×106
    10 0.999376×10+0 0.999372×10+0 9.138×107 0.9999983×10+0 0.100002×10+1 7.363×107 0.999998×10+0 0.100001×10+1 1.930×107

     | Show Table
    DownLoad: CSV
    Table 3.  Solutions of problem 1 for case (i) with η=2.
    t=0.1 t=0.5 t=1.0
    ξ Exact Numerical Error Exact Numerical Error Exact Numerical Error
    -10 1.119842×103 1.119841×103 9.172×1010 3.038202×103 3.038195×103 7.248×109 1.052473×102 1.052469×102 3.677×108
    -7 9.065044×103 9.064999×103 4.448×108 2.426341×102 2.426292×102 4.832×107 7.986202×102 7.986054×102 1.479×106
    -3 1.327517×101 1.327520×101 2.791×107 2.938320×101 2.938363×101 4.239×106 5.922212×101 9.922280×101 6.850×106
    0 5.553666×101 5.553666×101 2.417×107 7.724818×101 7.724813×101 4.934×107 9.221826×101 9.221826×101 3.423×108
    3 9.150444×101 9.150445×101 4.741×108 9.669729×101 9.669732×101 2.824×107 9.903092×101 9.903095×101 2.634×107
    7 9.944820×101 9.944821×101 3.521×108 9.979629×101 9.979630×101 6.559×108 9.994155×101 9.994155×101 3.733×108
    10 9.993204×101 9.993204×101 6.943×1010 9.997499×101 9.997477×101 7.674×1010 9.999283×101 9.999283×101 3.684×1010

     | Show Table
    DownLoad: CSV
    Table 4.  L norm of problem 1 for case (i) with various values of η.
    η=0.25 η=0.5 η=0.75
    t Present [44] Present [44] Present [44]
    0.01 4×109 5×108 7×1011 5×108 4×1010 5×108
    0.1 3×108 3×107 4×109 3×107 3×108 3×107
    1.0 1×107 1×106 6×109 5×107 1×107 1×106
    L2
    η=0.25 η=0.5 η=0.75
    t Present [44] Present [44] Present [44]
    0.01 5×108 5×108 8×1010 5×108 5×109 5×108
    0.1 4×107 3×107 4×108 3×107 4×107 3×107
    1.0 2×106 1×106 7×108 5×107 2×107 9×107

     | Show Table
    DownLoad: CSV

    In these tables, the obtained solutions are compared with the existing results in the literature [32,42,43,44]. Through comparison, it is obvious that the present technique shows better performance than the cited work [32,42,44]. The present method is based on RK-4 which gives good results using a small step size.

    In Table 5, the computed values of the constants K1,K2,K3,andK4, for η = 0.75, t = 0.001, and L = 2 in the spatial domain [10,10] at distinct time levels are reported.

    Table 5.  The coefficients values K1,K2,K3,andK4 of problem 1 for case (i) with η=0.75, t=0.001, and L=2.
    t K1 K2 K3 K4 Exact solution Approximate Solution
    0.1 0.000550127435708 0.000550134504350 -0.000550134504441 0.000550141573170 0.002000842010538 0.001998228498937
    0.003944143032133 0.003944200185466 -0.003944200186294 0.003944257340322 0.011607626920875 0.011488174877494
    0.013201078042744 0.013201383972046 -0.013201383979136 0.013201689914171 0.064365301508760 0.064570374111189
    0.051365677465119 0.051368265656579 -0.051368265786992 0.051370854097156 0.287228366819168 0.287197745055223
    0.051813540724938 0.051816722723024 -0.051816722918439 0.051819905116762 0.702427327811607 0.702470418192179
    0.017916749446516 0.017917560559869 -0.017917560596589 0.017918371748347 0.932557185568827 0.932334691176706
    0.001827678052741 0.001827749308296 -0.001827749311074 0.001827820569427 0.987804495301507 0.987929599908556
    0.000469739827336 0.000469757565601 -0.000469757566270 0.000469775305206 0.997896788384635 0.997899530906305
    0.5 0.000577059786102 0.000577067177572 -0.000577067177666 0.000577074569228 0.001810781501093 0.001767463721627
    0.003051640090534 0.003051683586188 -0.003051683586808 0.003051727083001 0.010514629756167 0.010105627339338
    0.013080724367551 0.013081016714371 -0.013081016720905 0.013081309072915 0.058599062346241 0.059295267046785
    0.048329726367191 0.048332073109897 -0.048332073223848 0.048334420069440 0.267198413052228 0.267262778290452
    0.053763565954023 0.053766904699846 -0.053766904907184 0.053770243864621 0.681111275379947 0.681347627307882
    0.019155289006543 0.019156170889244 -0.019156170929845 0.019157052855031 0.925989123684090 0.924926841938356
    0.002566491484946 0.002566591819423 -0.002566591823345 0.002566692161784 0.986539147932092 0.987046273168589
    0.000386965519072 0.000386980139663 -0.000386980140215 0.000386994761360 0.997676105725876 0.997732428060447
    1.0 0.000492580802813 0.000492587089040 -0.000492587089121 -0.000492593375426 0.001598349150613 0.001497994290761
    0.002423286399790 0.002423320374624 -0.002423320375100 -0.002423354350360 0.009290606750817 0.008752036768966
    0.012362148938809 0.012362412752656 -0.012362412758286 0.012362676576548 0.052072036738247 0.052916126005743
    0.044718979445185 0.044721048624543 -0.044721048720285 0.044723117985214 0.243445131323980 0.244007643848355
    0.055982628284796 0.055986143692980 -0.055986143913729 0.055989659546008 0.653369506436006 0.653900188317205
    0.020946593575349 0.020947579113019 -0.020947579159389 0.020948564745616 0.916953070453016 0.914910265106938
    0.003363560269563 0.003363692368992 -0.003363692374180 0.003363824478866 0.984774145473912 0.985560005959086
    0.000411345006904 0.000411360558612 -0.000411360559200 0.000411376111496 0.997367497354861 0.997536946415740

