The vibration suppression control of a flexible manipulator system modeled by partial differential equation (PDE) with state constraints is studied in this paper. On the basis of the backstepping recursive design framework, the problem of the constraint of joint angle and boundary vibration deflection is solved by using the Barrier Lyapunov function (BLF). Moreover, based on the relative threshold strategy, an event-triggered mechanism is proposed to save the communication workload between controller and actuator, which not only deals with the state constraints of the partial differential flexible manipulator system, but also effectively improves the system work efficiency. Good damping effect on vibration and the elevated system performance can be seen under the proposed control strategy. At the same time, the state can meet the constraints given in advance, and all system signals are bounded. The proposed scheme is effective, which is proven by simulation results.
Citation: Tongyu Wang, Yadong Chen. Event-triggered control of flexible manipulator constraint system modeled by PDE[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 10043-10062. doi: 10.3934/mbe.2023441
[1] | Subhajit Das, Sandip Bhattacharya, Debaprasad Das, Hafizur Rahaman . A survey on pristine and intercalation doped graphene nanoribbon interconnect for future VLSI circuits. AIMS Materials Science, 2021, 8(2): 247-260. doi: 10.3934/matersci.2021016 |
[2] | Yaorong Su, Weiguang Xie, Jianbin Xu . Towards low-voltage organic thin film transistors (OTFTs) with solution-processed high-k dielectric and interface engineering. AIMS Materials Science, 2015, 2(4): 510-529. doi: 10.3934/matersci.2015.4.510 |
[3] | M. P. Lavin-Lopez, L. Sanchez-Silva, J. L. Valverde, A. Romero . CVD-graphene growth on different polycrystalline transition metals. AIMS Materials Science, 2017, 4(1): 194-208. doi: 10.3934/matersci.2017.1.194 |
[4] | Shuhan Jing, Adnan Younis, Dewei Chu, Sean Li . Resistive Switching Characteristics in Electrochemically Synthesized ZnO Films. AIMS Materials Science, 2015, 2(2): 28-36. doi: 10.3934/matersci.2015.2.28 |
[5] | Shuwei Lin, Yitai Fu, Yunsen Sang, Yi Li, Baozong Li, Yonggang Yang . Characterization of Chiral Carbonaceous Nanotubes Prepared from Four Coiled Tubular 4,4-biphenylene-silica Nanoribbons. AIMS Materials Science, 2014, 1(1): 1-10. doi: 10.3934/matersci.2013.1.1 |
[6] | Felicia Ullstad, Jay R. Chan, Harry Warring, Natalie Plank, Ben Ruck, Joe Trodahl, Franck Natali . Ohmic contacts of Au and Ag metals to n-type GdN thin films. AIMS Materials Science, 2015, 2(2): 79-85. doi: 10.3934/matersci.2015.2.79 |
[7] | Raghvendra K Pandey, William A Stapleton, Mohammad Shamsuzzoha, Ivan Sutanto . Voltage biased Varistor-Transistor Hybrid Devices: Properties and Applications. AIMS Materials Science, 2015, 2(3): 243-259. doi: 10.3934/matersci.2015.3.243 |
[8] | K.Pandey Raghvendra, A.Stapleto Williamn, Shamsuzzoha Mohammad, Sutanto Ivan . Voltage biased Varistor-Transistor Hybrid Devices: Properties and Applications. AIMS Materials Science, 2015, 2(3): 243-259. doi: 10.3934/matersci.2015.243 |
[9] | Gennaro Gelao, Roberto Marani, Anna Gina Perri . Analysis and design of current mode logic based on CNTFET. AIMS Materials Science, 2023, 10(6): 965-980. doi: 10.3934/matersci.2023052 |
[10] | Vishanth Uppu, Kunal Mishra, Libin K. Babu, Ranji Vaidyanathan . Understanding the influence of graphene and nonclay on the microcracks developed at cryogenic temperature. AIMS Materials Science, 2019, 6(4): 559-566. doi: 10.3934/matersci.2019.4.559 |
The vibration suppression control of a flexible manipulator system modeled by partial differential equation (PDE) with state constraints is studied in this paper. On the basis of the backstepping recursive design framework, the problem of the constraint of joint angle and boundary vibration deflection is solved by using the Barrier Lyapunov function (BLF). Moreover, based on the relative threshold strategy, an event-triggered mechanism is proposed to save the communication workload between controller and actuator, which not only deals with the state constraints of the partial differential flexible manipulator system, but also effectively improves the system work efficiency. Good damping effect on vibration and the elevated system performance can be seen under the proposed control strategy. At the same time, the state can meet the constraints given in advance, and all system signals are bounded. The proposed scheme is effective, which is proven by simulation results.
Power supply voltage drop (IR-drop) has been one of most important challenges of power interconnects in sub nanometer designs [1,2,3,4]. It becomes even more challenging for the high density and high performance designs in which it has adverse effects on timing. The increase in chip operating temperature has two-fold effects on timing. Firstly, it increases the interconnect resistance which in turn increases the interconnect delay. Secondly, due to the increase in resistance there is more IR-drop which also increases the gate delay. Therefore, it is very essential to analyze the effects of temperature on IR-drop in sub nanometer designs, since the resistivity of the traditional copper based interconnects increases significantly in nanometer dimensions [5]. GNR is one of the most promising material for interconnect modeling for future generation technologies [5,6] due to its excellent properties compared with copper in nanometer dimensions. Recent studies [6,7,8,9,10] on GNR show its superiority over the traditional copper based interconnects. The compact resistance modeling with only absolute temperature (300 K) in MLGNR stacks is proposed by Sansiri Tanachutiwat et al. reported in [11]. The temperature independent IR-Drop induced delay-fault model and simultaneous switching noise for MLGNR interconnects has been investigated by D. Das et al. reported in [12,13,14]. The temperature dependent comparisons of delay between CNT and Cu have been investigated in [15,16]. However, as per our knowledge no investigation has been carried out to analyze the effects of the temperature on IR-drop in multi layer graphene nanoribbon (MLGNR) interconnect till date. Motivated by the previous work, we have proposed a temperature dependent resistive model of multi layer graphene nanoribbon (MLGNR) interconnect. Using the proposed model, we have analyzed the power supply voltage drop (IR-drop) and delay in MLGNR based power interconnects. The rest of the paper is organized as follows. Section 2 and 3 presents the proposed temperature dependent resistive model of MLGNR and Cu interconnect. The results and conclusions are presented in the Sections 4 and 5.
A multilayer GNR (MLGNR) structure is shown in Figure 1 is used for modeling power interconnects in nanoscale design. The width, thickness, and height of the MLGNR structure are denoted by w, t, and ht, respectively. The separation between two MLGNR structures is denoted by sp. In our interconnect design, we have considered width (w)=16 nm and thickness (t)=32 nm for 16 nm International technology roadmap for semiconductors (ITRS) technology node [5]. The total number of SLGNR present in proposed MLGNR structure is given by [7].
Nlayer=1+Integer[t/δ] | (1) |
The interlayer spacing (δ) between two consecutive graphene layers is 0.34 nm which is called as van der walls gap. Using (1) we obtain the total number of SLGNR present in proposed MLGNR structure as Nlayer=95 for 16 nm technology node. The total resistance of MLGNR is given by.
RTotal−MLGNR=RQ(1+lMLGNRλeffective)+Rc | (2) |
where lMLGNR is the length of MLGNR based interconnect and λeffective is the effective electron mean free path (MFP) of MLGNR. The quantum resistance (RQ) of SLGNR is 12.94 kΩ. The contact resistance is assumed as 100 Ω·µm. The quantum resistance for MLGNR expressed as [7]
RQ=h/2.e2Nch.Nlayer=12.94kΩNch.Nlayer | (3) |
In (3) Nch is the number of conducting channels in SLGNR, Nlayer is the number of layer present in MLGNR, h is the Planck’s constant, and e is the electronic charge. The number of conducting channel present in SLGNR is given by [8,10]
Nch=nc∑j=1[1+e(Ej,n−EF)/kBT]−1+nc∑j=1[1+e(EF+Ej,h)/kBT]−1 | (4) |
where j=(1, 2, 3, …) is a positive integer, EF is Fermi energy, kB is the Boltzmann’s constant, T is temperature, and nc and nv are the number of conduction and valance sub-bands. Ej, n and Ej, h are the minimum energy of electron and hole in jth conduction sub-band as given by [8]
Ej=ΔE|j+β|,whereΔE=hvf2w | (5) |
ΔE is the sub-band energy in metallic GNR and β value is zero for metallic GNR and it is 1/3 in semiconducting GNR [8,10]. The Fermi potential for metallic GNR has been consider between 0.21 eV to 0.4 eV reported in [8,10]. The Fermi potential may varies in stacked multilayered GNR in each layer. Therefore, the value of Fermi energy for the inner layer GNR is derived as [11].
EF,m=EFe−δm/Ψ | (6) |
In (6), “m” is the position of the layer in stacked MLGNR structure, δ=0.34 nm and Ψ=0.387 nm is the fitting parameter reported in [11]. The average of all Fermi potential for top, bottom and inner layers (total Nlayer ≅ 95) is equal to 0.3 eV. The number of conducting channels (Nch) is 6 for metallic SLGNR of width 16 nm for EF=0.3 eV. The effective MFP of SLGNR interconnects depends on three important parameters: electron-electron scattering (λe), acoustic phonon scattering (λap) and remote interfacial phonon scattering (λrip). Electron-electron scattering independent with temperature variation, but remaining two parameters vary with temperature which adversely affects on the interconnect delay due to change in resistance followed by temperature variation. Th e electron-electron scattering λe can be expressed as [11]
λe=λdefect+wNch∑i=1√Nchi−1 | (7) |
where, λdefect is the MFP of SLGNR due to the defects exists inside the graphene layer. Here, “i” is an integer variable which varies from 1 to Nch=6 and “w” is the interconnect width of MLGNR interconnect. The value of λdefect is assumed to be 1 µm [11]. The MFP due to acoustic phonon scattering λap can be expressed as [11]
λap=h2ρsvs2vf2wπ2D2AkBT | (8) |
In (8), vf is the Fermi velocity of GNR (=8 × 105 m/s), vs is the sound velocity of GNR (=2.1 × 104 m/s), DA is the acoustic deformation potential, kB is the Boltzmann constant, ρs is the 2D mass density of graphene, and T is the temperature. The MFP due to remote interfacial phonon scattering λrip is expressed as [11]
λrip=αE1.02Fw(eE0kT−1) | (9) |
where α is the fitting parameter, EF is the Fermi potential, and E0=104 mV. The temperature dependent effective MFP of SLGNR is given by applying Matthiessen’s rule [11]
λeffective=[(λe)−1+(λap)−1+(λrip)−1]−1 | (10) |
The values of λe, λap, λrip, and λeffective, for different temperature are shown in Figure 2. Substituting the effective MFP of SLGNR in (2) we obtain the temperature dependent resistance of MLGNR in (11). The temperature dependent resistance values for different length and different temperatures for GNR interconnect is shown in Figure 3.
RTotal−MLGNR=RQ[1+lMLGNR(λeλap+λapλrip+λripλe)(λeλapλrip)] | (11) |
The temperature dependent resistive model of Cu based nanointerconnect is explained in this section. To implement this model, surface roughness scattering and grain boundary scattering phenomena are considered. The surface roughness scattering based resistivity model first proposed by Fuchs [17] and Sondheim [18] (FS-model) which is given by (12)
ρFSρO=1+34λOw(1−P) | (12) |
where ρo is the resistivity of the bulk material, w is width of the nanointerconnect, λo is the mean free path of the conduction electrons, and P (=0.6) is the Fuchs scattering parameter. The grain boundary scattering based resistivity model is proposed by Mayadas and Shatzkes (MS-model) [19] which is given by (13)
ρMSρO=[1−32α+3α2−3α3ln(1+1α)]−1 | (13) |
Where,
α=λOD(R1−P) |
Here D is the mean grain size and R is the reflection coefficient in the grain edges or boundaries with values in between 0 and 1. In our model, we have considered the mean grain size is equivalent to film width and R=0.33. The total resistivity of Cu nanointerconnect can be measured by combined effects of surface roughness and grain boundary scattering as given in (14)
ρCu=ρFS+ρMS | (14) |
In (14) we have shown the temperature independent resistivity of Cu nanointerconnect. In general, the electrical resistivity of Cu nanointerconnects increases with temperature due to electron-phonon interactions mechanism [20]. As the temperature increase linearly, the resistance of Cu nanointerconnect also increases linearly. For Cu nanointerconnects, the temperature dependent resistivity ρcu(T) follows a power law function of temperature which is given by the Bloch-Grüneisen model given in (15) [20,21,22]
ρCu(T)=ρCu(0)+4R(ΘR)[TΘR]n∫ΘRT0xn(ex−1)(1−e−x)dx | (15) |
Here,
R(ΘR)=ηe2[π3(3π2)1/3η24n2/3cellaMkBΘR] |
ΘR, is the Debye temperature used for resistivity calculation of Cu interconnect in nanometer dimension [20,21,22]. The Debye temperature ΘR, is taken ~320 K for bulk non-magnetic material like Cu [22]. In our analysis, the residual resistivity ρCu(0) in (15) has been ignored because it is temperature independent parameter and occurs due to presence of defect scattering [22]. Here η=Planck’s constant divided by 2π, ncell=number of electron’s present in an atom which participate in current conduction, the atomic mass M=(atomic weight)/NA, where NA is the Avogadro’s number, a=(volume/atom)1/3, kB is Boltzmann’s constant, and e is the electron charge. Here “n” is an integer which depends on the characteristics of interaction. In general the value of “n” lies between 2-5.
1. n=5 signifies that the resistance variation is due to scattering of electrons by phonons (for simple metals like Cu) [23];
2. n=3 signifies that the resistance variation is due to s-d (spin density) electron scattering (for transition metals or dilute alloys) [23];
3. n=2 signifies that the resistance variation is due to electron-electron collisions or interaction. [23];
In our analysis we have considered the 1st condition. Thus, the temperature dependent resistance of Cu nanointerconnect is given by (16)
RCu(T)=ρCu(T).lwt | (16) |
where l=length, w=width, and t=thickness of Cu nanointerconnect. Here “w” is 16 nm and “t” is 32 nm for 16 nm ITRS technology node for Cu interconnect same as MLGNR interconnect. Length of Cu nanointerconnect is varied from 10 µm to 100 µm. The temperature dependent resistance values of Cu nanointerconnect for different lengths at different temperature are shown in Figure 3.