     | Show Table
    DownLoad: CSV

    In Figure 1, numerical and exact solutions are plotted for various values of η for case (i) while in Figure 2, the absolute error at distinct points are plotted with various time levels. Similar simulations are obtained for case (ii) and its absolute error at distinct points are compared with the existing results [33,45,46] in Table 6, which show the superiority of the method.

    Figure 1.  Exact and numerical measures of problem 1 for case (i). The arrow shows the direction of the travelling wave.
    Figure 2.  Absolute error of problem 1 case (i) at different time levels for η=1 (on the left) and for η=4 (on the right).
    Table 6.  Solutions comparison of problem 1 case (ii) via absolute error with η=0.2.
    t=0.001 t=0.002 t=0.003
    ξ [45] [46] [33] Present [45] [46] [33] Present [45] [46] [33] Present
    -22 1.680×107 1.367×107 1.435×107 2.139×1010 3.362×107 2.888×107 2.955×107 3.158×1010 5.045×107 4.561×107 4.097×107 3.955×1010
    -6 5.184×106 4.611×106 4.844×107 4.987×106 1.037×105 9.740×106 9.990×106 9.980×106 1.556×105 1.538×105 1.567×105 1.497×105
    2 2.956×105 2.669×105 2.751×105 2.924×105 5.915×105 5.633×105 5.811×105 5.847×105 8.876×105 8.875×105 8.620×105 8.768×105
    10 1.073×106 9.152×107 1.006×107 5.511×107 2.146×106 1.931×106 2.011×106 1.101×106 3.218×106 3.047×106 4.992×106 1.651×106
    18 5.458×107 4.272×107 5.130×107 6.036×109 1.091×106 9.016×107 9.215×107 1.206×108 1.636×106 1.423×106 1.610×106 1.808×108

     | Show Table
    DownLoad: CSV

    In Figures 3 and 4, the solutions profiles are shown for different values of η in the form two- and three- dimensions plots, respectively, for the same case. Both figures reveal the mutual agreement of exact and numerical solutions.

    Figure 3.  Exact and numerical measures of problem 1 case (ii) for different values of η at t = 0.01 (on the left) and at t = 0.3 (on the right).
    Figure 4.  Three dimensional plots of exact and numerical solutions of problem 1 case (ii) for different values of η at t = 0.01.

    The obtained results of case (iii) and those available in [44] are given in Tables 7 and 8, where the small error norm shows the high quality of the scheme. The computed norms of case (iv) are listed in Table 9.

    Table 7.  L norm problem 1 for case (iii) with various values of t.
    t=104 t=105
    t Present [44] Present [44]
    0.01 4×108 2×107 6×109 2×107
    0.1 3×107 9×107 4×108 9×107
    10.0 9×108 3×107 7×109 3×107
    L2
    t=104 t=105
    t Present [44] Present [44]
    0.01 2×107 1×107 3×108 1×107
    0.1 1×106 6×107 2×107 6×107
    10.0 3×107 2×107 4×108 2×107

     | Show Table
    DownLoad: CSV
    Table 8.  Outcome of problem 1 for case (iii).
    η=1 η=0.75 η=4
    t L L2 Lrms L L2 Lrms L L2 Lrms
    0.1 9.677×107 4.969×106 5.559×108 7.961×107 4.699×106 9.270×109 3.662×106 1.361×105 1.464×107
    0.2 1.890×106 9.619×106 1.166×107 1.514×1076 8.965×106 1.950×108 7.200×106 2.596×105 3.349×107
    0.3 2.773×106 1.399×105 1.834×107 2.168×106 1.286×105 3.081×108 1.042×106 3.687×105 5.497×107
    0.4 3.617×106 1.814×105 2.555×107 2.771×106 1.643×105 4.330×108 1.320×105 4.624×105 7.665×107
    0.5 4.424×106 2.208×105 3.325×107 3.326×106 1.973×105 5.702×108 1.544×105 5.399×105 9.573×107
    1.0 7.881×106 3.949×105 7.631×107 5.641×106 3.310×105 1.460×107 1.650×105 6.607×105 9.066×107
    1.5 1.031×105 5.316×105 1.186×107 7.452×106 4.300×105 2.707×107 8.097×106 2.564×105 1.411×107
    2.0 1.168×105 6.187×105 1.525×106 8.979×106 5.088×105 4.305×107 5.428×106 1.746×105 3.026×107