Using the temperature dependent resistance model as discussed in previous section, we have calculated the resistance for different interconnect length and different temperature. In Figure 3 we have shown the temperature dependent resistance of MLGNR and Cu interconnect for different interconnect length (5 µm to 50 µm) for 16 nm technology node. MLGNR shows ~2-5x less resistance than that of Cu as shown in Figure 3. In Figure 2, with the increase in temperature, the effective mean free path reduces, and hence the scattering induced ohomic part of the total resistance of MLGNR increases. The IR-drop analysis is performed in MLGNR and Cu interconnects for 5 μm (local), 20 μm (intermediate) and 50 μm (global) interconnect lengths. The analysis is performed using equivalent circuit model shown in Figure 4.
In Figure 4, ten identical CMOS inverters are connected in series with temperature dependent resistance for both MLGNR and Cu. In our analysis, we have assumed the supply voltage as 0.7 V, the input voltage swing is from 0 to 0.7 V for all stages and pulse rise/fall time is assumed as 100 ps. The CMOS inverters are designed for 16 nm ITRS technology node using the Shttps://www.aimspress.com/aimspress-data/aimsmates/2016/4/PICE models from predictive technology model [24]. MOSFET model parameters are defined in Table 1. The simulations are performed using the Cadence spectra simulator. All the inverters are switched simultaneously so that they draw current from the power supply. As a result the power supply voltage decreases progressively away from the power pad. The decrease in power supply causes increase in propagation delay through the gate. As the temperature increases, the resistance of the power interconnects increases which causes more interconnect delay. With temperature as the IR-drop increases, the gates suffer more delay problem. Therefore, increase in temperature has twofold increase in delay: one due to increase in interconnect (RC) delay and the other due to increase in IR-drop. Figure 5-7 illustrate the IR-drop in GNR and Cu interconnects for local, intermediate, and global lengths. It is observed that the IR-drop increases with the increase in temperature both for MLGNR and Cu interconnects but MLGNR shows ~1.5-3.5× less IR-drop than Cu at local, intermediate and global lengths. The IR-Drop analyzed data shown in Table 2,Table 3 and Table 4, where maximum, minimum and average IR-Drop of MLGNR and Cu interconnects are present. The total propagation delay of MLGNR and Cu interconnect shown in Table 5. In our analysis, we also find out that MLGNR interconnect can reduce delay up to ~1.5-3× compared with Cu interconnect.
Model Parameters [24] | n-MOS(Si) | p-MOS(Si) |
Channel Length (L) | 16 nm | |
Channel Width (W) | 64 nm | 128 nm |
Threshold Voltage (VTH0) | 0.47 volt | −0.43 volt |
Dielectric Constant (εox for Sio2) | εox = 3.9 × ε0,Where ε0 = 8.85 × 10−12 F/m | |
Oxide Thickness(tox) | 0.95 nm | 1 nm |
Gate Oxide Capacitance (Cox) | 0.29 fF | 0.28 fF |
Junction Depth (Xj) | 5 nm |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 7.04 | 7.32 | 7.76 | 8.40 | 9.23 | 10.20 | 11.30 | 13.81 | 18.41 | 22.46 | 26.08 | 29.34 | 32.33 | 35.10 |
2nd | 13.25 | 13.77 | 14.60 | 15.79 | 17.34 | 19.16 | 21.21 | 25.92 | 34.55 | 42.17 | 48.97 | 55.11 | 60.77 | 65.93 |
3rd | 18.68 | 19.41 | 20.57 | 22.25 | 24.41 | 26.98 | 29.86 | 36.47 | 48.64 | 59.41 | 69.05 | 77.82 | 85.88 | 93.29 |
4th | 23.36 | 24.28 | 25.72 | 27.81 | 30.52 | 33.72 | 37.31 | 45.60 | 60.87 | 74.43 | 86.61 | 97.72 | 107.94 | 117.41 |
5th | 27.33 | 28.39 | 30.09 | 32.52 | 35.70 | 39.43 | 43.63 | 53.34 | 71.25 | 87.24 | 101.70 | 114.88 | 127.04 | 138.35 |
6th | 30.61 | 31.80 | 33.69 | 36.41 | 39.96 | 44.15 | 48.86 | 59.72 | 79.87 | 97.93 | 114.25 | 129.29 | 143.18 | 156.11 |
7th | 33.21 | 34.51 | 36.56 | 39.51 | 43.35 | 47.90 | 53.02 | 64.83 | 86.78 | 106.46 | 124.45 | 140.87 | 156.21 | 170.55 |
8th | 35.15 | 36.53 | 38.69 | 41.82 | 45.88 | 50.69 | 56.11 | 68.64 | 91.94 | 112.94 | 132.03 | 149.76 | 166.17 | 181.48 |
9th | 36.45 | 37.87 | 40.11 | 43.35 | 47.56 | 52.55 | 58.17 | 71.18 | 95.37 | 117.25 | 137.19 | 155.68 | 172.75 | 188.97 |
10th | 37.09 | 38.54 | 40.82 | 44.12 | 48.40 | 53.47 | 59.20 | 72.44 | 97.07 | 119.39 | 139.79 | 158.62 | 176.19 | 192.74 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 1.18 | 1.23 | 1.31 | 1.43 | 1.59 | 1.79 | 2.02 | 2.55 | 3.54 | 4.47 | 5.36 | 6.19 | 6.98 | 7.74 |
2nd | 2.24 | 2.33 | 2.49 | 2.71 | 3.02 | 3.40 | 3.83 | 4.84 | 6.72 | 8.49 | 10.18 | 11.75 | 13.27 | 14.73 |
3rd | 3.17 | 3.31 | 3.53 | 3.85 | 4.30 | 4.83 | 5.44 | 6.87 | 9.55 | 12.07 | 14.45 | 16.69 | 18.88 | 20.93 |
4th | 3.99 | 4.16 | 4.44 | 4.85 | 5.41 | 6.08 | 6.85 | 8.64 | 12.03 | 15.20 | 18.18 | 21.05 | 23.78 | 26.42 |
5th | 4.69 | 4.89 | 5.21 | 5.71 | 6.36 | 7.15 | 8.06 | 10.15 | 14.15 | 17.89 | 21.37 | 24.79 | 27.97 | 31.15 |
6th | 5.27 | 5.50 | 5.86 | 6.42 | 7.16 | 8.04 | 9.06 | 11.41 | 15.91 | 20.12 | 24.07 | 27.89 | 31.54 | 35.09 |
7th | 5.73 | 5.98 | 6.38 | 6.99 | 7.80 | 8.75 | 9.86 | 12.42 | 17.32 | 21.91 | 26.23 | 30.37 | 34.39 | 38.23 |
8th | 6.08 | 6.34 | 6.77 | 7.42 | 8.27 | 9.28 | 10.46 | 13.17 | 18.37 | 23.25 | 27.85 | 32.23 | 36.53 | 40.59 |
9th | 6.31 | 6.58 | 7.03 | 7.71 | 8.59 | 9.64 | 10.86 | 13.67 | 19.08 | 24.14 | 28.93 | 33.47 | 37.96 | 42.21 |
10th | 6.43 | 6.70 | 7.16 | 7.85 | 8.75 | 9.82 | 11.06 | 13.92 | 19.43 | 24.59 | 29.47 | 34.09 | 38.67 | 43.02 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 4.11 | 4.27 | 4.53 | 4.91 | 5.41 | 5.99 | 6.66 | 8.18 | 10.97 | 13.46 | 15.72 | 17.76 | 19.65 | 21.42 |
2nd | 7.74 | 8.05 | 8.54 | 9.25 | 10.18 | 11.28 | 12.52 | 15.38 | 20.63 | 25.33 | 29.57 | 33.43 | 37.02 | 40.33 |
3rd | 10.92 | 11.36 | 12.05 | 13.05 | 14.35 | 15.90 | 17.65 | 21.67 | 29.09 | 35.74 | 41.75 | 47.25 | 52.38 | 57.11 |
4th | 13.67 | 14.22 | 15.08 | 16.33 | 17.96 | 19.90 | 22.08 | 27.12 | 36.45 | 44.81 | 52.39 | 59.38 | 65.86 | 71.91 |
5th | 16.01 | 16.64 | 17.65 | 19.11 | 21.03 | 23.29 | 25.84 | 31.74 | 42.70 | 52.56 | 61.53 | 69.83 | 77.50 | 84.75 |
6th | 17.94 | 18.00 | 19.77 | 21.41 | 23.56 | 26.09 | 28.96 | 35.56 | 47.89 | 59.02 | 69.16 | 78.59 | 87.36 | 95.60 |
7th | 19.47 | 20.24 | 21.47 | 23.25 | 25.57 | 28.32 | 31.44 | 38.62 | 52.05 | 64.18 | 75.34 | 85.62 | 95.30 | 104.39 |
8th | 20.61 | 21.43 | 22.73 | 24.62 | 27.07 | 29.98 | 33.28 | 40.90 | 55.15 | 68.09 | 79.94 | 90.99 | 101.35 | 111.03 |
9th | 21.38 | 22.22 | 23.57 | 25.53 | 28.07 | 31.09 | 34.51 | 42.42 | 57.22 | 70.69 | 83.06 | 94.57 | 105.35 | 115.59 |
10th | 21.76 | 22.62 | 23.99 | 25.98 | 28.57 | 31.64 | 35.13 | 43.18 | 58.25 | 71.99 | 84.63 | 96.35 | 107.43 | 117.88 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 18.76 | 19.53 | 20.73 | 22.42 | 24.54 | 26.98 | 29.550 | 36.53 | 45.66 | 53.24 | 59.90 | 65.91 | 71.52 | 76.76 |
2nd | 35.22 | 36.66 | 38.89 | 42.10 | 46.08 | 50.67 | 55.50 | 68.66 | 85.83 | 100.02 | 112.40 | 123.57 | 133.86 | 143.45 |
3rd | 49.57 | 51.63 | 54.82 | 59.30 | 65.01 | 71.49 | 78.38 | 97.18 | 121.74 | 142.15 | 159.91 | 175.86 | 190.47 | 204.12 |
4th | 62.05 | 64.60 | 68.60 | 74.29 | 81.48 | 89.63 | 98.43 | 122.30 | 153.86 | 180.08 | 202.92 | 223.39 | 241.75 | 257.80 |
5th | 72.62 | 75.66 | 80.40 | 87.08 | 95.52 | 105.27 | 115.73 | 144.25 | 182.19 | 213.81 | 241.34 | 264.33 | 283.27 | 299.31 |
6th | 81.45 | 84.87 | 90.14 | 97.75 | 107.38 | 118.40 | 130.28 | 162.87 | 206.46 | 242.96 | 272.94 | 295.93 | 314.48 | 329.98 |
7th | 88.49 | 92.17 | 98.03 | 106.25 | 116.77 | 128.87 | 141.92 | 178.00 | 226.45 | 266.87 | 296.76 | 319.25 | 337.19 | 352.06 |
8th | 93.74 | 97.68 | 103.9 | 112.73 | 123.96 | 136.91 | 150.92 | 189.68 | 241.95 | 284.23 | 313.66 | 335.60 | 352.97 | 367.26 |
9th | 97.23 | 101.3 | 107.8 | 117.03 | 128.75 | 142.26 | 156.87 | 197.40 | 252.44 | 295.44 | 324.46 | 345.97 | 362.91 | 376.79 |
10th | 98.96 | 103.2 | 109.7 | 119.17 | 131.14 | 144.92 | 159.82 | 201.38 | 257.80 | 300.94 | 329.72 | 351.00 | 367.71 | 381.38 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 3.62 | 3.79 | 4.07 | 4.46 | 4.98 | 5.59 | 6.25 | 8.15 | 10.90 | 13.29 | 15.45 | 17.43 | 19.22 | 20.86 |
2nd | 6.87 | 7.20 | 7.72 | 8.47 | 9.46 | 10.61 | 11.85 | 15.50 | 20.74 | 25.42 | 29.68 | 33.56 | 37.11 | 40.50 |
3rd | 9.77 | 10.23 | 10.96 | 12.04 | 13.44 | 15.05 | 16.85 | 22.07 | 29.65 | 36.45 | 42.66 | 48.41 | 53.75 | 58.81 |
4th | 12.30 | 12.88 | 13.79 | 15.17 | 16.92 | 18.93 | 21.24 | 27.86 | 37.47 | 46.25 | 54.35 | 61.91 | 69.05 | 75.84 |
5th | 14.46 | 15.14 | 16.24 | 17.85 | 19.89 | 22.30 | 25.01 | 32.82 | 44.33 | 54.86 | 64.64 | 73.97 | 82.82 | 91.31 |
6th | 16.26 | 17.02 | 18.28 | 20.08 | 22.37 | 25.11 | 28.14 | 36.95 | 50.10 | 62.19 | 73.58 | 84.38 | 94.85 | 104.92 |
7th | 17.70 | 18.53 | 19.91 | 21.86 | 24.34 | 27.36 | 30.64 | 40.33 | 54.70 | 68.18 | 80.88 | 93.07 | 104.88 | 116.36 |
8th | 18.78 | 19.67 | 21.13 | 23.20 | 25.83 | 29.05 | 32.52 | 42.89 | 58.29 | 72.67 | 86.50 | 99.77 | 112.64 | 125.29 |
9th | 19.49 | 20.43 | 21.94 | 24.09 | 26.83 | 30.17 | 33.76 | 44.59 | 60.69 | 75.80 | 90.24 | 104.33 | 118.00 | 131.35 |
10th | 19.85 | 20.81 | 22.35 | 24.53 | 27.34 | 30.73 | 34.40 | 45.44 | 61.89 | 77.37 | 92.19 | 106.61 | 120.72 | 134.47 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 11.19 | 11.66 | 12.40 | 13.44 | 14.76 | 16.28 | 17.90 | 22.34 | 28.28 | 33.26 | 37.67 | 41.67 | 45.37 | 48.81 |