     | Show Table
    DownLoad: CSV
    Table 9.  Outcome of problem 1 for case (iv).
    η=1 η=1 η=0.75
    t L L L2 Lrms L L2 Lrms L L2 Lrms
    0.01 1 2.145×104 2.173×104 6.515×105 2.022×104 2.049×104 6.193×105 2.307×104 2.064×104 6.232×105
    3 3.599×105 5.573×105 9.275×106 3.319×105 5.171×105 8.652×106 3.352×105 5.219×105 8.727×106
    5 2.625×106 8.187×106 6.643×107 2.234×106 7.016×106 5.751×107 2.281×106 7.155×106 5.857×107
    7 3.131×107 1.946×106 7.687×108 9.539×108 5.991×107 2.520×108 1.209×107 7.573×107 3.128×108
    0.1 1 2.132×103 2.288×103 8.423×104 1.142×103 1.270×103 4.984×104 1.228×103 1.359×103 5.304×104
    3 2.519×104 5.146×104 9.770×105 1.177×104 2.562×104 5.065×105 1.284×104 2.774×104 5.461×105
    5 1.753×105 7.158×105 6.734×106 7.536×106 3.263×105 3.211×106 8.298×106 3.571×105 3.497×106
    7 2.065×106 1.679×105 7.777×107 3.194×107 2.818×106 1.422×107 4.636×107 3.783×106 1.870×107
    0.2 1 5.512×103 6.009×103 2.238×103 1.147×103 1.763×103 7.469×104 1.693×103 2.009×103 8.449×104
    3 6.614×104 1.396×103 2.723×104 1.335×104 3.243×104 6.846×105 1.565×104 3.765×104 7.901×105
    5 4.613×105 1.948×104 1.887×105 8.413×106 4.091×105 4.311×106 9.990×106 4.802×105 5.027×106
    7 5.276×106 4.482×105 2.163×106 3.610×107 3.597×106 1.931×107 5.271×107 5.111×106 2.695×107
    0.3 1 1.295×102 1.394×102 4.660×103 1.537×103 1.926×103 8.404×104 1.886×103 2.331×103 1.008×103
    3 1.796×103 3.661×103 6.980×104 1.295×104 3.375×104 7.358×105 1.636×104 4.182×104 9.059×105
    5 1.306×104 5.218×104 4.930×105 8.177×106 4.242×105 4.621×106 1.040×105 5.313×105 5.748×106
    7 1.400×105 1.144×104 5.458×106 3.564×107 3.791×106 2.094×107 5.505×107 5.677×106 3.088×107
    0.4 1 3.446×102 3.905×102 7.273×103 1.487×103 1.917×103 8.488×104 1.941×103 2.461×103 1.080×103
    3 7.093×103 1.220×102 2.140×103 1.211×104 3.264×104 7.239×105 1.616×104 4.305×104 9.485×105
    5 5.414×104 1.867×103 1.605×104 7.588×106 4.095×105 4.540×106 1.029×105 5.458×105 6.009×106
    7 5.169×105 3.698×104 1.635×105 3.368×107 3.721×106 2.085×107 5.465×107 5.851×106 3.236×107
    0.5 1 1.921×101 2.391×101 5.616×101 1.386×103 1.821×103 8.130×104 1.921×103 2.477×103 1.095×103
    3 6.222×102 7.995×102 1.088×102 1.103×104 3.042×104 6.809×105 1.570×104 4.261×104 9.479×105
    5 7.028×103 1.727×102 1.144×103 6.897×106 3.813×105 4.268×106 9.935×106 5.395×105 5.999×106
    7 5.741×104 2.903×103 9.948×105 3.121×107 3.525×106 1.990×107 5.295×107 5.804×106 3.139×107

     | Show Table
    DownLoad: CSV

    From this table, an obvious relation between the resolution level and accuracy is observed, which predicts when resolution increases the accuracy also increases. Similarly, one can see that when time increases, the accuracy reduces due to round-off errors.

    Graphically, the solutions for case (iii) are displayed in Figures 5 and 6, respectively. Likewise, solutions for case (iv) are presented in Figures 7 and 8. In both cases, the numerical and exact solutions show good agreement. From all tabulated and graphical solutions, we conclude that the presented scheme is quite suitable for solving constant coefficient FHN models.

    Figure 5.  Exact and numerical measures of problem 1 for case (iii), η=1 on the left and η=4 on the right. The arrow shows the direction of the travelling wave.
    Figure 6.  Three dimensional plots of exact and numerical solutions of problem 1 for case (iii) at different values of η at t = 0.5.
    Figure 7.  Exact and numerical measures of problem 1 case (iv) for η=1 on the left and for η=1 on the left. The arrow shows the direction of the travelling wave.
    Figure 8.  Three dimensional plots of exact and numerical solutions of problem 1 case (iv) for different values of η at t=0.5.

    Here, we considered Eq (1.3) with α(t)=cos(t)=ϑ(t) and δ(t)=2cos(t). The associated exact solution is given by:

    Y(ξ,t)=η2+η2tanh[η2(ξ(3η)sin(t))]. (5.4)

    The corresponding initial and boundary conditions are used from the given solution. This problem is solved in the spatial domain [10,10] for comparison purposes. The numerical experiments are conducted with different values of η at time. The extracted findings are reported and matched with the existing results [32,33] in Table 10. The table demonstrates noticeable accuracy versus the cited work.

    Table 10.  Outcome of problem 2 for η=0.75.
    L L2 Lrms
    t Present [32] [33] Present [32] [33] Present [32] [33]
    0.2 5.325×107 1.235×105 1.122×105 3.626×106 1.312×106 7.154×106 1.124×108 4.567×105 ....
    0.5 1.203×106 5.198×104 7.584×105 8.234×106 6.099×106 7.489×106 6.344×108 5.642×105 ....
    1.0 2.158×106 6.328×104 9.127×105 1.521×105 2.121×105 8.689×105 2.164×107 8.167×105 ....
    1.5 2.996×106 8.538×104 9.242×105 2.213×105 3.234×105 7.027×105 4.160×107 2.368×104 ....

     | Show Table
    DownLoad: CSV

    Moreover, the exact and numerical solutions at different time levels are presented graphically in Figure 9 for mutual comparison. The solution comparison is also illustrated in the form of surfaces in Figure 10 for different values of η. In Figure 11, solutions are shown for different values of η which discloses the travelling front as η increases. The corresponding error at different time levels are pictured in Figure 12. Again, it is evident that the scheme produces pretty good results for time-dependent variable coefficient problems.

    Figure 9.  Exact and numerical measures of problem 2: (η=0.5) on the left and (η=0.75) on the right.
    Figure 10.  Exact and numerical solutions of problem 2 for different values of η at t=0.1.
    Figure 11.  Exact and numerical measures of problem 2 for different values of η left (t=0.1), right (t = 0.5).
    Figure 12.  Absolute error norm for different values of η at t=0.5 on the left and for η=0.75 at different time levels on the right for problem 2.

    Here, we discuss the stability of the present scheme computationally. Consider the aforementioned model as:

    tY=g(Y,ξY,ξξY), (6.1)

    with the associated initial and boundary conditions. Discretization of Eq (6.1) in space by the truncated Haar wavelet series gives rise to the ordinary differential equations system in a time grid as:

    ddt[Y]=[Θ][Y]+Ξ, (6.2)

    where [Y] describes the vector of unknowns, Θ is the coefficient matrix, and Ξ is a vector comprised of a nonhomogeneous part and boundary conditions. The stability of Eq (6.2) based on the coefficient matrix Θ which is as defined as follows:

    (a) For a constant coefficient: Θ=H+(diag(Y(t)))(1β2)(β2η),

    (b) For a time-dependent coefficient: Θ=ϑ(t)Hα(t)β1δ(t)(diag(Y(t)))(1β2)(β2η), where denotes the element-wise product. To discuss the stability of the proposed method, we debate on the eigenvalues of Θ. Let λi be the eigenvalues of Θ and t the time step size. As t, the stable solution Y needs to satisfy the following conditions:

    ● For real eigenvalues: 2.78<tλι<0,

    ● For imaginary eigenvalues: 22<tλι<22,

    ● For complex eigenvalues: tλι lies in the stability region addressed in [47,48].

    As stated in [48], if the eigenvalues are complex, the Re(tλι) may be a small positive number. For different problems the eigenvalues are calculated and plotted in Figures 1315, which show that the eigenvalues lie in the stable region. So, the method is stable and condition 3 is fulfilled. In Figures, the values of Re(tλι) are small, which is shown by the value of 103.

    Figure 13.  A scattering of eigenvalues of the jacobian matrix of problem 1 case (i) for η=1 (on the left) and for η=0.75 (on the right) at t=0.1.
    Figure 14.  A scattering of eigenvalues of the jacobian matrix of problem 1 case (iv) for η=1 (on the left) and for η = 4 (on the right) at t=0.1.
    Figure 15.  A scattering of eigenvalues of the jacobian matrix of problem 2 for η=0.5 (on the left) and for η=0.75 (on the right) at t=0.1.

    In this work, the Haar wavelet method of lines is implemented for the numerical solutions of the FHN reaction diffusion model with constant and time-dependent coefficients. The collocation procedure has been adopted in Haar wavelet basis for the estimation of the derivatives and solution. In this way, the nonlinear FHN models has been transformed to the initial value problems. Thereafter, the initial value problems have been solved with RK-4 scheme. The resultant outcomes have been matched with some existing literature work. Moreover, the stability of the scheme has been verified computationally. It has been noticed that the proposed numerical strategy is a good tool to estimate the solutions of the FHN models with constant and time-dependent coefficients.

    Aslam Khan: Software, writing original draft preparation; Abdul Ghafoor: Supervision, conceptualization, methodology; Emek Khan: reviewing original draft; Kamal Shah: formal analysis, Funding acquisition; Thabet Abdeljawad: validation, project administration.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors would like to thank Prince Sultan University for paying the APC and for their support through the TAS research lab.

    The authors declare there is no conflict of interest.