2nd | 21.04 | 21.93 | 23.30 | 25.28 | 27.77 | 30.64 | 33.67 | 42.08 | 53.28 | 62.72 | 71.04 | 78.56 | 85.48 | 91.97 |
3rd | 29.67 | 30.93 | 32.89 | 35.67 | 39.22 | 43.27 | 47.61 | 59.62 | 75.69 | 89.30 | 101.28 | 112.13 | 122.11 | 131.46 |
4th | 37.17 | 38.74 | 41.19 | 44.73 | 49.20 | 54.28 | 59.83 | 75.08 | 95.66 | 113.16 | 128.63 | 142.65 | 155.40 | 166.82 |
5th | 43.54 | 45.40 | 48.32 | 52.46 | 57.70 | 63.78 | 70.37 | 88.53 | 113.26 | 134.33 | 152.99 | 169.15 | 183.04 | 195.31 |
6th | 48.85 | 50.94 | 54.21 | 58.91 | 64.87 | 71.75 | 79.21 | 99.91 | 128.28 | 152.57 | 173.26 | 190.15 | 204.66 | 217.45 |
7th | 53.09 | 55.35 | 58.97 | 64.05 | 70.55 | 78.11 | 86.28 | 109.16 | 140.57 | 167.52 | 188.82 | 206.16 | 221.03 | 234.21 |
8th | 56.26 | 58.67 | 62.51 | 67.96 | 74.89 | 82.98 | 91.72 | 116.28 | 150.12 | 178.45 | 200.08 | 217.68 | 232.80 | 246.27 |
9th | 58.36 | 60.86 | 64.87 | 70.56 | 77.79 | 86.21 | 95.31 | 120.99 | 156.56 | 185.62 | 207.35 | 225.15 | 240.45 | 254.07 |
10th | 59.40 | 62.00 | 66.02 | 71.85 | 79.24 | 87.82 | 97.11 | 123.41 | 159.84 | 189.15 | 210.95 | 228.80 | 244.21 | 257.92 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 34.38 | 35.59 | 37.45 | 40.05 | 43.30 | 46.93 | 50.81 | 61.60 | 75.60 | 87.74 | 98.66 | 108.77 | 118.06 | 126.79 |
2nd | 64.59 | 66.85 | 70.42 | 75.31 | 81.41 | 88.20 | 95.54 | 115.58 | 141.31 | 163.38 | 183.20 | 201.39 | 218.29 | 234.07 |
3rd | 91.33 | 94.64 | 99.65 | 106.70 | 115.41 | 125.18 | 135.65 | 164.42 | 201.07 | 232.16 | 258.20 | 280.07 | 298.95 | 315.48 |
4th | 114.9 | 119.1 | 125.5 | 134.49 | 145.67 | 158.28 | 171.77 | 208.71 | 254.33 | 287.89 | 314.12 | 335.66 | 353.96 | 369.79 |
5th | 135.4 | 140.3 | 148.1 | 158.91 | 172.36 | 187.45 | 203.77 | 248.10 | 295.87 | 328.67 | 353.73 | 374.09 | 391.27 | 406.10 |
6th | 152.7 | 158.4 | 167.3 | 179.70 | 195.12 | 212.65 | 231.32 | 279.77 | 326.67 | 357.97 | 381.54 | 400.58 | 416.64 | 430.55 |
7th | 166.7 | 173.1 | 182.9 | 196.73 | 213.86 | 233.40 | 254.31 | 303.48 | 348.89 | 378.61 | 400.79 | 418.68 | 433.80 | 446.96 |
8th | 177.5 | 184.2 | 194.8 | 209.71 | 228.34 | 249.37 | 271.72 | 320.23 | 364.22 | 392.61 | 413.67 | 430.66 | 445.09 | 457.70 |
9th | 184.6 | 191.9 | 203.0 | 218.59 | 238.06 | 260.20 | 283.05 | 330.91 | 373.84 | 401.28 | 421.58 | 437.97 | 451.93 | 464.19 |
10th | 188.3 | 195.7 | 207.0 | 223.00 | 243.08 | 265.75 | 288.63 | 336.11 | 378.48 | 405.43 | 425.34 | 441.43 | 455.17 | 467.25 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 7.54 | 7.88 | 8.42 | 9.18 | 10.16 | 11.30 | 12.51 | 15.99 | 20.49 | 24.26 | 27.48 | 30.31 | 32.95 | 35.32 |
2nd | 14.35 | 14.99 | 16.0 | 17.49 | 19.37 | 21.52 | 23.94 | 30.75 | 39.75 | 47.40 | 54.12 | 60.18 | 65.74 | 70.90 |
3rd | 20.39 | 21.31 | 22.8 | 24.91 | 27.60 | 30.76 | 34.23 | 44.26 | 57.71 | 69.44 | 79.94 | 89.68 | 98.75 | 107.30 |
4th | 25.71 | 26.92 | 28.8 | 31.42 | 34.92 | 38.91 | 43.40 | 56.47 | 74.28 | 90.26 | 104.90 | 118.61 | 131.65 | 144.19 |
5th | 30.32 | 31.73 | 33.9 | 37.12 | 41.19 | 46.06 | 51.43 | 67.28 | 89.39 | 109.51 | 128.42 | 146.31 | 163.65 | 180.43 |
6th | 34.16 | 35.73 | 38.2 | 41.88 | 46.55 | 52.01 | 58.23 | 76.55 | 102.66 | 126.85 | 149.76 | 171.80 | 193.21 | 214.11 |
7th | 37.23 | 38.93 | 41.7 | 45.68 | 50.87 | 56.93 | 63.74 | 84.27 | 113.78 | 141.50 | 168.02 | 193.71 | 218.74 | 243.18 |
8th | 39.53 | 41.38 | 44.4 | 48.53 | 54.11 | 60.65 | 68.00 | 90.13 | 122.39 | 153.04 | 182.47 | 211.03 | 238.86 | 266.08 |
9th | 41.06 | 43.03 | 46.1 | 50.50 | 56.28 | 63.12 | 70.85 | 94.18 | 128.38 | 160.99 | 192.37 | 222.98 | 252.78 | 281.88 |
10th | 41.83 | 43.85 | 47.0 | 51.49 | 57.36 | 64.36 | 72.27 | 96.21 | 131.37 | 165.02 | 197.50 | 229.03 | 259.87 | 289.99 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 20.96 | 21.73 | 22.93 | 24.61 | 26.73 | 29.11 | 31.66 | 38.79 | 48.04 | 56.00 | 63.07 | 69.54 | 75.50 | 81.05 |
2nd | 39.47 | 40.92 | 43.21 | 46.40 | 50.39 | 54.86 | 59.74 | 73.16 | 90.53 | 105.39 | 118.66 | 130.78 | 142.01 | 152.48 |
3rd | 55.86 | 57.97 | 61.23 | 65.80 | 71.50 | 77.97 | 84.94 | 104.34 | 129.39 | 150.80 | 169.07 | 184.87 | 198.85 | 211.39 |
4th | 70.30 | 73.01 | 77.14 | 82.95 | 90.29 | 98.59 | 107.58 | 132.59 | 164.30 | 189.07 | 209.51 | 227.13 | 242.80 | 256.99 |
5th | 82.86 | 86.01 | 91.00 | 98.01 | 106.77 | 116.75 | 127.60 | 157.69 | 192.63 | 219.09 | 241.07 | 260.20 | 277.46 | 293.26 |
6th | 93.43 | 97.06 | 102.7 | 110.79 | 120.83 | 132.33 | 144.77 | 178.16 | 214.66 | 242.41 | 265.65 | 286.19 | 304.92 | 322.33 |
7th | 101.96 | 106.01 | 112.3 | 121.20 | 132.36 | 145.16 | 159.02 | 193.87 | 231.33 | 260.05 | 284.40 | 306.19 | 326.27 | 345.07 |
8th | 108.51 | 112.79 | 119.5 | 129.12 | 141.22 | 155.01 | 169.86 | 205.18 | 243.30 | 272.82 | 298.07 | 320.84 | 341.97 | 361.89 |
9th | 112.83 | 117.46 | 124.5 | 134.54 | 147.17 | 161.66 | 176.95 | 212.54 | 251.11 | 281.13 | 306.97 | 330.47 | 352.35 | 373.03 |
10th | 115.06 | 119.77 | 127.0 | 137.24 | 150.22 | 165.05 | 180.45 | 216.16 | 254.92 | 285.22 | 311.42 | 335.23 | 357.52 | 378.62 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | MLGNR interconnect delay(5 μm-Local length) | Cu interconnect delay(5 μm-Local length) | ||||||||||||
1st | 3.74 | 3.75 | 3.76 | 3.77 | 3.78 | 3.79 | 3.82 | 3.86 | 3.94 | 4.03 | 4.12 | 4.20 | 4.28 | 4.37 |
2nd | 6.05 | 6.06 | 6.09 | 6.11 | 6.16 | 6.21 | 6.27 | 6.41 | 6.68 | 6.94 | 7.21 | 7.47 | 7.73 | 8.00 |
3rd | 8.01 | 8.08 | 8.09 | 8.18 | 8.32 | 8.42 | 8.58 | 8.95 | 9.65 | 10.30 | 10.87 | 11.48 | 12.03 | 12.60 |
4th | 9.82 | 9.89 | 10.04 | 10.23 | 10.44 | 10.72 | 11.02 | 11.72 | 13.15 | 14.55 | 15.65 | 16.70 | 17.60 | 18.45 |
5th | 12.48 | 12.64 | 12.80 | 13.11 | 13.50 | 13.95 | 14.50 | 15.80 | 17.80 | 19.65 | 21.10 | 22.40 | 23.50 | 24.65 |
6th | 16.25 | 16.45 | 16.70 | 17.10 | 17.65 | 18.30 | 18.95 | 20.35 | 22.65 | 24.90 | 26.70 | 28.15 | 29.85 | 31.15 |
7th | 19.95 | 20.15 | 20.50 | 21.05 | 21.75 | 22.55 | 23.25 | 25.05 | 27.70 | 30.30 | 32.70 | 34.20 | 36.05 | 37.80 |
8th | 24.00 | 24.30 | 24.75 | 25.40 | 26.15 | 26.70 | 27.65 | 29.65 | 32.95 | 36.15 | 38.70 | 40.60 | 42.95 | 45.40 |
9th | 27.75 | 28.10 | 28.60 | 29.25 | 30.30 | 31.15 | 32.30 | 34.45 | 38.40 | 42.30 | 45.15 | 47.70 | 50.50 | 54.05 |
10th | 31.70 | 32.10 | 32.65 | 33.35 | 34.60 | 35.65 | 37.00 | 39.35 | 44.00 | 48.70 | 52.25 | 56.30 | 59.90 | 62.65 |
No of Stages | MLGNR interconnect delay(20 μm-Intermediate length) | Cu interconnect delay(20 μm-Intermediate length) | ||||||||||||
1st | 3.96 | 3.97 | 3.99 | 4.03 | 4.08 | 4.14 | 4.21 | 4.41 | 4.72 | 5.03 | 5.32 | 5.60 | 5.90 | 6.20 |
2nd | 6.70 | 6.75 | 6.83 | 6.94 | 7.09 | 7.27 | 7.49 | 8.13 | 9.13 | 10.15 | 11.09 | 12.20 | 12.80 | 13.70 |
3rd | 9.72 | 9.86 | 10.04 | 10.30 | 10.60 | 11.05 | 11.50 | 12.90 | 14.95 | 16.50 | 17.95 | 19.40 | 20.90 | 22.40 |
4th | 13.25 | 13.50 | 13.95 | 14.55 | 15.20 | 15.95 | 16.75 | 18.85 | 21.75 | 24.15 | 26.70 | 28.40 | 30.50 | 32.50 |
5th | 18.00 | 18.35 | 18.85 | 19.65 | 20.50 | 21.40 | 22.50 | 25.65 | 29.30 | 32.20 | 35.75 | 38.20 | 41.10 | 44.00 |
6th | 22.90 | 23.30 | 24.00 | 24.90 | 26.00 | 27.10 | 28.25 | 32.15 | 36.90 | 40.75 | 45.00 | 47.60 | 51.30 | 56.60 |
7th | 27.90 | 28.30 | 29.00 | 30.20 | 31.80 | 33.05 | 34.30 | 38.90 | 45.15 | 49.60 | 55.95 | 60.90 | 65.20 | 69.20 |
8th | 33.20 | 33.65 | 34.50 | 36.10 | 37.90 | 39.15 | 40.80 | 46.50 | 54.45 | 62.00 | 66.80 | 72.30 | 79.60 | 86.10 |
9th | 38.65 | 39.15 | 40.25 | 42.25 | 44.25 | 45.65 | 47.90 | 55.60 | 64.60 | 73.10 | 82.45 | 90.10 | 98.10 | 106.00 |
10th | 44.30 | 44.95 | 46.30 | 48.70 | 50.80 | 53.20 | 56.60 | 64.35 | 78.55 | 88.95 | 99.15 | 108.00 | 118.00 | 128.00 |
No of Stages | MLGNR interconnect delay(50 μm-Global length) | Cu interconnect delay(50 μm-Global length) | ||||||||||||
1st | 4.34 | 4.38 | 4.43 | 4.52 | 4.64 | 4.77 | 4.93 | 5.40 | 6.10 | 6.80 | 7.51 | 8.20 | 8.80 | 9.20 |
2nd | 7.92 | 8.040 | 8.23 | 8.49 | 8.84 | 9.26 | 9.77 | 11.40 | 13.40 | 15.00 | 16.21 | 17.40 | 18.50 | 19.60 |
3rd | 12.45 | 12.70 | 13.05 | 13.64 | 14.40 | 15.20 | 16.05 | 18.30 | 22.10 | 25.40 | 27.69 | 29.70 | 31.80 | 34.50 |
4th | 18.20 | 18.55 | 19.10 | 19.87 | 20.90 | 22.15 | 23.60 | 27.20 | 32.00 | 36.90 | 39.84 | 42.90 | 46.90 | 50.30 |
5th | 24.35 | 24.90 | 26.00 | 26.68 | 27.85 | 29.95 | 31.85 | 36.40 | 43.40 | 48.80 | 53.52 | 61.00 | 67.80 | 72.60 |
6th | 30.75 | 31.40 | 32.65 | 33.66 | 34.80 | 37.90 | 40.10 | 45.70 | 55.20 | 65.30 | 70.41 | 77.20 | 87.20 | 96.00 |
7th | 37.30 | 38.20 | 39.50 | 41.15 | 42.85 | 46.10 | 48.90 | 57.50 | 68.20 | 79.50 | 90.76 | 100.10 | 111.00 | 121.50 |
8th | 44.65 | 45.85 | 47.25 | 49.07 | 51.35 | 56.25 | 60.00 | 68.20 | 85.70 | 99.60 | 113.05 | 122.00 | 136.00 | 150.50 |
9th | 53.05 | 54.60 | 56.90 | 59.10 | 62.50 | 66.05 | 70.60 | 84.40 | 104.00 | 121.00 | 136.61 | 151.00 | 168.50 | 184.50 |
10th | 62.10 | 63.50 | 65.40 | 69.76 | 73.60 | 79.90 | 85.55 | 102.00 | 126.50 | 150.00 | 169.75 | 188.00 | 211.00 | 233.00 |
In this work, we have proposed a temperature dependent resistive model of MLGNR and Cu interconnect and analyzed the effect of temperature on power supply voltage drop (IR-drop). It is observed that with the increase in temperature, the resistance is increased for both MLGNR and Cu, but MLGNR shows significantly less increase than the Cu interconnects ( ~2-5× times lesser), which exhibits less power supply voltage variation and hence less impact on the timing of the circuits. It also reduces the power dissipation of MLGNR based power interconnects as compared with Cu.
This work is partially supported by the DIT, Government of West Bengal, India under VLSI Design Project.
The authors declare that there is no conflict of interest regarding the publication of this manuscript.
[1] |
W. Kim, F. Tendick, S. Ellis, L. Stark, A comparison of position and rate control for telemanipulations with consideration of manipulator system dynamics, IEEE J. Rob. Autom., 3 (1987), 426–436. https://doi.org/10.1109/JRA.1987.1087117 doi: 10.1109/JRA.1987.1087117
![]() |
[2] |
C. Fernandes, L. Gurvit, Z. X. Li, Attitude control of space platform/manipulator system using internal motion, Space Rob. Dyn. Control, 1993 (1993), 131–163. https://doi.org/10.1007/978-1-4615-3588-1_6 doi: 10.1007/978-1-4615-3588-1_6
![]() |
[3] |
Yun, D. Moon, J. Ha, S. Kang, W. Lee, Modman: An advanced reconfigurable manipulator system with genderless connector and automatic kinematic modeling algorithm, IEEE Rob. Autom. Lett., 5 (2020), 4225–4232. https://doi.org/10.1109/LRA.2020.2994486 doi: 10.1109/LRA.2020.2994486
![]() |
[4] |
M. Tognon, H. A. T. Chávez, E. Gasparin, Q. Sablé, D. Bicego, A truly-redundant aerial manipulator system with application to push-and-slide inspection in industrial plants, IEEE Rob. Autom. Lett., 4 (2019), 1846–1851. https://doi.org/10.1109/LRA.2019.2895880 doi: 10.1109/LRA.2019.2895880
![]() |
[5] |
J. Zhang, L. Jin, C. Yang, Distributed cooperative kinematic control of multiple robotic manipulators with an improved communication efficiency, IEEE/ASME Trans. Mechatron., 27 (2021), 149–158. https://doi.org/10.1109/TMECH.2021.3059441 doi: 10.1109/TMECH.2021.3059441
![]() |
[6] |
Y. Zhou, Y. Li, PLC control system of pneumatic manipulator automatic assembly line based on cloud computing platform, J. Phys. Conf. Ser., 1744 (2021), 022011. https://doi.org/10.1088/1742-6596/1744/2/022011 doi: 10.1088/1742-6596/1744/2/022011
![]() |
[7] |
Z. Xie, L. Jin, X. Luo, Z. Sun, M. Liu, RNN for repetitive motion generation of redundant robot manipulators: An orthogonal projection-based scheme, IEEE Trans. Neural Networks Learn. Syst., 33 (2020), 615–628. https://doi.org/10.1109/TNNLS.2020.3028304 doi: 10.1109/TNNLS.2020.3028304
![]() |
[8] |
S. K. Dwivedy, P. Eberhard, Dynamic analysis of flexible manipulators, a literature review, Mech. Mach. Theory, 41 (2006), 749–777. https://doi.org/10.1016/j.mechmachtheory.2006.01.014 doi: 10.1016/j.mechmachtheory.2006.01.014
![]() |
[9] |
Z. Mohamed, J. M. Martins, M. O.Tokhi, J. Sá Da Costa, M. A. Botto, Vibration control of a very flexible manipulator system, Control Eng. Prac., 13 (2005), 267–277. https://doi.org/10.1016/j.conengprac.2003.11.014 doi: 10.1016/j.conengprac.2003.11.014
![]() |
[10] |
L. Tian, C. Collins, A dynamic recurrent neural network-based controller for a rigid-flexible manipulator system, Mechatronics, 14 (2004), 471–490. https://doi.org/10.1016/j.mechatronics.2003.10.002 doi: 10.1016/j.mechatronics.2003.10.002
![]() |
[11] |
Y. Liu, W. Zhan, M. Xing, Y. Wu, R. Xu, X. Wu, Boundary control of a rotating and length-varying flexible robotic manipulator system, IEEE Trans. Syst. Man Cybern. Syst., 52 (2020), 377–386. https://doi.org/10.1109/TSMC.2020.2999485 doi: 10.1109/TSMC.2020.2999485
![]() |
[12] |
F. Cao, J. Liu, Three-dimensional modeling and input saturation control for a two-link flexible manipulator based on infinite dimensional model, J. Franklin Inst., 357 (2020), 1026–1042. https://doi.org/10.1016/j.jfranklin.2019.10.018 doi: 10.1016/j.jfranklin.2019.10.018
![]() |
[13] |
Y. Song, X. He, Z. Liu, W. He, C. Sun, F. Y. Wang, Parallel control of distributed parameter systems, IEEE Trans. Cybern., 48 (2018), 3291–3301. https://doi.org/10.1109/TCYB.2018.2849569 doi: 10.1109/TCYB.2018.2849569
![]() |
[14] |
F. Cao, J. Liu, Boundary control for PDE flexible manipulators: Accommodation to both actuator faults and sensor faults, Asian J. Control, 24 (2022), 1700–1712. https://doi.org/10.1002/asjc.2560 doi: 10.1002/asjc.2560
![]() |
[15] |
T. Jiang, J. Liu, W. He, Boundary control for a flexible manipulator based on infinite dimensional disturbance observer, J. Sound Vib., 348 (2015), 1–14. https://doi.org/10.1016/j.jsv.2015.02.044 doi: 10.1016/j.jsv.2015.02.044
![]() |
[16] |
M. Dogan, Y. Istefanopulos, Optimal nonlinear controller design for flexible robot manipulators with adaptive internal model, IET Control Theory Appl., 1 (2007), 770–778. https://doi.org/10.1049/iet-cta:20050272 doi: 10.1049/iet-cta:20050272
![]() |
[17] |
T. Wongratanaphisan, M. O. T. Cole, Robust impedance control of a flexible structure mounted manipulator performing contact tasks, IEEE Trans. Rob., 25 (2009), 445–451. https://doi.org/10.1109/TRO.2008.2012340 doi: 10.1109/TRO.2008.2012340
![]() |
[18] |
H. C. Shin, S. B. Choi, Position control of a two-link flexible manipulator featuring piezoelectric actuators and sensors, Mechatronics, 11 (2001), 707–729. https://doi.org/10.1016/S0957-4158(00)00045-3 doi: 10.1016/S0957-4158(00)00045-3
![]() |
[19] |
S. Tong, Y. Li, Observer-based adaptive fuzzy backstepping control of uncertain nonlinear pure-feedback systems, Sci. China Inf. Sci., 57 (2014), 1–14. https://doi.org/10.1007/s11432-013-5043-y doi: 10.1007/s11432-013-5043-y
![]() |
[20] |
W. He, X. He, M. Zou, H. Li, PDE model-based boundary control design for a flexible robotic manipulator with input backlash, IEEE Trans. Control Syst. Technol., 27 (2018), 790–797. https://doi.org/10.1109/TCST.2017.2780055 doi: 10.1109/TCST.2017.2780055
![]() |
[21] |
H. J. Yang, M. Tan, Sliding mode control for flexible-link manipulators based on adaptive neural networks, Int. J. Autom. Comput., 15 (2018), 239–248. https://doi.org/10.1007/s11633-018-1122-2 doi: 10.1007/s11633-018-1122-2
![]() |
[22] |
L. Li, J. Liu, Neural-network-based adaptive fault-tolerant vibration control of single-link flexible manipulator, Trans. Inst. Meas. Control, 42 (2020), 430–438. https://doi.org/10.1177/0142331219874157 doi: 10.1177/0142331219874157
![]() |
[23] |
M. B. Cheng, V. Radisavljevic, W. C. Su, Sliding mode boundary control of a parabolic PDE system with parameter variations and boundary uncertainties, Automatica, 47 (2011), 381–387. https://doi.org/10.1016/j.automatica.2010.10.045 doi: 10.1016/j.automatica.2010.10.045
![]() |
[24] |
Y. Zhao, H. Gao, J. Qiu, Fuzzy observer based control for nonlinear coupled hyperbolic PDE-ODE systems, IEEE Trans. Fuzzy Syst., 27 (2018), 1332–1346. https://doi.org/10.1109/TFUZZ.2018.2877635 doi: 10.1109/TFUZZ.2018.2877635
![]() |
[25] |
J. Qiu, S. X. Ding, H. Gao, S. Yin, Fuzzy-model-based reliable static output feedback control of nonlinear hyperbolic PDE systems, IEEE Trans. Fuzzy Syst., 24 (2015), 388–400. https://doi.org/10.1109/TFUZZ.2015.2457934 doi: 10.1109/TFUZZ.2015.2457934
![]() |
[26] |
J. W. Wang, S. H. Tsai, H. X. Li, H. Lam, Spatially piecewise fuzzy control design for sampled-data exponential stabilization of semilinear parabolic PDE systems, IEEE Trans. Fuzzy Syst., 26 (2018), 2967–2980. https://doi.org/10.1109/TFUZZ.2018.2809686 doi: 10.1109/TFUZZ.2018.2809686
![]() |
[27] |
X. Song, R. Zhang, C. K. Ahn, S. Song, Adaptive event-triggered control of networked fuzzy PDE systems under hybrid cyber-attacks, IEEE Trans. Fuzzy Syst., 30 (2022), 4211–4223. https://doi.org/10.1109/TFUZZ.2022.3145816 doi: 10.1109/TFUZZ.2022.3145816
![]() |
[28] |
S. Tong, S. Sui, Y. Li, Fuzzy adaptive output feedback control of MIMO nonlinear systems with partial tracking errors constrained, IEEE Trans. Fuzzy Syst., 23 (2015), 729–742. https://doi.org/10.1109/TFUZZ.2014.2327987 doi: 10.1109/TFUZZ.2014.2327987
![]() |
[29] |
S. C. Tong, X. Min, Y. X. Li, Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions, IEEE Trans. Cybern., 50 (2020), 3903–3913. https://doi.org/10.1109/TCYB.2020.2977175 doi: 10.1109/TCYB.2020.2977175
![]() |
[30] |
Y. J. Liu, L. Ma, L. Liu, S. Tong, C. L. P. Chen, Adaptive neural network learning controller design for a class of nonlinear systems with time-varying state constraints, IEEE Trans. Neural Networks Learn. Syst., 31 (2019), 66–75. https://doi.org/10.1109/TNNLS.2019.2899589 doi: 10.1109/TNNLS.2019.2899589
![]() |
[31] |
Y. J. Liu, M. Gong, L. Liu, S. Tong, C. L. P. Chen, Fuzzy observer constraint based on adaptive control for uncertain nonlinear MIMO systems with time-varying state constraints, IEEE Trans. Cybern., 51 (2019), 1380–1389. https://doi.org/10.1109/TCYB.2019.2933700 doi: 10.1109/TCYB.2019.2933700
![]() |
[32] |
W. Wu, Y. Li, S. Tong, Fuzzy adaptive tracking control for state constraint switched stochastic nonlinear systems with unstable inverse dynamics, IEEE Trans. Syst. Man Cybern. Syst., 51 (2019), 5522–5534. https://doi.org/10.1109/TSMC.2019.2956263 doi: 10.1109/TSMC.2019.2956263
![]() |
[33] |
L. Tang, X. Y. Zhang, Y. J. Liu, S. Tong, PDE Based adaptive control of flexible riser system with input backlash and state constraints, IEEE Trans. Circuits Syst. I, 69 (2022), 2193–2202. https://doi.org/10.1109/TCSI.2022.3149290 doi: 10.1109/TCSI.2022.3149290