    [1] F. Khozeimeh, D. Sharifrazi, N. H. Izadi, J. Hassannataj Joloudari, A. Shoeibi, R. Alizadehsani, et al., Combining a convolutional neural network with autoencoders to predict the survival chance of COVID-19 patients, Sci. Rep., 11 (2021), 1–18. https://doi.org/10.1038/s41598-021-93543-8 doi: 10.1038/s41598-021-93543-8
    [2] S. U. Kumar, D. T. Kumar, B. P. Christopher, C. Doss, The rise and impact of COVID-19 in India, Front. Med., 7 (2020), 250. https://doi.org/10.3389/fmed.2020.00250 doi: 10.3389/fmed.2020.00250
    [3] A. Guihur, M. E. Rebeaud, B. Fauvet, S. Tiwari, Y. G. Weiss, P. Goloubinoff, Moderate fever cycles as a potential mechanism to protect the respiratory system in COVID-19 patients, Front. Med., 7 (2020), 583. https://doi.org/10.3389/fmed.2020.564170 doi: 10.3389/fmed.2020.564170
    [4] R. J. Reiter, P. Abreu-Gonzalez, P. E. Marik, A. Dominguez-Rodriguez, Therapeutic algorithm for use of melatonin in patients with COVID-19, Front. Med., 7 (2020), 226. https://doi.org/10.3389/fmed.2020.00226 doi: 10.3389/fmed.2020.00226
    [5] M. R. Mahmoudi, D. Baleanu, S. S. Band, A. Mosavi, Factor analysis approach to classify COVID-19 datasets in several regions, Results Phys., 25 (2021), 104071. https://doi.org/10.1016/j.rinp.2021.104071 doi: 10.1016/j.rinp.2021.104071
    [6] N. Ayoobi, D. Sharifrazi, R. Alizadehsani, A. Shoeibi, J. M. Gorriz, H. Moosaei, et al., Time Series Forecasting of New Cases and New Deaths Rate for COVID-19 using Deep Learning Methods, Results Phys., 27 (2021), 104495. https://doi.org/10.1016/j.rinp.2021.104495 doi: 10.1016/j.rinp.2021.104495
    [7] A. Pak, O. A. Adegboye, A. I. Adekunle, K. M. Rahman, E. S. McBryde, D. P. Eisen, Economic consequences of the COVID-19 outbreak: the need for epidemic preparedness, Front. Public Health., 8 (2020), 241. https://doi.org/10.3389/fpubh.2020.00241 doi: 10.3389/fpubh.2020.00241
    [8] J. R. Larsen, M. R. Martin, J. D. Martin, P. Kuhn, J. B. Hicks, Modeling the onset of symptoms of COVID-19, Front. Public Health., 8 (2020), 473. https://doi.org/10.3389/fpubh.2020.00473 doi: 10.3389/fpubh.2020.00473
    [9] P. R. Bassi, R. Attux, A deep convolutional neural network for COVID-19 detection using chest X-rays, Res. Biomed. Eng., 38 (2021), 139–148. https://doi.org/10.1007/s42600-021-00132-9 doi: 10.1007/s42600-021-00132-9
    [10] Z. Nabizadeh-Shahre-Babak, N. Karimi, P. Khadivi, R. Roshandel, A. Emami, S. Samavi, Detection of COVID-19 in X-ray images by classification of bag of visual words using neural networks, Biomed. Signal Process. Control, 68 (2021), 102750. https://doi.org/10.1016/j.bspc.2021.102750 doi: 10.1016/j.bspc.2021.102750
    [11] T. Zebin, S. Rezvy, COVID-19 detection and disease progression visualization: Deep learning on chest X-rays for classification and coarse localization, Appl. Intell., 51 (2021), 1010–1021. https://doi.org/10.1007%2Fs10489-020-01867-1
    [12] J. C. Gomes, A. I. Masood, L. H. de S. Silva, J. R. B. da Cruz Ferreira, A. A. Freire Junior, A. L. d. S. Rocha, et al., Covid-19 diagnosis by combining RT-PCR and pseudo-convolutional machines to characterize virus sequences, Sci. Rep., 11 (2021), 11545. https://doi.org/10.1038/s41598-021-90766-7 doi: 10.1038/s41598-021-90766-7
    [13] P. Bhardwaj, A. Kaur, A novel and efficient deep learning approach for COVID-19 detection using X-ray imaging modality, Int. J. Imaging Syst. Technol., 31 (2021), 1775–1791. https://doi.org/10.1002/ima.22627 doi: 10.1002/ima.22627
    [14] E. Hussain, M. Hasan, M. A. Rahman, I. Lee, T. Tamanna, M. Z. Parvez, CoroDet: A deep learning based classification for COVID-19 detection using chest X-ray images, Chaos Solit. Fractals, 142 (2021), 110495. https://doi.org/10.1016/j.chaos.2020.110495 doi: 10.1016/j.chaos.2020.110495
    [15] H. Tabrizchi, A. Mosavi, Z. Vamossy, A. R. Varkonyi-Koczy, Densely Connected Convolutional Networks (DenseNet) for Diagnosing Coronavirus Disease (COVID-19) from Chest X-ray Imaging, in 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 2021, 1–5. https://doi.org/10.1109/MeMeA52024.2021.9478715
    [16] A. Scohy, A. Anantharajah, M. Bodéus, B. Kabamba-Mukadi, A. Verroken, H. Rodriguez-Villalobos, Low performance of rapid antigen detection test as frontline testing for COVID-19 diagnosis, J. Gen. Virol., 129 (2020), 104455. https://doi.org/10.1016/j.jcv.2020.104455 doi: 10.1016/j.jcv.2020.104455
    [17] R. M. Amer, M. Samir, O. A. Gaber, N. A. El-Deeb, A. A. Abdelmoaty, A. A. Ahmed, et al., Diagnostic performance of rapid antigen test for COVID-19 and the effect of viral load, sampling time, subject's clinical and laboratory parameters on test accuracy, J. Infect. Public Health, 14 (2021), 1446–1453. https://doi.org/10.1016/j.jiph.2021.06.002 doi: 10.1016/j.jiph.2021.06.002
    [18] J. Dinnes, P. Sharma, S. Berhane, S. S. van Wyk, N. Nyaaba, J. Domen, et al., Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection, Cochrane Database Syst. Rev., 7 (2022). https://doi.org/10.1002/14651858.cd013705.pub3 doi: 10.1002/14651858.cd013705.pub3
    [19] M. Berrimi, S. Hamdi, R. Y. Cherif, A. Moussaoui, M. Oussalah, M. Chabane, COVID-19 detection from Xray and CT scans using transfer learning, in 2021 International Conference of Women in Data Science at Taif University (WiDSTaif), 2021, 1–6. https://doi.org/10.1109/WiDSTaif52235.2021.9430229
    [20] V. Shah, R. Keniya, A. Shridharani, M. Punjabi, J. Shah, N. Mehendale, Diagnosis of COVID-19 using CT scan images and deep learning techniques, Emerg. Radiol., 28 (2021), 497–505. https://doi.org/10.1007/s10140-020-01886-y doi: 10.1007/s10140-020-01886-y
    [21] M. Singh, S. Bansal, S. Ahuja, R. K. Dubey, B. K. Panigrahi, N. Dey, Transfer learning–based ensemble support vector machine model for automated COVID-19 detection using lung computerized tomography scan data, Med. Biol. Eng. Comput., 59 (2021), 825–839. https://doi.org/10.1007/s11517-020-02299-2 doi: 10.1007/s11517-020-02299-2
    [22] R. L. Bard, Image-guided management of COVID-19 lung disease, Springer Nature, 2021. https://doi.org/10.1007/978-3-030-66614-9 doi: 10.1007/978-3-030-66614-9
    [23] G. Muhammad, M. S. Hossain, COVID-19 and non-COVID-19 classification using multi-layers fusion from lung ultrasound images, Inf. Fusion, 72 (2021), 80–88. https://doi.org/10.1016/j.inffus.2021.02.013 doi: 10.1016/j.inffus.2021.02.013
    [24] C.-C. Lai, T.-P. Shih, W.-C. Ko, H.-J. Tang, P.-R. Hsueh, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges, Int. J. Antimicrob. Agents, 55 (2020), 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924 doi: 10.1016/j.ijantimicag.2020.105924
    [25] F. Chua, D. Armstrong-James, S. R. Desai, J. Barnett, V. Kouranos, O. M. Kon, et al., The role of CT in case ascertainment and management of COVID-19 pneumonia in the UK: insights from high-incidence regions, Lancet Respir. Med., 8 (2020), 438–440. https://doi.org/10.1016/S2213-2600(20)30132-6 doi: 10.1016/S2213-2600(20)30132-6
    [26] Y. Fang, H. Zhang, J. Xie, M. Lin, L. Ying, P. Pang, et al., Sensitivity of chest CT for COVID-19: comparison to RT-PCR, Radiology, 296 (2020), E115–E117. https://doi.org/10.1148/radiol.2020200432 doi: 10.1148/radiol.2020200432
    [27] H. Abbasimehr, R. Paki, Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization, Chaos Solit. Fractals, 142 (2021), 110511. https://doi.org/10.1016/j.chaos.2020.110511 doi: 10.1016/j.chaos.2020.110511
    [28] M. Zivkovic, N. Bacanin, K. Venkatachalam, A. Nayyar, A. Djordjevic, I. Strumberger, et al., COVID-19 cases prediction by using hybrid machine learning and beetle antennae search approach, Sustain. Cities Soc., 66 (2021), 102669. https://doi.org/10.1016/j.scs.2020.102669 doi: 10.1016/j.scs.2020.102669
    [29] S. Johri, M. Goyal, S. Jain, M. Baranwal, V. Kumar, R. Upadhyay, A novel machine learning-based analytical framework for automatic detection of COVID-19 using chest X-ray images, Int. J. Imaging Syst. Technol., 31 (2021), 1105–1119. https://doi.org/10.1002/ima.22613 doi: 10.1002/ima.22613
    [30] F. Falter, N. J. Screaton, Imaging the ICU Patient, Springer, 2014. https://doi.org/10.1007/978-0-85729-781-5 doi: 10.1007/978-0-85729-781-5
    [31] J. Musulin, S. Baressi Šegota, D. Štifanić, I. Lorencin, N. Anđelić, T. Šušteršič, et al., Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review, Int. J. Environ, 18 (2021), 4287. https://doi.org/10.3390/ijerph18084287 doi: 10.3390/ijerph18084287