![]() |
[34] |
X. Xing, J. Liu, PDE model-based state-feedback control of constrained moving vehicle-mounted flexible manipulator with prescribed performance, J. Sound Vib., 441 (2019), 126–151. https://doi.org/10.1016/j.jsv.2018.10.023 doi: 10.1016/j.jsv.2018.10.023
![]() |
[35] |
F. Xu, L. Tang, Y. J. Liu, S. Tong, Tangent barrier Lyapunov function‐based constrained control of flexible manipulator system with actuator failure, Int. J. Robust Nonlinear Control, 31 (2021), 8523–8536. https://doi.org/10.1002/rnc.5735 doi: 10.1002/rnc.5735
![]() |
[36] |
L. Liu, X. Li, Y. J. Liu, S. Tong, Neural network based adaptive event trigger control for a class of electromagnetic suspension systems, Control Eng. Prac., 106 (2021), 104675. https://doi.org/10.1016/j.conengprac.2020.104675 doi: 10.1016/j.conengprac.2020.104675
![]() |
[37] |
Y. X. Li, G. H. Yang, S. Tong, Fuzzy adaptive distributed event-triggered consensus control of uncertain nonlinear multiagent systems, IEEE Trans. Syst. Man Cybern. Syst., 49 (2018), 1777–1786. https://doi.org/10.1109/TSMC.2018.2812216 doi: 10.1109/TSMC.2018.2812216
![]() |
[38] |
X. Li, H. Wu, J. Cao, Prescribed-time synchronization in networks of piecewise smooth systems via a nonlinear dynamic event-triggered control strategy, Math. Comput. Simul., 203 (2023), 647–668. https://doi.org/10.1016/j.matcom.2022.07.010 doi: 10.1016/j.matcom.2022.07.010
![]() |
[39] |
Z. Liu, J. Wang, C. L. P. Chen, Y. Zhang, Event trigger fuzzy adaptive compensation control of uncertain stochastic nonlinear systems with actuator failures, IEEE Trans. Fuzzy Syst., 26 (2018), 3770–3781. https://doi.org/10.1109/TFUZZ.2018.2848909 doi: 10.1109/TFUZZ.2018.2848909
![]() |
[40] |
J. Lian, C. Li, Event‐triggered adaptive tracking control of uncertain switched nonlinear systems, Int. J. Robust Nonlinear Control, 31 (2021), 4154–4169. https://doi.org/10.1002/rnc.5470 doi: 10.1002/rnc.5470
![]() |
[41] |
L. Xing, C. Wen, Z. Liu, H. Su, J. Cai, Event-triggered adaptive control for a class of uncertain nonlinear systems, IEEE Trans. Autom. Control, 62 (2016), 2071–2076. https://doi.org/10.1109/TAC.2016.2594204 doi: 10.1109/TAC.2016.2594204
![]() |
[42] |
X. Zhang, W. Xu, S. S. Nair, V. Chellaboina, PDE modeling and control of a flexible two-link manipulator, IEEE Trans. Control Syst. Technol., 13 (2005), 301–312. https://doi.org/10.1109/TCST.2004.842446 doi: 10.1109/TCST.2004.842446
![]() |
[43] |
F. Han, Y. Jia, Sliding mode boundary control for a planar two-link rigid-flexible manipulator with input disturbances, Int. J. Control Autom. Syst., 18 (2020), 351–362. https://doi.org/10.1007/s12555-019-0277-0 doi: 10.1007/s12555-019-0277-0
![]() |
[44] |
Z. Liu, J. Liu, Boundary control of a flexible robotic manipulator with output constraints, Asian J. Control, 19 (2017), 332–345. https://doi.org/10.1002/asjc.1342 doi: 10.1002/asjc.1342
![]() |
[45] | L. Meirovitch, R. Parker, Fundamentals of Vibrations, Waveland Press, 2010. |
[46] |
T. Jiang, J. Liu, W. He, Adaptive boundary control for a flexible manipulator with state constraints using a barrier Lyapunov function, J. Dyn. Syst. Meas. Control, 140 (2018). https://doi.org/10.1115/1.4039364 doi: 10.1115/1.4039364
![]() |
[47] |
J. Bai, H. Wu, J. Cao, Secure synchronization and identification for fractional complex networks with multiple weight couplings under DoS attacks, Comput. Appl. Math., 41 (2022), 187. https://doi.org/10.1007/s40314-022-01895-2 doi: 10.1007/s40314-022-01895-2
![]() |
1. | Sandip Bhattacharya, Debaprasad Das, Hafizur Rahaman, Analysis of Simultaneous Switching Noise and IR-Drop in Side-Contact Multilayer Graphene Nanoribbon Power Distribution Network, 2018, 27, 0218-1266, 1850001, 10.1142/S0218126618500019 | |
2. | Sandip Bhattacharya, Subhajit Das, Arnab Mukhopadhyay, Debaprasad Das, Hafizur Rahaman, Analysis of a temperature-dependent delay optimization model for GNR interconnects using a wire sizing method, 2018, 17, 1569-8025, 1536, 10.1007/s10825-018-1251-4 | |
3. | Subhajit Das, Debaprasad Das, Hafizur Rahaman, Electro-thermal RF modeling and performance analysis of graphene nanoribbon interconnects, 2018, 17, 1569-8025, 1695, 10.1007/s10825-018-1245-2 | |
4. | Subhajit Das, Debaprasad Das, Hafizur Rahaman, 2018, Performance modeling of intercalation doped graphene-nanoribbon interconnects, 978-1-5386-5122-3, 1, 10.1109/ISDCS.2018.8379685 | |
5. | Sandip Bhattacharya, Debaprasad Das, Hafizur Rahaman, Analysis of Temperature-Dependent Crosstalk for Graphene Nanoribbon and Copper Interconnects, 2019, 0377-2063, 1, 10.1080/03772063.2019.1674193 |
Model Parameters [24] | n-MOS(Si) | p-MOS(Si) |
Channel Length (L) | 16 nm | |
Channel Width (W) | 64 nm | 128 nm |
Threshold Voltage (VTH0) | 0.47 volt | −0.43 volt |
Dielectric Constant (εox for Sio2) | εox = 3.9 × ε0,Where ε0 = 8.85 × 10−12 F/m | |
Oxide Thickness(tox) | 0.95 nm | 1 nm |
Gate Oxide Capacitance (Cox) | 0.29 fF | 0.28 fF |
Junction Depth (Xj) | 5 nm |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 7.04 | 7.32 | 7.76 | 8.40 | 9.23 | 10.20 | 11.30 | 13.81 | 18.41 | 22.46 | 26.08 | 29.34 | 32.33 | 35.10 |
2nd | 13.25 | 13.77 | 14.60 | 15.79 | 17.34 | 19.16 | 21.21 | 25.92 | 34.55 | 42.17 | 48.97 | 55.11 | 60.77 | 65.93 |
3rd | 18.68 | 19.41 | 20.57 | 22.25 | 24.41 | 26.98 | 29.86 | 36.47 | 48.64 | 59.41 | 69.05 | 77.82 | 85.88 | 93.29 |
4th | 23.36 | 24.28 | 25.72 | 27.81 | 30.52 | 33.72 | 37.31 | 45.60 | 60.87 | 74.43 | 86.61 | 97.72 | 107.94 | 117.41 |
5th | 27.33 | 28.39 | 30.09 | 32.52 | 35.70 | 39.43 | 43.63 | 53.34 | 71.25 | 87.24 | 101.70 | 114.88 | 127.04 | 138.35 |
6th | 30.61 | 31.80 | 33.69 | 36.41 | 39.96 | 44.15 | 48.86 | 59.72 | 79.87 | 97.93 | 114.25 | 129.29 | 143.18 | 156.11 |
7th | 33.21 | 34.51 | 36.56 | 39.51 | 43.35 | 47.90 | 53.02 | 64.83 | 86.78 | 106.46 | 124.45 | 140.87 | 156.21 | 170.55 |
8th | 35.15 | 36.53 | 38.69 | 41.82 | 45.88 | 50.69 | 56.11 | 68.64 | 91.94 | 112.94 | 132.03 | 149.76 | 166.17 | 181.48 |
9th | 36.45 | 37.87 | 40.11 | 43.35 | 47.56 | 52.55 | 58.17 | 71.18 | 95.37 | 117.25 | 137.19 | 155.68 | 172.75 | 188.97 |
10th | 37.09 | 38.54 | 40.82 | 44.12 | 48.40 | 53.47 | 59.20 | 72.44 | 97.07 | 119.39 | 139.79 | 158.62 | 176.19 | 192.74 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 1.18 | 1.23 | 1.31 | 1.43 | 1.59 | 1.79 | 2.02 | 2.55 | 3.54 | 4.47 | 5.36 | 6.19 | 6.98 | 7.74 |
2nd | 2.24 | 2.33 | 2.49 | 2.71 | 3.02 | 3.40 | 3.83 | 4.84 | 6.72 | 8.49 | 10.18 | 11.75 | 13.27 | 14.73 |
3rd | 3.17 | 3.31 | 3.53 | 3.85 | 4.30 | 4.83 | 5.44 | 6.87 | 9.55 | 12.07 | 14.45 | 16.69 | 18.88 | 20.93 |
4th | 3.99 | 4.16 | 4.44 | 4.85 | 5.41 | 6.08 | 6.85 | 8.64 | 12.03 | 15.20 | 18.18 | 21.05 | 23.78 | 26.42 |
5th | 4.69 | 4.89 | 5.21 | 5.71 | 6.36 | 7.15 | 8.06 | 10.15 | 14.15 | 17.89 | 21.37 | 24.79 | 27.97 | 31.15 |
6th | 5.27 | 5.50 | 5.86 | 6.42 | 7.16 | 8.04 | 9.06 | 11.41 | 15.91 | 20.12 | 24.07 | 27.89 | 31.54 | 35.09 |
7th | 5.73 | 5.98 | 6.38 | 6.99 | 7.80 | 8.75 | 9.86 | 12.42 | 17.32 | 21.91 | 26.23 | 30.37 | 34.39 | 38.23 |
8th | 6.08 | 6.34 | 6.77 | 7.42 | 8.27 | 9.28 | 10.46 | 13.17 | 18.37 | 23.25 | 27.85 | 32.23 | 36.53 | 40.59 |
9th | 6.31 | 6.58 | 7.03 | 7.71 | 8.59 | 9.64 | 10.86 | 13.67 | 19.08 | 24.14 | 28.93 | 33.47 | 37.96 | 42.21 |
10th | 6.43 | 6.70 | 7.16 | 7.85 | 8.75 | 9.82 | 11.06 | 13.92 | 19.43 | 24.59 | 29.47 | 34.09 | 38.67 | 43.02 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 4.11 | 4.27 | 4.53 | 4.91 | 5.41 | 5.99 | 6.66 | 8.18 | 10.97 | 13.46 | 15.72 | 17.76 | 19.65 | 21.42 |
2nd | 7.74 | 8.05 | 8.54 | 9.25 | 10.18 | 11.28 | 12.52 | 15.38 | 20.63 | 25.33 | 29.57 | 33.43 | 37.02 | 40.33 |
3rd | 10.92 | 11.36 | 12.05 | 13.05 | 14.35 | 15.90 | 17.65 | 21.67 | 29.09 | 35.74 | 41.75 | 47.25 | 52.38 | 57.11 |
4th | 13.67 | 14.22 | 15.08 | 16.33 | 17.96 | 19.90 | 22.08 | 27.12 | 36.45 | 44.81 | 52.39 | 59.38 | 65.86 | 71.91 |
5th | 16.01 | 16.64 | 17.65 | 19.11 | 21.03 | 23.29 | 25.84 | 31.74 | 42.70 | 52.56 | 61.53 | 69.83 | 77.50 | 84.75 |
6th | 17.94 | 18.00 | 19.77 | 21.41 | 23.56 | 26.09 | 28.96 | 35.56 | 47.89 | 59.02 | 69.16 | 78.59 | 87.36 | 95.60 |
7th | 19.47 | 20.24 | 21.47 | 23.25 | 25.57 | 28.32 | 31.44 | 38.62 | 52.05 | 64.18 | 75.34 | 85.62 | 95.30 | 104.39 |
8th | 20.61 | 21.43 | 22.73 | 24.62 | 27.07 | 29.98 | 33.28 | 40.90 | 55.15 | 68.09 | 79.94 | 90.99 | 101.35 | 111.03 |
9th | 21.38 | 22.22 | 23.57 | 25.53 | 28.07 | 31.09 | 34.51 | 42.42 | 57.22 | 70.69 | 83.06 | 94.57 | 105.35 | 115.59 |
10th | 21.76 | 22.62 | 23.99 | 25.98 | 28.57 | 31.64 | 35.13 | 43.18 | 58.25 | 71.99 | 84.63 | 96.35 | 107.43 | 117.88 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 18.76 | 19.53 | 20.73 | 22.42 | 24.54 | 26.98 | 29.550 | 36.53 | 45.66 | 53.24 | 59.90 | 65.91 | 71.52 | 76.76 |
2nd | 35.22 | 36.66 | 38.89 | 42.10 | 46.08 | 50.67 | 55.50 | 68.66 | 85.83 | 100.02 | 112.40 | 123.57 | 133.86 | 143.45 |
3rd | 49.57 | 51.63 | 54.82 | 59.30 | 65.01 | 71.49 | 78.38 | 97.18 | 121.74 | 142.15 | 159.91 | 175.86 | 190.47 | 204.12 |
4th | 62.05 | 64.60 | 68.60 | 74.29 | 81.48 | 89.63 | 98.43 | 122.30 | 153.86 | 180.08 | 202.92 | 223.39 | 241.75 | 257.80 |
5th | 72.62 | 75.66 | 80.40 | 87.08 | 95.52 | 105.27 | 115.73 | 144.25 | 182.19 | 213.81 | 241.34 | 264.33 | 283.27 | 299.31 |
6th | 81.45 | 84.87 | 90.14 | 97.75 | 107.38 | 118.40 | 130.28 | 162.87 | 206.46 | 242.96 | 272.94 | 295.93 | 314.48 | 329.98 |
7th | 88.49 | 92.17 | 98.03 | 106.25 | 116.77 | 128.87 | 141.92 | 178.00 | 226.45 | 266.87 | 296.76 | 319.25 | 337.19 | 352.06 |
8th | 93.74 | 97.68 | 103.9 | 112.73 | 123.96 | 136.91 | 150.92 | 189.68 | 241.95 | 284.23 | 313.66 | 335.60 | 352.97 | 367.26 |
9th | 97.23 | 101.3 | 107.8 | 117.03 | 128.75 | 142.26 | 156.87 | 197.40 | 252.44 | 295.44 | 324.46 | 345.97 | 362.91 | 376.79 |
10th | 98.96 | 103.2 | 109.7 | 119.17 | 131.14 | 144.92 | 159.82 | 201.38 | 257.80 | 300.94 | 329.72 | 351.00 | 367.71 | 381.38 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 3.62 | 3.79 | 4.07 | 4.46 | 4.98 | 5.59 | 6.25 | 8.15 | 10.90 | 13.29 | 15.45 | 17.43 | 19.22 | 20.86 |
2nd | 6.87 | 7.20 | 7.72 | 8.47 | 9.46 | 10.61 | 11.85 | 15.50 | 20.74 | 25.42 | 29.68 | 33.56 | 37.11 | 40.50 |
3rd | 9.77 | 10.23 | 10.96 | 12.04 | 13.44 | 15.05 | 16.85 | 22.07 | 29.65 | 36.45 | 42.66 | 48.41 | 53.75 | 58.81 |
4th | 12.30 | 12.88 | 13.79 | 15.17 | 16.92 | 18.93 | 21.24 | 27.86 | 37.47 | 46.25 | 54.35 | 61.91 | 69.05 | 75.84 |
5th | 14.46 | 15.14 | 16.24 | 17.85 | 19.89 | 22.30 | 25.01 | 32.82 | 44.33 | 54.86 | 64.64 | 73.97 | 82.82 | 91.31 |
6th | 16.26 | 17.02 | 18.28 | 20.08 | 22.37 | 25.11 | 28.14 | 36.95 | 50.10 | 62.19 | 73.58 | 84.38 | 94.85 | 104.92 |
7th | 17.70 | 18.53 | 19.91 | 21.86 | 24.34 | 27.36 | 30.64 | 40.33 | 54.70 | 68.18 | 80.88 | 93.07 | 104.88 | 116.36 |
8th | 18.78 | 19.67 | 21.13 | 23.20 | 25.83 | 29.05 | 32.52 | 42.89 | 58.29 | 72.67 | 86.50 | 99.77 | 112.64 | 125.29 |
9th | 19.49 | 20.43 | 21.94 | 24.09 | 26.83 | 30.17 | 33.76 | 44.59 | 60.69 | 75.80 | 90.24 | 104.33 | 118.00 | 131.35 |
10th | 19.85 | 20.81 | 22.35 | 24.53 | 27.34 | 30.73 | 34.40 | 45.44 | 61.89 | 77.37 | 92.19 | 106.61 | 120.72 | 134.47 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 11.19 | 11.66 | 12.40 | 13.44 | 14.76 | 16.28 | 17.90 | 22.34 | 28.28 | 33.26 | 37.67 | 41.67 | 45.37 | 48.81 |
2nd | 21.04 | 21.93 | 23.30 | 25.28 | 27.77 | 30.64 | 33.67 | 42.08 | 53.28 | 62.72 | 71.04 | 78.56 | 85.48 | 91.97 |
3rd | 29.67 | 30.93 | 32.89 | 35.67 | 39.22 | 43.27 | 47.61 | 59.62 | 75.69 | 89.30 | 101.28 | 112.13 | 122.11 | 131.46 |
4th | 37.17 | 38.74 | 41.19 | 44.73 | 49.20 | 54.28 | 59.83 | 75.08 | 95.66 | 113.16 | 128.63 | 142.65 | 155.40 | 166.82 |
5th | 43.54 | 45.40 | 48.32 | 52.46 | 57.70 | 63.78 | 70.37 | 88.53 | 113.26 | 134.33 | 152.99 | 169.15 | 183.04 | 195.31 |
6th | 48.85 | 50.94 | 54.21 | 58.91 | 64.87 | 71.75 | 79.21 | 99.91 | 128.28 | 152.57 | 173.26 | 190.15 | 204.66 | 217.45 |
7th | 53.09 | 55.35 | 58.97 | 64.05 | 70.55 | 78.11 | 86.28 | 109.16 | 140.57 | 167.52 | 188.82 | 206.16 | 221.03 | 234.21 |
8th | 56.26 | 58.67 | 62.51 | 67.96 | 74.89 | 82.98 | 91.72 | 116.28 | 150.12 | 178.45 | 200.08 | 217.68 | 232.80 | 246.27 |
9th | 58.36 | 60.86 | 64.87 | 70.56 | 77.79 | 86.21 | 95.31 | 120.99 | 156.56 | 185.62 | 207.35 | 225.15 | 240.45 | 254.07 |
10th | 59.40 | 62.00 | 66.02 | 71.85 | 79.24 | 87.82 | 97.11 | 123.41 | 159.84 | 189.15 | 210.95 | 228.80 | 244.21 | 257.92 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 34.38 | 35.59 | 37.45 | 40.05 | 43.30 | 46.93 | 50.81 | 61.60 | 75.60 | 87.74 | 98.66 | 108.77 | 118.06 | 126.79 |
2nd | 64.59 | 66.85 | 70.42 | 75.31 | 81.41 | 88.20 | 95.54 | 115.58 | 141.31 | 163.38 | 183.20 | 201.39 | 218.29 | 234.07 |
3rd | 91.33 | 94.64 | 99.65 | 106.70 | 115.41 | 125.18 | 135.65 | 164.42 | 201.07 | 232.16 | 258.20 | 280.07 | 298.95 | 315.48 |
4th | 114.9 | 119.1 | 125.5 | 134.49 | 145.67 | 158.28 | 171.77 | 208.71 | 254.33 | 287.89 | 314.12 | 335.66 | 353.96 | 369.79 |
5th | 135.4 | 140.3 | 148.1 | 158.91 | 172.36 | 187.45 | 203.77 | 248.10 | 295.87 | 328.67 | 353.73 | 374.09 | 391.27 | 406.10 |
6th | 152.7 | 158.4 | 167.3 | 179.70 | 195.12 | 212.65 | 231.32 | 279.77 | 326.67 | 357.97 | 381.54 | 400.58 | 416.64 | 430.55 |
7th | 166.7 | 173.1 | 182.9 | 196.73 | 213.86 | 233.40 | 254.31 | 303.48 | 348.89 | 378.61 | 400.79 | 418.68 | 433.80 | 446.96 |
8th | 177.5 | 184.2 | 194.8 | 209.71 | 228.34 | 249.37 | 271.72 | 320.23 | 364.22 | 392.61 | 413.67 | 430.66 | 445.09 | 457.70 |
9th | 184.6 | 191.9 | 203.0 | 218.59 | 238.06 | 260.20 | 283.05 | 330.91 | 373.84 | 401.28 | 421.58 | 437.97 | 451.93 | 464.19 |
10th | 188.3 | 195.7 | 207.0 | 223.00 | 243.08 | 265.75 | 288.63 | 336.11 | 378.48 | 405.43 | 425.34 | 441.43 | 455.17 | 467.25 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 7.54 | 7.88 | 8.42 | 9.18 | 10.16 | 11.30 | 12.51 | 15.99 | 20.49 | 24.26 | 27.48 | 30.31 | 32.95 | 35.32 |
2nd | 14.35 | 14.99 | 16.0 | 17.49 | 19.37 | 21.52 | 23.94 | 30.75 | 39.75 | 47.40 | 54.12 | 60.18 | 65.74 | 70.90 |
3rd | 20.39 | 21.31 | 22.8 | 24.91 | 27.60 | 30.76 | 34.23 | 44.26 | 57.71 | 69.44 | 79.94 | 89.68 | 98.75 | 107.30 |
4th | 25.71 | 26.92 | 28.8 | 31.42 | 34.92 | 38.91 | 43.40 | 56.47 | 74.28 | 90.26 | 104.90 | 118.61 | 131.65 | 144.19 |
5th | 30.32 | 31.73 | 33.9 | 37.12 | 41.19 | 46.06 | 51.43 | 67.28 | 89.39 | 109.51 | 128.42 | 146.31 | 163.65 | 180.43 |
6th | 34.16 | 35.73 | 38.2 | 41.88 | 46.55 | 52.01 | 58.23 | 76.55 | 102.66 | 126.85 | 149.76 | 171.80 | 193.21 | 214.11 |
7th | 37.23 | 38.93 | 41.7 | 45.68 | 50.87 | 56.93 | 63.74 | 84.27 | 113.78 | 141.50 | 168.02 | 193.71 | 218.74 | 243.18 |
8th | 39.53 | 41.38 | 44.4 | 48.53 | 54.11 | 60.65 | 68.00 | 90.13 | 122.39 | 153.04 | 182.47 | 211.03 | 238.86 | 266.08 |
9th | 41.06 | 43.03 | 46.1 | 50.50 | 56.28 | 63.12 | 70.85 | 94.18 | 128.38 | 160.99 | 192.37 | 222.98 | 252.78 | 281.88 |
10th | 41.83 | 43.85 | 47.0 | 51.49 | 57.36 | 64.36 | 72.27 | 96.21 | 131.37 | 165.02 | 197.50 | 229.03 | 259.87 | 289.99 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 20.96 | 21.73 | 22.93 | 24.61 | 26.73 | 29.11 | 31.66 | 38.79 | 48.04 | 56.00 | 63.07 | 69.54 | 75.50 | 81.05 |
2nd | 39.47 | 40.92 | 43.21 | 46.40 | 50.39 | 54.86 | 59.74 | 73.16 | 90.53 | 105.39 | 118.66 | 130.78 | 142.01 | 152.48 |
3rd | 55.86 | 57.97 | 61.23 | 65.80 | 71.50 | 77.97 | 84.94 | 104.34 | 129.39 | 150.80 | 169.07 | 184.87 | 198.85 | 211.39 |
4th | 70.30 | 73.01 | 77.14 | 82.95 | 90.29 | 98.59 | 107.58 | 132.59 | 164.30 | 189.07 | 209.51 | 227.13 | 242.80 | 256.99 |
5th | 82.86 | 86.01 | 91.00 | 98.01 | 106.77 | 116.75 | 127.60 | 157.69 | 192.63 | 219.09 | 241.07 | 260.20 | 277.46 | 293.26 |
6th | 93.43 | 97.06 | 102.7 | 110.79 | 120.83 | 132.33 | 144.77 | 178.16 | 214.66 | 242.41 | 265.65 | 286.19 | 304.92 | 322.33 |
7th | 101.96 | 106.01 | 112.3 | 121.20 | 132.36 | 145.16 | 159.02 | 193.87 | 231.33 | 260.05 | 284.40 | 306.19 | 326.27 | 345.07 |
8th | 108.51 | 112.79 | 119.5 | 129.12 | 141.22 | 155.01 | 169.86 | 205.18 | 243.30 | 272.82 | 298.07 | 320.84 | 341.97 | 361.89 |
9th | 112.83 | 117.46 | 124.5 | 134.54 | 147.17 | 161.66 | 176.95 | 212.54 | 251.11 | 281.13 | 306.97 | 330.47 | 352.35 | 373.03 |
10th | 115.06 | 119.77 | 127.0 | 137.24 | 150.22 | 165.05 | 180.45 | 216.16 | 254.92 | 285.22 | 311.42 | 335.23 | 357.52 | 378.62 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | MLGNR interconnect delay(5 μm-Local length) | Cu interconnect delay(5 μm-Local length) | ||||||||||||
1st | 3.74 | 3.75 | 3.76 | 3.77 | 3.78 | 3.79 | 3.82 | 3.86 | 3.94 | 4.03 | 4.12 | 4.20 | 4.28 | 4.37 |
2nd | 6.05 | 6.06 | 6.09 | 6.11 | 6.16 | 6.21 | 6.27 | 6.41 | 6.68 | 6.94 | 7.21 | 7.47 | 7.73 | 8.00 |
3rd | 8.01 | 8.08 | 8.09 | 8.18 | 8.32 | 8.42 | 8.58 | 8.95 | 9.65 | 10.30 | 10.87 | 11.48 | 12.03 | 12.60 |
4th | 9.82 | 9.89 | 10.04 | 10.23 | 10.44 | 10.72 | 11.02 | 11.72 | 13.15 | 14.55 | 15.65 | 16.70 | 17.60 | 18.45 |
5th | 12.48 | 12.64 | 12.80 | 13.11 | 13.50 | 13.95 | 14.50 | 15.80 | 17.80 | 19.65 | 21.10 | 22.40 | 23.50 | 24.65 |
6th | 16.25 | 16.45 | 16.70 | 17.10 | 17.65 | 18.30 | 18.95 | 20.35 | 22.65 | 24.90 | 26.70 | 28.15 | 29.85 | 31.15 |
7th | 19.95 | 20.15 | 20.50 | 21.05 | 21.75 | 22.55 | 23.25 | 25.05 | 27.70 | 30.30 | 32.70 | 34.20 | 36.05 | 37.80 |
8th | 24.00 | 24.30 | 24.75 | 25.40 | 26.15 | 26.70 | 27.65 | 29.65 | 32.95 | 36.15 | 38.70 | 40.60 | 42.95 | 45.40 |
9th | 27.75 | 28.10 | 28.60 | 29.25 | 30.30 | 31.15 | 32.30 | 34.45 | 38.40 | 42.30 | 45.15 | 47.70 | 50.50 | 54.05 |
10th | 31.70 | 32.10 | 32.65 | 33.35 | 34.60 | 35.65 | 37.00 | 39.35 | 44.00 | 48.70 | 52.25 | 56.30 | 59.90 | 62.65 |
No of Stages | MLGNR interconnect delay(20 μm-Intermediate length) | Cu interconnect delay(20 μm-Intermediate length) | ||||||||||||
1st | 3.96 | 3.97 | 3.99 | 4.03 | 4.08 | 4.14 | 4.21 | 4.41 | 4.72 | 5.03 | 5.32 | 5.60 | 5.90 | 6.20 |
2nd | 6.70 | 6.75 | 6.83 | 6.94 | 7.09 | 7.27 | 7.49 | 8.13 | 9.13 | 10.15 | 11.09 | 12.20 | 12.80 | 13.70 |
3rd | 9.72 | 9.86 | 10.04 | 10.30 | 10.60 | 11.05 | 11.50 | 12.90 | 14.95 | 16.50 | 17.95 | 19.40 | 20.90 | 22.40 |
4th | 13.25 | 13.50 | 13.95 | 14.55 | 15.20 | 15.95 | 16.75 | 18.85 | 21.75 | 24.15 | 26.70 | 28.40 | 30.50 | 32.50 |
5th | 18.00 | 18.35 | 18.85 | 19.65 | 20.50 | 21.40 | 22.50 | 25.65 | 29.30 | 32.20 | 35.75 | 38.20 | 41.10 | 44.00 |
6th | 22.90 | 23.30 | 24.00 | 24.90 | 26.00 | 27.10 | 28.25 | 32.15 | 36.90 | 40.75 | 45.00 | 47.60 | 51.30 | 56.60 |
7th | 27.90 | 28.30 | 29.00 | 30.20 | 31.80 | 33.05 | 34.30 | 38.90 | 45.15 | 49.60 | 55.95 | 60.90 | 65.20 | 69.20 |
8th | 33.20 | 33.65 | 34.50 | 36.10 | 37.90 | 39.15 | 40.80 | 46.50 | 54.45 | 62.00 | 66.80 | 72.30 | 79.60 | 86.10 |
9th | 38.65 | 39.15 | 40.25 | 42.25 | 44.25 | 45.65 | 47.90 | 55.60 | 64.60 | 73.10 | 82.45 | 90.10 | 98.10 | 106.00 |
10th | 44.30 | 44.95 | 46.30 | 48.70 | 50.80 | 53.20 | 56.60 | 64.35 | 78.55 | 88.95 | 99.15 | 108.00 | 118.00 | 128.00 |
No of Stages | MLGNR interconnect delay(50 μm-Global length) | Cu interconnect delay(50 μm-Global length) | ||||||||||||
1st | 4.34 | 4.38 | 4.43 | 4.52 | 4.64 | 4.77 | 4.93 | 5.40 | 6.10 | 6.80 | 7.51 | 8.20 | 8.80 | 9.20 |
2nd | 7.92 | 8.040 | 8.23 | 8.49 | 8.84 | 9.26 | 9.77 | 11.40 | 13.40 | 15.00 | 16.21 | 17.40 | 18.50 | 19.60 |
3rd | 12.45 | 12.70 | 13.05 | 13.64 | 14.40 | 15.20 | 16.05 | 18.30 | 22.10 | 25.40 | 27.69 | 29.70 | 31.80 | 34.50 |
4th | 18.20 | 18.55 | 19.10 | 19.87 | 20.90 | 22.15 | 23.60 | 27.20 | 32.00 | 36.90 | 39.84 | 42.90 | 46.90 | 50.30 |
5th | 24.35 | 24.90 | 26.00 | 26.68 | 27.85 | 29.95 | 31.85 | 36.40 | 43.40 | 48.80 | 53.52 | 61.00 | 67.80 | 72.60 |
6th | 30.75 | 31.40 | 32.65 | 33.66 | 34.80 | 37.90 | 40.10 | 45.70 | 55.20 | 65.30 | 70.41 | 77.20 | 87.20 | 96.00 |
7th | 37.30 | 38.20 | 39.50 | 41.15 | 42.85 | 46.10 | 48.90 | 57.50 | 68.20 | 79.50 | 90.76 | 100.10 | 111.00 | 121.50 |
8th | 44.65 | 45.85 | 47.25 | 49.07 | 51.35 | 56.25 | 60.00 | 68.20 | 85.70 | 99.60 | 113.05 | 122.00 | 136.00 | 150.50 |
9th | 53.05 | 54.60 | 56.90 | 59.10 | 62.50 | 66.05 | 70.60 | 84.40 | 104.00 | 121.00 | 136.61 | 151.00 | 168.50 | 184.50 |
10th | 62.10 | 63.50 | 65.40 | 69.76 | 73.60 | 79.90 | 85.55 | 102.00 | 126.50 | 150.00 | 169.75 | 188.00 | 211.00 | 233.00 |
Model Parameters [24] | n-MOS(Si) | p-MOS(Si) |
Channel Length (L) | 16 nm | |
Channel Width (W) | 64 nm | 128 nm |
Threshold Voltage (VTH0) | 0.47 volt | −0.43 volt |
Dielectric Constant (εox for Sio2) | εox = 3.9 × ε0,Where ε0 = 8.85 × 10−12 F/m | |
Oxide Thickness(tox) | 0.95 nm | 1 nm |
Gate Oxide Capacitance (Cox) | 0.29 fF | 0.28 fF |
Junction Depth (Xj) | 5 nm |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 7.04 | 7.32 | 7.76 | 8.40 | 9.23 | 10.20 | 11.30 | 13.81 | 18.41 | 22.46 | 26.08 | 29.34 | 32.33 | 35.10 |
2nd | 13.25 | 13.77 | 14.60 | 15.79 | 17.34 | 19.16 | 21.21 | 25.92 | 34.55 | 42.17 | 48.97 | 55.11 | 60.77 | 65.93 |
3rd | 18.68 | 19.41 | 20.57 | 22.25 | 24.41 | 26.98 | 29.86 | 36.47 | 48.64 | 59.41 | 69.05 | 77.82 | 85.88 | 93.29 |
4th | 23.36 | 24.28 | 25.72 | 27.81 | 30.52 | 33.72 | 37.31 | 45.60 | 60.87 | 74.43 | 86.61 | 97.72 | 107.94 | 117.41 |
5th | 27.33 | 28.39 | 30.09 | 32.52 | 35.70 | 39.43 | 43.63 | 53.34 | 71.25 | 87.24 | 101.70 | 114.88 | 127.04 | 138.35 |
6th | 30.61 | 31.80 | 33.69 | 36.41 | 39.96 | 44.15 | 48.86 | 59.72 | 79.87 | 97.93 | 114.25 | 129.29 | 143.18 | 156.11 |
7th | 33.21 | 34.51 | 36.56 | 39.51 | 43.35 | 47.90 | 53.02 | 64.83 | 86.78 | 106.46 | 124.45 | 140.87 | 156.21 | 170.55 |
8th | 35.15 | 36.53 | 38.69 | 41.82 | 45.88 | 50.69 | 56.11 | 68.64 | 91.94 | 112.94 | 132.03 | 149.76 | 166.17 | 181.48 |
9th | 36.45 | 37.87 | 40.11 | 43.35 | 47.56 | 52.55 | 58.17 | 71.18 | 95.37 | 117.25 | 137.19 | 155.68 | 172.75 | 188.97 |
10th | 37.09 | 38.54 | 40.82 | 44.12 | 48.40 | 53.47 | 59.20 | 72.44 | 97.07 | 119.39 | 139.79 | 158.62 | 176.19 | 192.74 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 1.18 | 1.23 | 1.31 | 1.43 | 1.59 | 1.79 | 2.02 | 2.55 | 3.54 | 4.47 | 5.36 | 6.19 | 6.98 | 7.74 |
2nd | 2.24 | 2.33 | 2.49 | 2.71 | 3.02 | 3.40 | 3.83 | 4.84 | 6.72 | 8.49 | 10.18 | 11.75 | 13.27 | 14.73 |
3rd | 3.17 | 3.31 | 3.53 | 3.85 | 4.30 | 4.83 | 5.44 | 6.87 | 9.55 | 12.07 | 14.45 | 16.69 | 18.88 | 20.93 |
4th | 3.99 | 4.16 | 4.44 | 4.85 | 5.41 | 6.08 | 6.85 | 8.64 | 12.03 | 15.20 | 18.18 | 21.05 | 23.78 | 26.42 |
5th | 4.69 | 4.89 | 5.21 | 5.71 | 6.36 | 7.15 | 8.06 | 10.15 | 14.15 | 17.89 | 21.37 | 24.79 | 27.97 | 31.15 |
6th | 5.27 | 5.50 | 5.86 | 6.42 | 7.16 | 8.04 | 9.06 | 11.41 | 15.91 | 20.12 | 24.07 | 27.89 | 31.54 | 35.09 |
7th | 5.73 | 5.98 | 6.38 | 6.99 | 7.80 | 8.75 | 9.86 | 12.42 | 17.32 | 21.91 | 26.23 | 30.37 | 34.39 | 38.23 |
8th | 6.08 | 6.34 | 6.77 | 7.42 | 8.27 | 9.28 | 10.46 | 13.17 | 18.37 | 23.25 | 27.85 | 32.23 | 36.53 | 40.59 |
9th | 6.31 | 6.58 | 7.03 | 7.71 | 8.59 | 9.64 | 10.86 | 13.67 | 19.08 | 24.14 | 28.93 | 33.47 | 37.96 | 42.21 |
10th | 6.43 | 6.70 | 7.16 | 7.85 | 8.75 | 9.82 | 11.06 | 13.92 | 19.43 | 24.59 | 29.47 | 34.09 | 38.67 | 43.02 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 4.11 | 4.27 | 4.53 | 4.91 | 5.41 | 5.99 | 6.66 | 8.18 | 10.97 | 13.46 | 15.72 | 17.76 | 19.65 | 21.42 |
2nd | 7.74 | 8.05 | 8.54 | 9.25 | 10.18 | 11.28 | 12.52 | 15.38 | 20.63 | 25.33 | 29.57 | 33.43 | 37.02 | 40.33 |
3rd | 10.92 | 11.36 | 12.05 | 13.05 | 14.35 | 15.90 | 17.65 | 21.67 | 29.09 | 35.74 | 41.75 | 47.25 | 52.38 | 57.11 |
4th | 13.67 | 14.22 | 15.08 | 16.33 | 17.96 | 19.90 | 22.08 | 27.12 | 36.45 | 44.81 | 52.39 | 59.38 | 65.86 | 71.91 |
5th | 16.01 | 16.64 | 17.65 | 19.11 | 21.03 | 23.29 | 25.84 | 31.74 | 42.70 | 52.56 | 61.53 | 69.83 | 77.50 | 84.75 |
6th | 17.94 | 18.00 | 19.77 | 21.41 | 23.56 | 26.09 | 28.96 | 35.56 | 47.89 | 59.02 | 69.16 | 78.59 | 87.36 | 95.60 |
7th | 19.47 | 20.24 | 21.47 | 23.25 | 25.57 | 28.32 | 31.44 | 38.62 | 52.05 | 64.18 | 75.34 | 85.62 | 95.30 | 104.39 |
8th | 20.61 | 21.43 | 22.73 | 24.62 | 27.07 | 29.98 | 33.28 | 40.90 | 55.15 | 68.09 | 79.94 | 90.99 | 101.35 | 111.03 |
9th | 21.38 | 22.22 | 23.57 | 25.53 | 28.07 | 31.09 | 34.51 | 42.42 | 57.22 | 70.69 | 83.06 | 94.57 | 105.35 | 115.59 |
10th | 21.76 | 22.62 | 23.99 | 25.98 | 28.57 | 31.64 | 35.13 | 43.18 | 58.25 | 71.99 | 84.63 | 96.35 | 107.43 | 117.88 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 18.76 | 19.53 | 20.73 | 22.42 | 24.54 | 26.98 | 29.550 | 36.53 | 45.66 | 53.24 | 59.90 | 65.91 | 71.52 | 76.76 |
2nd | 35.22 | 36.66 | 38.89 | 42.10 | 46.08 | 50.67 | 55.50 | 68.66 | 85.83 | 100.02 | 112.40 | 123.57 | 133.86 | 143.45 |
3rd | 49.57 | 51.63 | 54.82 | 59.30 | 65.01 | 71.49 | 78.38 | 97.18 | 121.74 | 142.15 | 159.91 | 175.86 | 190.47 | 204.12 |
4th | 62.05 | 64.60 | 68.60 | 74.29 | 81.48 | 89.63 | 98.43 | 122.30 | 153.86 | 180.08 | 202.92 | 223.39 | 241.75 | 257.80 |
5th | 72.62 | 75.66 | 80.40 | 87.08 | 95.52 | 105.27 | 115.73 | 144.25 | 182.19 | 213.81 | 241.34 | 264.33 | 283.27 | 299.31 |
6th | 81.45 | 84.87 | 90.14 | 97.75 | 107.38 | 118.40 | 130.28 | 162.87 | 206.46 | 242.96 | 272.94 | 295.93 | 314.48 | 329.98 |
7th | 88.49 | 92.17 | 98.03 | 106.25 | 116.77 | 128.87 | 141.92 | 178.00 | 226.45 | 266.87 | 296.76 | 319.25 | 337.19 | 352.06 |
8th | 93.74 | 97.68 | 103.9 | 112.73 | 123.96 | 136.91 | 150.92 | 189.68 | 241.95 | 284.23 | 313.66 | 335.60 | 352.97 | 367.26 |
9th | 97.23 | 101.3 | 107.8 | 117.03 | 128.75 | 142.26 | 156.87 | 197.40 | 252.44 | 295.44 | 324.46 | 345.97 | 362.91 | 376.79 |
10th | 98.96 | 103.2 | 109.7 | 119.17 | 131.14 | 144.92 | 159.82 | 201.38 | 257.80 | 300.94 | 329.72 | 351.00 | 367.71 | 381.38 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 3.62 | 3.79 | 4.07 | 4.46 | 4.98 | 5.59 | 6.25 | 8.15 | 10.90 | 13.29 | 15.45 | 17.43 | 19.22 | 20.86 |
2nd | 6.87 | 7.20 | 7.72 | 8.47 | 9.46 | 10.61 | 11.85 | 15.50 | 20.74 | 25.42 | 29.68 | 33.56 | 37.11 | 40.50 |
3rd | 9.77 | 10.23 | 10.96 | 12.04 | 13.44 | 15.05 | 16.85 | 22.07 | 29.65 | 36.45 | 42.66 | 48.41 | 53.75 | 58.81 |
4th | 12.30 | 12.88 | 13.79 | 15.17 | 16.92 | 18.93 | 21.24 | 27.86 | 37.47 | 46.25 | 54.35 | 61.91 | 69.05 | 75.84 |
5th | 14.46 | 15.14 | 16.24 | 17.85 | 19.89 | 22.30 | 25.01 | 32.82 | 44.33 | 54.86 | 64.64 | 73.97 | 82.82 | 91.31 |
6th | 16.26 | 17.02 | 18.28 | 20.08 | 22.37 | 25.11 | 28.14 | 36.95 | 50.10 | 62.19 | 73.58 | 84.38 | 94.85 | 104.92 |
7th | 17.70 | 18.53 | 19.91 | 21.86 | 24.34 | 27.36 | 30.64 | 40.33 | 54.70 | 68.18 | 80.88 | 93.07 | 104.88 | 116.36 |
8th | 18.78 | 19.67 | 21.13 | 23.20 | 25.83 | 29.05 | 32.52 | 42.89 | 58.29 | 72.67 | 86.50 | 99.77 | 112.64 | 125.29 |
9th | 19.49 | 20.43 | 21.94 | 24.09 | 26.83 | 30.17 | 33.76 | 44.59 | 60.69 | 75.80 | 90.24 | 104.33 | 118.00 | 131.35 |
10th | 19.85 | 20.81 | 22.35 | 24.53 | 27.34 | 30.73 | 34.40 | 45.44 | 61.89 | 77.37 | 92.19 | 106.61 | 120.72 | 134.47 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 11.19 | 11.66 | 12.40 | 13.44 | 14.76 | 16.28 | 17.90 | 22.34 | 28.28 | 33.26 | 37.67 | 41.67 | 45.37 | 48.81 |
2nd | 21.04 | 21.93 | 23.30 | 25.28 | 27.77 | 30.64 | 33.67 | 42.08 | 53.28 | 62.72 | 71.04 | 78.56 | 85.48 | 91.97 |
3rd | 29.67 | 30.93 | 32.89 | 35.67 | 39.22 | 43.27 | 47.61 | 59.62 | 75.69 | 89.30 | 101.28 | 112.13 | 122.11 | 131.46 |
4th | 37.17 | 38.74 | 41.19 | 44.73 | 49.20 | 54.28 | 59.83 | 75.08 | 95.66 | 113.16 | 128.63 | 142.65 | 155.40 | 166.82 |
5th | 43.54 | 45.40 | 48.32 | 52.46 | 57.70 | 63.78 | 70.37 | 88.53 | 113.26 | 134.33 | 152.99 | 169.15 | 183.04 | 195.31 |
6th | 48.85 | 50.94 | 54.21 | 58.91 | 64.87 | 71.75 | 79.21 | 99.91 | 128.28 | 152.57 | 173.26 | 190.15 | 204.66 | 217.45 |
7th | 53.09 | 55.35 | 58.97 | 64.05 | 70.55 | 78.11 | 86.28 | 109.16 | 140.57 | 167.52 | 188.82 | 206.16 | 221.03 | 234.21 |
8th | 56.26 | 58.67 | 62.51 | 67.96 | 74.89 | 82.98 | 91.72 | 116.28 | 150.12 | 178.45 | 200.08 | 217.68 | 232.80 | 246.27 |
9th | 58.36 | 60.86 | 64.87 | 70.56 | 77.79 | 86.21 | 95.31 | 120.99 | 156.56 | 185.62 | 207.35 | 225.15 | 240.45 | 254.07 |
10th | 59.40 | 62.00 | 66.02 | 71.85 | 79.24 | 87.82 | 97.11 | 123.41 | 159.84 | 189.15 | 210.95 | 228.80 | 244.21 | 257.92 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 34.38 | 35.59 | 37.45 | 40.05 | 43.30 | 46.93 | 50.81 | 61.60 | 75.60 | 87.74 | 98.66 | 108.77 | 118.06 | 126.79 |
2nd | 64.59 | 66.85 | 70.42 | 75.31 | 81.41 | 88.20 | 95.54 | 115.58 | 141.31 | 163.38 | 183.20 | 201.39 | 218.29 | 234.07 |
3rd | 91.33 | 94.64 | 99.65 | 106.70 | 115.41 | 125.18 | 135.65 | 164.42 | 201.07 | 232.16 | 258.20 | 280.07 | 298.95 | 315.48 |
4th | 114.9 | 119.1 | 125.5 | 134.49 | 145.67 | 158.28 | 171.77 | 208.71 | 254.33 | 287.89 | 314.12 | 335.66 | 353.96 | 369.79 |
5th | 135.4 | 140.3 | 148.1 | 158.91 | 172.36 | 187.45 | 203.77 | 248.10 | 295.87 | 328.67 | 353.73 | 374.09 | 391.27 | 406.10 |
6th | 152.7 | 158.4 | 167.3 | 179.70 | 195.12 | 212.65 | 231.32 | 279.77 | 326.67 | 357.97 | 381.54 | 400.58 | 416.64 | 430.55 |
7th | 166.7 | 173.1 | 182.9 | 196.73 | 213.86 | 233.40 | 254.31 | 303.48 | 348.89 | 378.61 | 400.79 | 418.68 | 433.80 | 446.96 |
8th | 177.5 | 184.2 | 194.8 | 209.71 | 228.34 | 249.37 | 271.72 | 320.23 | 364.22 | 392.61 | 413.67 | 430.66 | 445.09 | 457.70 |
9th | 184.6 | 191.9 | 203.0 | 218.59 | 238.06 | 260.20 | 283.05 | 330.91 | 373.84 | 401.28 | 421.58 | 437.97 | 451.93 | 464.19 |
10th | 188.3 | 195.7 | 207.0 | 223.00 | 243.08 | 265.75 | 288.63 | 336.11 | 378.48 | 405.43 | 425.34 | 441.43 | 455.17 | 467.25 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 7.54 | 7.88 | 8.42 | 9.18 | 10.16 | 11.30 | 12.51 | 15.99 | 20.49 | 24.26 | 27.48 | 30.31 | 32.95 | 35.32 |
2nd | 14.35 | 14.99 | 16.0 | 17.49 | 19.37 | 21.52 | 23.94 | 30.75 | 39.75 | 47.40 | 54.12 | 60.18 | 65.74 | 70.90 |
3rd | 20.39 | 21.31 | 22.8 | 24.91 | 27.60 | 30.76 | 34.23 | 44.26 | 57.71 | 69.44 | 79.94 | 89.68 | 98.75 | 107.30 |
4th | 25.71 | 26.92 | 28.8 | 31.42 | 34.92 | 38.91 | 43.40 | 56.47 | 74.28 | 90.26 | 104.90 | 118.61 | 131.65 | 144.19 |
5th | 30.32 | 31.73 | 33.9 | 37.12 | 41.19 | 46.06 | 51.43 | 67.28 | 89.39 | 109.51 | 128.42 | 146.31 | 163.65 | 180.43 |
6th | 34.16 | 35.73 | 38.2 | 41.88 | 46.55 | 52.01 | 58.23 | 76.55 | 102.66 | 126.85 | 149.76 | 171.80 | 193.21 | 214.11 |
7th | 37.23 | 38.93 | 41.7 | 45.68 | 50.87 | 56.93 | 63.74 | 84.27 | 113.78 | 141.50 | 168.02 | 193.71 | 218.74 | 243.18 |
8th | 39.53 | 41.38 | 44.4 | 48.53 | 54.11 | 60.65 | 68.00 | 90.13 | 122.39 | 153.04 | 182.47 | 211.03 | 238.86 | 266.08 |
9th | 41.06 | 43.03 | 46.1 | 50.50 | 56.28 | 63.12 | 70.85 | 94.18 | 128.38 | 160.99 | 192.37 | 222.98 | 252.78 | 281.88 |
10th | 41.83 | 43.85 | 47.0 | 51.49 | 57.36 | 64.36 | 72.27 | 96.21 | 131.37 | 165.02 | 197.50 | 229.03 | 259.87 | 289.99 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 20.96 | 21.73 | 22.93 | 24.61 | 26.73 | 29.11 | 31.66 | 38.79 | 48.04 | 56.00 | 63.07 | 69.54 | 75.50 | 81.05 |
2nd | 39.47 | 40.92 | 43.21 | 46.40 | 50.39 | 54.86 | 59.74 | 73.16 | 90.53 | 105.39 | 118.66 | 130.78 | 142.01 | 152.48 |
3rd | 55.86 | 57.97 | 61.23 | 65.80 | 71.50 | 77.97 | 84.94 | 104.34 | 129.39 | 150.80 | 169.07 | 184.87 | 198.85 | 211.39 |
4th | 70.30 | 73.01 | 77.14 | 82.95 | 90.29 | 98.59 | 107.58 | 132.59 | 164.30 | 189.07 | 209.51 | 227.13 | 242.80 | 256.99 |
5th | 82.86 | 86.01 | 91.00 | 98.01 | 106.77 | 116.75 | 127.60 | 157.69 | 192.63 | 219.09 | 241.07 | 260.20 | 277.46 | 293.26 |
6th | 93.43 | 97.06 | 102.7 | 110.79 | 120.83 | 132.33 | 144.77 | 178.16 | 214.66 | 242.41 | 265.65 | 286.19 | 304.92 | 322.33 |
7th | 101.96 | 106.01 | 112.3 | 121.20 | 132.36 | 145.16 | 159.02 | 193.87 | 231.33 | 260.05 | 284.40 | 306.19 | 326.27 | 345.07 |
8th | 108.51 | 112.79 | 119.5 | 129.12 | 141.22 | 155.01 | 169.86 | 205.18 | 243.30 | 272.82 | 298.07 | 320.84 | 341.97 | 361.89 |
9th | 112.83 | 117.46 | 124.5 | 134.54 | 147.17 | 161.66 | 176.95 | 212.54 | 251.11 | 281.13 | 306.97 | 330.47 | 352.35 | 373.03 |
10th | 115.06 | 119.77 | 127.0 | 137.24 | 150.22 | 165.05 | 180.45 | 216.16 | 254.92 | 285.22 | 311.42 | 335.23 | 357.52 | 378.62 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | MLGNR interconnect delay(5 μm-Local length) | Cu interconnect delay(5 μm-Local length) | ||||||||||||
1st | 3.74 | 3.75 | 3.76 | 3.77 | 3.78 | 3.79 | 3.82 | 3.86 | 3.94 | 4.03 | 4.12 | 4.20 | 4.28 | 4.37 |
2nd | 6.05 | 6.06 | 6.09 | 6.11 | 6.16 | 6.21 | 6.27 | 6.41 | 6.68 | 6.94 | 7.21 | 7.47 | 7.73 | 8.00 |
3rd | 8.01 | 8.08 | 8.09 | 8.18 | 8.32 | 8.42 | 8.58 | 8.95 | 9.65 | 10.30 | 10.87 | 11.48 | 12.03 | 12.60 |
4th | 9.82 | 9.89 | 10.04 | 10.23 | 10.44 | 10.72 | 11.02 | 11.72 | 13.15 | 14.55 | 15.65 | 16.70 | 17.60 | 18.45 |
5th | 12.48 | 12.64 | 12.80 | 13.11 | 13.50 | 13.95 | 14.50 | 15.80 | 17.80 | 19.65 | 21.10 | 22.40 | 23.50 | 24.65 |
6th | 16.25 | 16.45 | 16.70 | 17.10 | 17.65 | 18.30 | 18.95 | 20.35 | 22.65 | 24.90 | 26.70 | 28.15 | 29.85 | 31.15 |
7th | 19.95 | 20.15 | 20.50 | 21.05 | 21.75 | 22.55 | 23.25 | 25.05 | 27.70 | 30.30 | 32.70 | 34.20 | 36.05 | 37.80 |
8th | 24.00 | 24.30 | 24.75 | 25.40 | 26.15 | 26.70 | 27.65 | 29.65 | 32.95 | 36.15 | 38.70 | 40.60 | 42.95 | 45.40 |
9th | 27.75 | 28.10 | 28.60 | 29.25 | 30.30 | 31.15 | 32.30 | 34.45 | 38.40 | 42.30 | 45.15 | 47.70 | 50.50 | 54.05 |
10th | 31.70 | 32.10 | 32.65 | 33.35 | 34.60 | 35.65 | 37.00 | 39.35 | 44.00 | 48.70 | 52.25 | 56.30 | 59.90 | 62.65 |
No of Stages | MLGNR interconnect delay(20 μm-Intermediate length) | Cu interconnect delay(20 μm-Intermediate length) | ||||||||||||
1st | 3.96 | 3.97 | 3.99 | 4.03 | 4.08 | 4.14 | 4.21 | 4.41 | 4.72 | 5.03 | 5.32 | 5.60 | 5.90 | 6.20 |
2nd | 6.70 | 6.75 | 6.83 | 6.94 | 7.09 | 7.27 | 7.49 | 8.13 | 9.13 | 10.15 | 11.09 | 12.20 | 12.80 | 13.70 |
3rd | 9.72 | 9.86 | 10.04 | 10.30 | 10.60 | 11.05 | 11.50 | 12.90 | 14.95 | 16.50 | 17.95 | 19.40 | 20.90 | 22.40 |
4th | 13.25 | 13.50 | 13.95 | 14.55 | 15.20 | 15.95 | 16.75 | 18.85 | 21.75 | 24.15 | 26.70 | 28.40 | 30.50 | 32.50 |
5th | 18.00 | 18.35 | 18.85 | 19.65 | 20.50 | 21.40 | 22.50 | 25.65 | 29.30 | 32.20 | 35.75 | 38.20 | 41.10 | 44.00 |
6th | 22.90 | 23.30 | 24.00 | 24.90 | 26.00 | 27.10 | 28.25 | 32.15 | 36.90 | 40.75 | 45.00 | 47.60 | 51.30 | 56.60 |
7th | 27.90 | 28.30 | 29.00 | 30.20 | 31.80 | 33.05 | 34.30 | 38.90 | 45.15 | 49.60 | 55.95 | 60.90 | 65.20 | 69.20 |
8th | 33.20 | 33.65 | 34.50 | 36.10 | 37.90 | 39.15 | 40.80 | 46.50 | 54.45 | 62.00 | 66.80 | 72.30 | 79.60 | 86.10 |
9th | 38.65 | 39.15 | 40.25 | 42.25 | 44.25 | 45.65 | 47.90 | 55.60 | 64.60 | 73.10 | 82.45 | 90.10 | 98.10 | 106.00 |
10th | 44.30 | 44.95 | 46.30 | 48.70 | 50.80 | 53.20 | 56.60 | 64.35 | 78.55 | 88.95 | 99.15 | 108.00 | 118.00 | 128.00 |
No of Stages | MLGNR interconnect delay(50 μm-Global length) | Cu interconnect delay(50 μm-Global length) | ||||||||||||
1st | 4.34 | 4.38 | 4.43 | 4.52 | 4.64 | 4.77 | 4.93 | 5.40 | 6.10 | 6.80 | 7.51 | 8.20 | 8.80 | 9.20 |
2nd | 7.92 | 8.040 | 8.23 | 8.49 | 8.84 | 9.26 | 9.77 | 11.40 | 13.40 | 15.00 | 16.21 | 17.40 | 18.50 | 19.60 |
3rd | 12.45 | 12.70 | 13.05 | 13.64 | 14.40 | 15.20 | 16.05 | 18.30 | 22.10 | 25.40 | 27.69 | 29.70 | 31.80 | 34.50 |
4th | 18.20 | 18.55 | 19.10 | 19.87 | 20.90 | 22.15 | 23.60 | 27.20 | 32.00 | 36.90 | 39.84 | 42.90 | 46.90 | 50.30 |
5th | 24.35 | 24.90 | 26.00 | 26.68 | 27.85 | 29.95 | 31.85 | 36.40 | 43.40 | 48.80 | 53.52 | 61.00 | 67.80 | 72.60 |
6th | 30.75 | 31.40 | 32.65 | 33.66 | 34.80 | 37.90 | 40.10 | 45.70 | 55.20 | 65.30 | 70.41 | 77.20 | 87.20 | 96.00 |
7th | 37.30 | 38.20 | 39.50 | 41.15 | 42.85 | 46.10 | 48.90 | 57.50 | 68.20 | 79.50 | 90.76 | 100.10 | 111.00 | 121.50 |
8th | 44.65 | 45.85 | 47.25 | 49.07 | 51.35 | 56.25 | 60.00 | 68.20 | 85.70 | 99.60 | 113.05 | 122.00 | 136.00 | 150.50 |
9th | 53.05 | 54.60 | 56.90 | 59.10 | 62.50 | 66.05 | 70.60 | 84.40 | 104.00 | 121.00 | 136.61 | 151.00 | 168.50 | 184.50 |
10th | 62.10 | 63.50 | 65.40 | 69.76 | 73.60 | 79.90 | 85.55 | 102.00 | 126.50 | 150.00 | 169.75 | 188.00 | 211.00 | 233.00 |