    [32] P. K. Sethy, S. K. Behera, Detection of coronavirus disease (covid-19) based on deep features, 2020. https://doi.org/10.20944/preprints202003.0300.v1
    [33] A. M. Ismael, A. Şengür, Deep learning approaches for COVID-19 detection based on chest X-ray images, Expert Syst. Appl, 164 (2021), 114054. https://doi.org/10.1016/j.eswa.2020.114054 doi: 10.1016/j.eswa.2020.114054
    [34] A. I. Khan, J. L. Shah, M. M. Bhat, CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images, Comput. Methods Programs Biomed., 196 (2020), 105581. https://doi.org/10.1016/j.cmpb.2020.105581 doi: 10.1016/j.cmpb.2020.105581
    [35] V. Shah, R. Keniya, A. Shridharani, M. Punjabi, J. Shah, N. Mehendale, Diagnosis of COVID-19 using CT scan images and deep learning techniques, Emerg. Radiol., 28 (2021), 497–505. https://doi.org/10.1007/s10140-020-01886-y doi: 10.1007/s10140-020-01886-y
    [36] M. Polsinelli, L. Cinque, G. Placidi, A light CNN for detecting COVID-19 from CT scans of the chest, Pattern Recognit. Lett., 140 (2020), 95–100. https://doi.org/10.1016/j.patrec.2020.10.001 doi: 10.1016/j.patrec.2020.10.001
    [37] S. A. Harmon, L. Cinque, G. Placidi, Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets, Nat. Commun., 11 (2020), 1–7. https://doi.org/10.1016/j.patrec.2020.10.001 doi: 10.1016/j.patrec.2020.10.001
    [38] M. Loey, G. Manogaran, N. E. M. Khalifa, A deep transfer learning model with classical data augmentation and cgan to detect covid-19 from chest CT radiography digital images, Neural. Comput. Appl., 2020, 1–13. https://doi.org/10.1007/s00521-020-05437-x doi: 10.1007/s00521-020-05437-x
    [39] M. Singh, S. Bansal, S. Ahuja, R. K. Dubey, B. K. Panigrahi, N. Dey, Transfer learning–based ensemble support vector machine model for automated COVID-19 detection using lung computerized tomography scan data, Med. Biol. Eng. Comput., 59 (2021), 825–839. https://doi.org/10.1007/s11517-020-02299-2 doi: 10.1007/s11517-020-02299-2
    [40] M. Canayaz, S. Şehribanoğlu, R. Özdağ, M. Demir, COVID-19 diagnosis on CT images with Bayes optimization-based deep neural networks and machine learning algorithms, Neural. Comput. Appl., 34 (2022), 5349–5365. https://doi.org/10.1007/s00521-022-07052-4 doi: 10.1007/s00521-022-07052-4
    [41] M. Chieregato, F. Frangiamore, M. Morassi, C. Baresi, S. Nici, C. Bassetti, et al., A hybrid machine learning/deep learning COVID-19 severity predictive model from CT images and clinical data, Sci. Rep., 12 (2022), 1–15. https://doi.org/10.1038/s41598-022-07890-1 doi: 10.1038/s41598-022-07890-1
    [42] V. Ravi, H. Narasimhan, C. Chakraborty, T. D. Pham, Deep learning-based meta-classifier approach for COVID-19 classification using CT scan and chest X-ray images, Multimed. Syst., 28 (2022), 1401–1415. https://doi.org/10.1007/s00530-021-00826-1 doi: 10.1007/s00530-021-00826-1
    [43] Y. Liu, L. J. Durlofsky, 3D CNN-PCA: A deep-learning-based parameterization for complex geomodels, Comput. Geosci., 148 (2021), 104676. https://doi.org/10.1016/j.cageo.2020.104676 doi: 10.1016/j.cageo.2020.104676
    [44] S. Cheng, Y Jin, S. P. Harrison, C. Quilodrán-Casas, I. C. Prentice, Y. K. Guo, et al., Parameter flexible wildfire prediction using machine learning techniques: Forward and inverse modelling, Remote Sens., 14 (2022), 3228. https://doi.org/10.3390/rs14133228 doi: 10.3390/rs14133228
    [45] A. H. Barshooi, A. Amirkhani, A novel data augmentation based on Gabor filter and convolutional deep learning for improving the classification of COVID-19 chest X-Ray images, Biomed. Signal Process. Control., 72 (2022), 103326. https://doi.org/10.1016/j.bspc.2021.103326 doi: 10.1016/j.bspc.2021.103326
    [46] S. Aggarwal, S. Gupta, A. Alhudhaif, D. Koundal, R. Gupta, K. Polat, Automated COVID-19 detection in chest X-ray images using fine-tuned deep learning architectures, Expert Syst., 39 (2022), 1–17. https://doi.org/10.1111/exsy.12749 doi: 10.1111/exsy.12749
    [47] P. Nadler, S. Wang, R. Arcucci, X. Yang, Y. Guo, An epidemiological modelling approach for COVID-19 via data assimilation, Eur. J. Epidemiol., 35 (2020), 749–761. https://doi.org/10.1007/s10654-020-00676-7 doi: 10.1007/s10654-020-00676-7
    [48] L. Song, X. Liu, S. Chen, S. Liu, X. Liu, K. Muhammad, et al., A deep fuzzy model for diagnosis of COVID-19 from CT images, Appl. Soft Comput., 122 (2022), 108883. https://doi.org/10.1016/j.asoc.2022.108883 doi: 10.1016/j.asoc.2022.108883
    [49] C. Wen, S. Liu, S. Liu, A. A. Heidari, M. Hijji, C. Zarco, et al., ACSN: Attention capsule sampling network for diagnosing COVID-19 based on chest CT scans, Comput. Biol. Med., 153 (2023), 106338. https://doi.org/10.1016/j.compbiomed.2022.106338 doi: 10.1016/j.compbiomed.2022.106338
    [50] S. Cheng, C. C. Pain, Y.-K. Guo, R. Arcucci, Real-time updating of dynamic social networks for COVID-19 vaccination strategies, J. Ambient Intell. Humaniz Comput., 2023, 1–14. https://doi.org/10.1007/s12652-023-04589-7 doi: 10.1007/s12652-023-04589-7
    [51] J. Hodler, G. K. von Schulthess, C. L. Zollikofer, Diseases of the heart, chest & breast: diagnostic imaging and interventional techniques, Springer Science & Business Media, 2007. https://doi.org/10.1007/978-88-470-0633-1 doi: 10.1007/978-88-470-0633-1
    [52] M. M. Hefeda, CT chest findings in patients infected with COVID-19: Review of literature, Egypt. J. Radiol. Nucl. Med., 51 (2020), 1–15. https://doi.org/10.1186/s43055-020-00355-3 doi: 10.1186/s43055-020-00355-3
    [53] C. Bao, X. Liu, H. Zhang, Y. Li, J. Liu, Coronavirus disease 2019 (COVID-19) CT findings: A systematic review and meta-analysis, J. Am. Coll. Radiol., 17 (2020), 701–709. https://doi.org/10.1016/j.jacr.2020.03.006 doi: 10.1016/j.jacr.2020.03.006
    [54] R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in Proceedings of the 14th international joint conference on Artificial intelligence, 2 (1995), 1137–1143. https://doi.org/10.5555/1643031.1643047
    [55] J. Hassannataj Joloudari, F. Azizi, M. A. Nematollahi, R. Alizadehsani, E. Hassannatajjeloudari, I. Nodehi, et al., GSVMA: A Genetic Support Vector Machine ANOVA Method for CAD Diagnosis, Front. Cardiovasc. Med., 8 (2021), 760178. https://doi.org/10.3389/fcvm.2021.760178 doi: 10.3389/fcvm.2021.760178
    [56] J. Hassannataj Joloudari, M. Haderbadi, A. Mashmool, M. GhasemiGol, S. S. Band, A. Mosavi, Early detection of the advanced persistent threat attack using performance analysis of deep learning, IEEE Access, 8 (2020), 186125–186137. https://doi.org/10.1109/ACCESS.2020.3029202 doi: 10.1109/ACCESS.2020.3029202
    [57] J. Hassannataj Joloudari, E. Hassannataj Joloudari, H. Saadatfar, M. Ghasemigol, S. M. Razavi, A. Mosavi, et al., Coronary artery disease diagnosis; ranking the significant features using a random trees model, Int. J. Environ., 17 (2020), 731. https://doi.org/10.3390/ijerph17030731 doi: 10.3390/ijerph17030731
    [58] J. H. Joloudari, H. Saadatfar, A. Dehzangi, S. Shamshirband, Computer-aided decision-making for predicting liver disease using PSO-based optimized SVM with feature selection, Inform. Med. Unlocked, 17 (2019), 100255. https://doi.org/10.1016/j.imu.2019.100255 doi: 10.1016/j.imu.2019.100255
    [59] A. P. Bradley, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognit., 30 (1997), 1145–1159. https://doi.org/10.1016/S0031-3203(96)00142-2 doi: 10.1016/S0031-3203(96)00142-2
  • This article has been cited by:

    1. Muhammad Bilal, Abdul Ghafoor, Manzoor Hussain, Kamal Shah, Thabet Abdeljawad, Numerical Scheme for the Computational Study of Two Dimensional Diffusion and Burgers’ Systems with Stability and Error Estimate, 2025, 32, 1776-0852, 10.1007/s44198-025-00277-6
    2. Ibrahim Abbas, Aboelnour Abdalla, Areej Almuneef, Alaa A. El-Bary, Generalized thermoelastic interactions in porous asphaltic material under fractional time derivative, 2025, 72, 2214157X, 106304, 10.1016/j.csite.2025.106304
    3. Aslam Khan, Abdul Ghafoor, Zahir Shah, Mansoor H. Alshehri, Narcisa Vrinceanu, Solving Nonlinear Burgers' Type Problems Via Haar Wavelet Method of Lines, 2025, 0170-4214, 10.1002/mma.11055
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3082) PDF downloads(409) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog