In the current global cooperative production mode, the distributed fuzzy flow-shop scheduling problem (DFFSP) has attracted much attention because it takes the uncertain factors in the actual flow-shop scheduling problem into account. This paper investigates a multi-stage hybrid evolutionary algorithm with sequence difference-based differential evolution (MSHEA-SDDE) for the minimization of fuzzy completion time and fuzzy total flow time. MSHEA-SDDE balances the convergence and distribution performance of the algorithm at different stages. In the first stage, the hybrid sampling strategy makes the population rapidly converge toward the Pareto front (PF) in multiple directions. In the second stage, the sequence difference-based differential evolution (SDDE) is used to speed up the convergence speed to improve the convergence performance. In the last stage, the evolutional direction of SDDE is changed to guide individuals to search the local area of the PF, thereby further improving the convergence and distribution performance. The results of experiments show that the performance of MSHEA-SDDE is superior to the classical comparison algorithms in terms of solving the DFFSP.
Citation: Wenqiang Zhang, Xiaoxiao Zhang, Xinchang Hao, Mitsuo Gen, Guohui Zhang, Weidong Yang. Multi-stage hybrid evolutionary algorithm for multiobjective distributed fuzzy flow-shop scheduling problem[J]. Mathematical Biosciences and Engineering, 2023, 20(3): 4838-4864. doi: 10.3934/mbe.2023224
[1] | Maurizio Verri, Giovanna Guidoboni, Lorena Bociu, Riccardo Sacco . The role of structural viscoelasticity in deformable porous media with incompressible constituents: Applications in biomechanics. Mathematical Biosciences and Engineering, 2018, 15(4): 933-959. doi: 10.3934/mbe.2018042 |
[2] | Ziad Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Muhammad Jawad, Rashid Jan, Kamsing Nonlaopon . Thermal boundary layer analysis of MHD nanofluids across a thin needle using non-linear thermal radiation. Mathematical Biosciences and Engineering, 2022, 19(12): 14116-14141. doi: 10.3934/mbe.2022658 |
[3] | K. Maqbool, S. Shaheen, A. M. Siddiqui . Effect of nano-particles on MHD flow of tangent hyperbolic fluid in a ciliated tube: an application to fallopian tube. Mathematical Biosciences and Engineering, 2019, 16(4): 2927-2941. doi: 10.3934/mbe.2019144 |
[4] | Wei-wei Jiang, Xin-xin Zhong, Guang-quan Zhou, Qiu Guan, Yong-ping Zheng, Sheng-yong Chen . An automatic measurement method of spinal curvature on ultrasound coronal images in adolescent idiopathic scoliosis. Mathematical Biosciences and Engineering, 2020, 17(1): 776-788. doi: 10.3934/mbe.2020040 |
[5] | Bei Liu, Wenbin Tan, Xian Zhang, Ziqi Peng, Jing Cao . Recognition study of denatured biological tissues based on multi-scale rescaled range permutation entropy. Mathematical Biosciences and Engineering, 2022, 19(1): 102-114. doi: 10.3934/mbe.2022005 |
[6] | Wei Lin, Fengshuang Yang . Computational analysis of cutting parameters based on gradient Voronoi model of cancellous bone. Mathematical Biosciences and Engineering, 2022, 19(11): 11657-11674. doi: 10.3934/mbe.2022542 |
[7] | Cornel M. Murea, H. G. E. Hentschel . A finite element method for growth in biological development. Mathematical Biosciences and Engineering, 2007, 4(2): 339-353. doi: 10.3934/mbe.2007.4.339 |
[8] | Jianhua Song, Lei Yuan . Brain tissue segmentation via non-local fuzzy c-means clustering combined with Markov random field. Mathematical Biosciences and Engineering, 2022, 19(2): 1891-1908. doi: 10.3934/mbe.2022089 |
[9] | Ewa Majchrzak, Mikołaj Stryczyński . Dual-phase lag model of heat transfer between blood vessel and biological tissue. Mathematical Biosciences and Engineering, 2021, 18(2): 1573-1589. doi: 10.3934/mbe.2021081 |
[10] | Xu Guo, Yuanming Jing, Haizhou Lou, Qiaonv Lou . Effect and mechanism of long non-coding RNA ZEB2-AS1 in the occurrence and development of colon cancer. Mathematical Biosciences and Engineering, 2019, 16(6): 8109-8120. doi: 10.3934/mbe.2019408 |
In the current global cooperative production mode, the distributed fuzzy flow-shop scheduling problem (DFFSP) has attracted much attention because it takes the uncertain factors in the actual flow-shop scheduling problem into account. This paper investigates a multi-stage hybrid evolutionary algorithm with sequence difference-based differential evolution (MSHEA-SDDE) for the minimization of fuzzy completion time and fuzzy total flow time. MSHEA-SDDE balances the convergence and distribution performance of the algorithm at different stages. In the first stage, the hybrid sampling strategy makes the population rapidly converge toward the Pareto front (PF) in multiple directions. In the second stage, the sequence difference-based differential evolution (SDDE) is used to speed up the convergence speed to improve the convergence performance. In the last stage, the evolutional direction of SDDE is changed to guide individuals to search the local area of the PF, thereby further improving the convergence and distribution performance. The results of experiments show that the performance of MSHEA-SDDE is superior to the classical comparison algorithms in terms of solving the DFFSP.
In the last several decades, the kinetic theory of polyatomic gases witnessed extensive interest due to its vigorous relation with a wide range of practical applications including spacecraft flights, hypersonic flights and aerodynamics [1], plasma physics [20], thermal sciences [13,23], combustion processes, and chemical reactors. In the context of polyatomic gases, Borgnakke and Larsen proposed a microscopic model [6]. Later on, an entropic kinetic model consistent with [6] has been derived [8]. This model originates from the Boltzmann equation, which was a breakthrough in the kinetic theory, and offered an accurate description of the gas flow.
However, it is usually expensive and cumbersome to solve the Boltzmann equation directly. As an alternative to the Boltzmann equation, kinetic theory provides macroscopic models for not too large Knudsen numbers. These models are derived as approximations to the Boltzmann equation and offer high computational speed and explicit equations for macroscopic variables, which are helpful for understanding and analyzing the flow behavior. Macroscopic models are classically obtained by Chapman-Enskog method [5] and moments method [22,18]. Using the Chapman-Enskog method, Nagnibeda and Kustova [19] studied the strong vibrational nonequilibrium in diatomic gases and reacting mixture of polyatomic gases, and derived the first-order distribution function and governing equations. Cai and Li [10] extended the NRxx model to polyatomic gases using the ES-BGK model of [2] and [9]. In [24], the existence result of the ES-BGK model was achieved in the case where the solution lies close to equilibrium.
Simplified Boltzmann models for mixtures of polyatomic gases have also been proposed in [3,12]. The authors of [4] developed a generalized macroscopic 14 field theory for the polyatomic gases, based on the methods of extended thermodynamics [18]. In the full non-linear Boltzmann equation, Gamba and Pavić-Čolić [15] established existence and uniqueness theory in the space homogeneous setting.
The relation of the kinetic theory with the spectral theory was initiated by Grad [17], who was behind the history of serious investigation of the spectral properties of the linearized Boltzmann operator for monoatomic gases. With his pioneering work, Grad showed that the linearized collision operator
In fact, diatomic gases gain a solid importance due to the fact that in the upper atmosphere of the earth, the diatomic molecules Oxygen (
The plan of the document is the following: In section 2, we give a brief recall on the collision model [8], which describes the microscopic state diatomic gases. In section 3, we define the linearized operator
For the sake of clarity, we present the model in [8] on which our work is mainly based. We start with physical conservation equations and proceed as follows.
Without loss of generality, we first assume that the particle mass equals unity, and we denote as usual by
v+v∗=v′+v′∗ | (1) |
12v2+12v2∗+I+I∗=12v′2+12v′2∗+I′+I′∗. | (2) |
From the above equations, we can deduce the following equation representing the conservation of total energy in the center of mass reference frame:
14(v−v∗)2+I+I∗=14(v′−v′∗)2+I′+I′∗=E, |
with
14(v′−v′∗)2=REI′+I′∗=(1−R)E, |
and
I′=r(1−R)EI′∗=(1−r)(1−R)E. |
Using the above equations, we can express the post-collisional velocities in terms of the other quantities by the following
v′≡v′(v,v∗,I,I∗,ω,R)=v+v∗2+√RETω[v−v∗|v−v∗|]v′∗≡v′∗(v,v∗,I,I∗,ω,R)=v+v∗2−√RETω[v−v∗|v−v∗|], |
where
14(v−v∗)2=R′EI+I∗=(1−R′)E, |
and
I=r′(1−R′)EI∗=(1−r′)(1−R′)E. |
Finally, the post-collisional energies can be given in terms of the pre-collisional energies by the following relation
I′=r(1−R)r′(1−R′)II′∗=(1−r)(1−R)(1−r′)(1−R′)I∗. |
The Boltzmann equation for an interacting single polyatomic gas reads
∂tf+v.∇xf=Q(f,f), | (3) |
where
Q(f,f)(v,I)=∫R3×R+×S2×(0,1)2(f′f′∗(I′I′∗)α−ff∗(II∗)α)×B×(r(1−r))α(1−R)2α×IαIα∗(1−R)R1/2dRdrdωdI∗dv∗, | (4) |
where we use the standard notations
Q(f,f)(v,I)=∫R3×R+×S2×(0,1)2(f′f′∗−ff∗)×B×(1−R)R1/2dRdrdωdI∗dv∗, | (5) |
The function
B(v,v∗,I,I∗,r,R,ω)=B(v∗,v,I∗,I,1−r,R,−ω),B(v,v∗,I,I∗,r,R,ω)=B(v′,v′∗,I′,I′∗,r′,R′,ω). | (6) |
Main assumptions on
Together with the above assumption (6), we assume the following boundedness assumptions on the collision cross section
C1φ(R)ψ(r)|ω.(v−v∗)|v−v∗||(|v−v∗|γ+Iγ2+Iγ2∗)≤B(v,v∗,I,I∗,r,R,ω), | (7) |
and
B(v,v∗,I,I∗,r,R,ω)≤C2φ˜α(R)ψ˜β(r)(|v−v∗|γ+Iγ2+Iγ2∗), | (8) |
where for any
ψp(r)=(r(1−r))p,and φp(R)=(1−R)p. |
In addition,
φ(R)≤φ˜α(R),and ψ(r)≤ψ˜β(r), | (9) |
and
We remark that the above assumptions (7) and (8) are compatible with Maxwell molecules, hard spheres and hard potentials in the monoatomic case.
We state first the H-theorem for diatomic gases which was initially established for polyatomic gases in [8]. Namely, suppose that the positivity assumption of
D(f)=∫R3∫R+Q(f,f)logfdIdv≤0, |
and the following are equivalent
1. The collision operator
2. The entropy production vanishes, i.e.
3. There exists
f(v,I)=n(2πkT)32kTe−1kT(12(v−u)2+I), | (10) |
where
Mn,u,T(v,I)=n(2πκT)32kTe−1κT(12(v−u)2+I), | (11) |
where
n=∫R3∫R+fdIdv,nu=∫R3∫R+vfdIdv,52nT=∫R3∫R+((v−u)22+I)fdIdv. |
Without loss of generality, we will consider in the sequel a normalized version
M(v,I)=M1,0,1(v,I)=1(2π)32e−12v2−I. |
We look for a solution
f(v,I)=M(v,I)+M12(v,I)g(v,I). | (12) |
The linearization of the Boltzmann operator (5) around
Lg=M−12[Q(M,M12g)+Q(M12g,M)], |
In particular,
Lg=M−12∫Δ[M′M′12∗g′∗−MM12∗g∗+M′12M′∗g′−M12M∗g]B(1−R)R1/2drdRdωdI∗dv∗. | (13) |
Thanks to the conservation of total energy (2) we have
L(g)=−∫ΔBM12M12∗g∗(1−R)R1/2drdRdωdI∗dv∗−∫ΔBM∗g(1−R)R1/2drdRdωdI∗dv∗+∫ΔBM12∗M′12g′∗(1−R)R1/2drdRdωdI∗dv∗+∫ΔBM12∗M′12∗g′(1−R)R1/2drdRdωdI∗dv∗. |
Here,
L=K−νId, |
where
Kg=∫ΔBM12∗M′12g′∗(1−R)R1/2drdRdωdI∗dv∗+∫ΔBM12∗M′12∗g′(1−R)R1/2drdRdωdI∗dv∗−∫ΔBM12M12∗g∗(1−R)R1/2drdRdωdI∗dv∗, | (14) |
and
ν(v,I)=∫ΔBM∗(1−R)R1/2drdRdωdI∗dv∗, | (15) |
which represents the collision frequency. We write also
K1=∫ΔBM12M12∗g∗(1−R)R1/2drdRdωdI∗dv∗, | (16) |
K2=∫ΔBM12∗M′12g′∗(1−R)R1/2drdRdωdI∗dv∗, | (17) |
and
K3=∫ΔBM12∗M′12∗g′(1−R)R1/2drdRdωdI∗dv∗. | (18) |
The linearized operator
kerL=M1/2span {1,vi,12v2+I}i=1,⋯,3. |
Since
Dom(ν Id)={g∈L2(R3×R+):νg∈L2(R3×R+)}, |
then
We give now the main result on the linearized Boltzmann operator based on the assumptions of the collision cross section (8) and (7). In particular, using (7) we prove that the multiplication operator by
We state the following theorem, which is the main result of the paper.
Theorem 4.1. The operator
We carry out the proof of the coercivity of
Proof. Throughout the proof, we prove the compactness of each
Compactness of
k1(v,I,v∗,I∗)=1(2π)32∫S2×(0,1)2Be−14v2∗−14v2−12I∗−12I(1−R)R1/2drdRdω, |
and therefore
K1g(v,I)=∫R3×R+g(v∗,I∗)k1(v,I,v∗,I∗)dI∗dv∗∀(v,I)∈R3×R+. |
If
Lemma 4.2. With the assumption (8) on
Proof. Applying Cauchy-Schwarz we get
||k1||2L2≤c∫R3∫R+∫R3∫R+(Iγ+Iγ∗+|v−v∗|2γ)e−12v2∗−12v2−I∗−IdIdvdI∗dv∗≤c∫R3e−12v2∗[∫|v−v∗|≤1e−12v2dv+∫|v−v∗|≥1|v−v∗|⌈2γ⌉e−12v2dv]dv∗≤c∫R3e−12v2∗[∫|v−v∗|≥1⌈2γ⌉∑k=0|v|k|v∗|⌈2γ⌉−ke−12v2dv]dv∗≤c⌈2γ⌉∑k=0∫R3|v∗|⌈2γ⌉−ke−12v2∗[∫R3|v|ke−12v2dv]dv∗<∞, |
where
This implies that
Compactness of
Lemma 4.3. Let
σ=Tω(v−v∗|v−v∗|)=v−v∗|v−v∗|−2v−v∗|v−v∗|.ωω, | (19) |
then the Jacobian of the
dω=dσ2|σ−v−v∗|v−v∗||. |
Proof. It's enough to assume that
dσω:R3⟼R3→ω⟶→σ=−2⟨v−v∗|v−v∗|,→ω⟩ω−2⟨v−v∗|v−v∗|,ω⟩→ω. | (20) |
Let
Gram=|→σ1|2|→σ2|2−⟨→σ1,→σ2⟩2, |
where
|→σ1|2=4(⟨v−v∗|v−v∗|,→ω1⟩2+⟨v−v∗|v−v∗|,ω⟩2)=4|v−v∗|v−v∗||2=4,|→σ2|2=4(⟨v−v∗|v−v∗|,→ω2⟩2+⟨v−v∗|v−v∗|,ω⟩2)=4⟨v−v∗|v−v∗|,ω⟩2, |
and
⟨σ1,σ2⟩=0. |
As a result,
Gram=16⟨v−v∗|v−v∗|,ω⟩2=4|σ−v−v∗|v−v∗||2. |
We thus write
K2g(v,I)=∫Δe−I∗2−12r(1−R)((v−v∗)24+I+I∗)−14v2∗−14(v+v∗2+√R(14(v−v∗)2+I+I∗)σ)2×g(v+v∗2−√R(14(v−v∗)2+I+I∗)σ,(1−R)(1−r)[14(v−v∗)2+I+I∗])1(2π)32(1−R)R12B|σ−v−v∗|v−v∗||−1drdRdσdI∗dv∗. | (21) |
We seek first to write
h:R3×R+⟼h(R3×R+)⊂R3×R+(v∗,I∗)⟼(x,y)=(v+v∗2−√R(14(v−v∗)2+I+I∗)σ,(1−R)(1−r)[14(v−v∗)2+I+I∗]), |
for fixed
v∗=2x+2√Rayσ−v,I∗=ay−I−(x−v+√Rayσ)2, |
and
v′=x+2√Rayσ,I′=r1−ry, |
where
J=|∂v∗∂I∗∂x∂y|=8(1−r)(1−R), |
and the positivity of
Hv,IR,r,σ=h(R3×R+)={(x,y)∈R3×R+:ay−I−(x−v+√Rayσ)2>0}. | (22) |
In fact,
Hv,IR,r,σ={(x,y)∈R3×R+:x∈Bv−√Rayσ(√ay−I) and y∈((1−r)(1−R)I,+∞)}. |
Therefore, equation (
K2g=1(2π)32∫(0,1)2×S2∫Hv,IR,r,σ(1−R)R12JB|σ−v−x−√Rayσ|v−x−√Rayσ||−1g(x,y)×e−ay−I−(x−v+√Rayσ)22−r2(1−r)y−14(2x+2√Rayσ−v)2−14(x+2√Rayσ)2dydxdσdrdR. | (23) |
We now point out the kernel form of
Hv,I:={(y,x,σ,r,R)∈Δ:R∈(0,1),r∈(0,1),σ∈S2,x∈Bv−√Rayσ(√ay−I), and y∈((1−r)(1−R)I,+∞)}. |
We remark that
Hv,I=Hv,Ix,y×R3×R+ which is equivalent to Hv,I=(0,1)×(0,1)×S2×Hv,IR,r,σ. |
In other words,
Hv,Ix,y={(r,R,σ)∈(0,1)×(0,1)×S2:(y,x,σ,r,R)∈Hv,I}. | (24) |
Then by Fubini theorem, it holds that
K2g(v,I)=1(2π)32∫Hv,I(1−R)R12JB|σ−v−x−√Rayσ|v−x−√Rayσ||−1g(x,y)×e−ay−I−(x−v+√Rayσ)22−r2(1−r)y−14(2x+2√Rayσ−v)2−14(x+2√Rayσ)2dydxdσdrdR=1(2π)32∫R3×R+∫Hv,Ix,y(1−R)R12JB|σ−v−x−√Rayσ|v−x−√Rayσ||−1g(x,y)×e−ay−I−(x−v+√Rayσ)22−r2(1−r)y−14(2x+2√Rayσ−v)2−14(x+2√Rayσ)2dσdrdRdydx. | (25) |
The kernel of
Lemma 4.4. With the assumption (8) on
k2(v,I,x,y)=1(2π)32∫Hv,Ix,y(1−R)R12JB|σ−v−x−√Rayσ|v−x−√Rayσ||−1×e−ay−I−(x−v+√Rayσ)22−r2(1−r)y−14(2x+2√Rayσ−v)2−14(x+2√Rayσ)2dσdrdR |
is in
Proof. Rewriting
‖k2‖2L2≤c∫R3∫R+∫R3∫R+∫(0,1)2×S2(1−R)2RJ2B2×e−[ay−I−(x−v+√RayTω(v−v∗|v−v∗|))2]−r(1−r)y−12(2x+2√RayTω(v−v∗|v−v∗|)−v)2e−12(x+2√RayTω(v−v∗|v−v∗|))2dωdrdRdydxdIdv. |
Writing back in
‖k2‖2L2≤c∫R3∫R+∫R3∫R+∫(0,1)2×S2e−I∗−12v2∗−r(1−R)((v−v∗)24+I)(1−R)2RJB2(v,v∗,I,I∗,r,R,ω)dωdrdRdI∗dv∗dIdv. |
Assumption (8) on
‖k2‖2L2≤c∫(0,1)2∫R3∫R+∫R3∫R+(1−R)2RJ(|v−v∗|2γ+Iγ+Iγ∗)(r(1−r))2˜β(1−R)2˜α×e−I∗−12v2∗−r(1−R)((v−v∗)24+I)dIdvdI∗dv∗drdR≤c∫(0,1)2r2˜β−52−γ(1−r)2˜β−1R(1−R)2˜α−32−γdrdR<∞. |
with
Remark 1. For any
∫R3∫R+∫R3∫R+IaIb∗|v−v∗|ce−I∗−12v2∗−r(1−R)(v−v∗)24−r(1−R)IdIdvdI∗dv∗≤C(∫R+Iae−r(1−R)IdI)(∫R3[∫R3|v−v∗|ce−r(1−R)(v−v∗)24dv]e−12v2∗dv∗)≤C[r(1−R)]−a−1[r(1−R)]−c+32, |
for some constant
The lemma is thus proved, which implies that
Compactness of
K3g(v,I)=∫Δe−I∗2−12(1−r)(1−R)((v−v∗)24+I+I∗)e−14v2∗−14(v+v∗2−√R(14(v−v∗)2+I+I∗)σ)2g(v+v∗2+√R(14(v−v∗)2+I+I∗)σ,r(1−R)[14(v−v∗)2+I+I∗])1(2π)32R12(1−R)B|σ−v−v∗|v−v∗||−1drdRdσdI∗dv∗, |
inherits the same form as
˜h:R3×R+⟼R3×R+(v∗,I∗)⟼(x,y)=(v+v∗2+√R(14(v−v∗)2+I+I∗)σ,r(1−R)[14(v−v∗)2+I+I∗]), |
is calculated to be
˜J=8r(1−R). |
The final requirement for the kernel of
∫(0,1)2(1−r)2˜β−52−γr2˜β−1R(1−R)2˜α−32−γdrdR<∞, |
which holds by the change of variable
To this extent, the perturbation operator
We give in this section some properties of
Proposition 1 (Coercivity of
ν(v,I)≥c(|v|γ+Iγ/2+1), |
for any
Proof. The collision frequency (15) is
ν(v,I)=∫ΔBe−I∗−12v2∗drdRdωdI∗dv∗, |
where by
ν(v,I)≥c∫S2∫R3(|v−v∗|γ+Iγ/2)e−12v2∗dωdv∗≥c(Iγ/2+∫R3||v|−|v∗||γe−12v2∗dv∗), |
where
ν(v,I)≥c(Iγ/2+∫|v∗|≤12|v|(|v|−|v∗|)γe−12v2∗dv∗)≥c(Iγ/2+|v|γ∫|v∗|≤12e−12v2∗dv∗)≥c(|v|γ+Iγ/2+1). |
For
ν(v,I)≥c(Iγ/2+∫|v∗|≥2(|v∗|−|v|)γe−12v2∗dv∗)≥c(Iγ/2+∫|v∗|≥2e−12v2∗dv∗)≥c(1+Iγ/2+|v|γ). |
The result is thus proved. We give now the following proposition, which is a generalization of the work of Grad [17], in which he proved that the collision frequency of monoatomic single gases is monotonic based on the choice of the collision cross section
Proposition 2 (monotony of
∫(0,1)2×S2(1−R)R12B(|V|,I,I∗,r,R,ω)drdRdω | (26) |
is increasing (respectively decreasing) in
In particular, for Maxwell molecules, where
B(v,v∗,I,I∗,r,R,ω)=Cφ(r)ψ(R)(|v−v∗|γ+Iγ/2+Iγ/2∗), |
the integral (26) is increasing, and thus
In fact, if
Proof. We remark first that
ν(|v|,I)=1(2π)32∫Δ(1−R)R12B(|V|,I,I∗,r,R,ω)e−12(v−V)2−I∗drdRdωdI∗dV, | (27) |
where
The partial derivative of
∂ν∂vi=1(2π)32∫(1−R)R12vi−v∗i|v−v∗|∂B∂|v−v∗|(|v−v∗|,I,I∗,r,R,ω)e−12v2∗−I∗drdRdωdI∗dv∗. | (28) |
Perform the change of variable
∂ν∂vi=1(2π)32∫(1−R)R12Vi|V|∂B∂|V|(|V|,I,I∗,r,R,ω)e−12(v−V)2−I∗drdRdωdI∗dV, |
and thus,
3∑i=1vi∂ν∂vi=1(2π)32∫(1−R)R12v.V|V|∂B∂|V|(|V|,I,I∗,r,R,ω) | (29) |
e−12(v−V)2−I∗drdRdωdI∗dV. | (30) |
Applying Fubini theorem, we write (29) as
3∑i=1vi∂ν∂vi=1(2π)32∫[∫(1−R)R12∂B∂|V|(|V|,I,I∗,r,R,ω)drdRdω]v.V|V| | (31) |
e−12(v−V)2−I∗dI∗dV. | (32) |
The partial derivative of
I∂ν∂I=1(2π)32∫(1−R)R12I∂B∂I(|V|,I,I∗,r,R,ω)e−12(v−V)2−I∗drdRdωdI∗dV=1(2π)32I∫[∫(1−R)R12∂B∂I(|V|,I,I∗,r,R,ω)drdRdω]e−12(v−V)2−I∗dI∗dV. | (33) |
When
∫(1−R)R12∂B∂|V|(|V|,I,I∗,r,R,ω)drdRdω. |
It's clear as well that the partial derivative of
∫(1−R)R12∂B∂I(|V|,I,I∗,r,R,ω)drdRdω. |
As a result, for a collision cross-section
∫(0,1)2×S2(1−R)R12B(|V|,I,I∗,r,R,ω)drdRdω |
is increasing (respectively decreasing) in
[1] | L. Wang, W. Shen, Process Planning and Scheduling for Distributed Manufacturing, Springer Science & Business Media, 2007. https://doi.org/10.1007/978-1-84628-752-7 |
[2] |
X. Chen, V. Chau, P. Xie, M. Sterna, J. Błażewicz, Complexity of late work minimization in flow shop systems and a particle swarm optimization algorithm for learning effect, Comput. Ind. Eng., 111 (2017), 176–182. https://doi.org/10.1016/j.cie.2017.07.016 doi: 10.1016/j.cie.2017.07.016
![]() |
[3] | X. Yu, M. Gen, Introduction to Evolutionary Algorithms, Springer Science & Business Media, 2010. https://doi.org/10.1007/978-1-84996-129-5 |
[4] |
Y. Abdi, M. Feizi-Derakhshi, Hybrid multi-objective evolutionary algorithm based on search manager framework for big data optimization problems, Appl. Soft Comput., 87 (2020), 105991. https://doi.org/10.1016/j.asoc.2019.105991 doi: 10.1016/j.asoc.2019.105991
![]() |
[5] |
W. Zhang, D. Yang, G. Zhang, M. Gen, Hybrid multiobjective evolutionary algorithm with fast sampling strategy-based global search and route sequence difference-based local search for VRPTW, Expert Syst. Appl., 145 (2020), 113151. https://doi.org/10.1016/j.eswa.2019.113151 doi: 10.1016/j.eswa.2019.113151
![]() |
[6] |
K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6 (2002), 182–197. https://doi.org/10.1109/4235.996017 doi: 10.1109/4235.996017
![]() |
[7] | E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm, TIK Rep., 103 (2001). https://doi.org/10.3929/ETHZ-A-004284029 |
[8] |
Q. Zhang, H. Li, MOEA/D: A multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 11 (2007), 712–731. https://doi.org/10.1109/TEVC.2007.892759 doi: 10.1109/TEVC.2007.892759
![]() |
[9] | W. Zhang, J. Lu, H. Zhang, C. Wang, M. Gen, Fast multi-objective hybrid evolutionary algorithm for flow shop scheduling problem, in Proceedings of the Tenth International Conference on Management Science and Engineering Management, Springer, Singapore, (2017), 383–392. https://doi.org/10.1007/978-981-10-1837-4_33 |
[10] |
W. Zhang, Y. Wang, Y. Yang, M. Gen, Hybrid multiobjective evolutionary algorithm based on differential evolution for flow shop scheduling problems, Comput. Ind. Eng., 130 (2019), 661–670. https://doi.org/10.1016/j.cie.2019.03.019 doi: 10.1016/j.cie.2019.03.019
![]() |
[11] | H. A. E. Khalifa, F. Smarandache, S. S. Alodhaibi, A fuzzy approach for minimizing machine rental cost for a specially-structured three-stages flow-shop scheduling problem in a fuzzy environment, in Handbook of Research on Advances and Applications of Fuzzy Sets and Logic, IGI Global, (2022), 105–119. https://doi.org/10.4018/978-1-7998-7979-4.ch005 |
[12] | B. Goyal, S. Kaur, Specially structured flow shop scheduling models with processing times as trapezoidal fuzzy numbers to optimize waiting time of jobs, in Soft Computing for Problem Solving, Springer, Singapore, (2021), 27–42. https://doi.org/10.1007/978-981-16-2712-5_3 |
[13] |
V. Vinoba, N. Selvamalar, Improved makespan of the branch and bound solution for a fuzzy flow-shop scheduling problem using the maximization operator, Malaya J. Mat., 7 (2019), 91–95. https://doi.org/10.26637/MJM0701/0018 doi: 10.26637/MJM0701/0018
![]() |
[14] |
M. Li, B. Su, D. Lei, A novel imperialist competitive algorithm for fuzzy distributed assembly flow shop scheduling, J. Intell. Fuzzy Syst., 40 (2021), 4545–4561. https://doi.org/10.3233/JIFS-201391 doi: 10.3233/JIFS-201391
![]() |
[15] |
B. Xi, D. Lei, Q-learning-based teaching-learning optimization for distributed two-stage hybrid flow shop scheduling with fuzzy processing time, Complex Syst. Model. Simul., 2 (2022), 113–129. https://doi.org/10.23919/CSMS.2022.0002 doi: 10.23919/CSMS.2022.0002
![]() |
[16] |
J. Li, J. Li, L. Zhang, H. Sang, Y. Han, Q. Chen, Solving type-2 fuzzy distributed hybrid flowshop scheduling using an improved brain storm optimization algorithm, Int. J. Fuzzy Syst., 23 (2021), 1194–1212. https://doi.org/10.1007/S40815-021-01050-9 doi: 10.1007/S40815-021-01050-9
![]() |
[17] |
J. Cai, D. Lei, A cooperated shuffled frog-leaping algorithm for distributed energy-efficient hybrid flow shop scheduling with fuzzy processing time, Complex Intell. Syst., 7 (2021), 2235–2253. https://doi.org/10.1007/S40747-021-00400-2 doi: 10.1007/S40747-021-00400-2
![]() |
[18] |
L. Wang, D. Li, Fuzzy distributed hybrid flow shop scheduling problem with heterogeneous factory and unrelated parallel machine: A shuffled frog leaping algorithm with collaboration of multiple search strategies, IEEE Access, 8 (2020), 214209–214223. https://doi.org/10.1109/ACCESS.2020.3041369 doi: 10.1109/ACCESS.2020.3041369
![]() |
[19] |
J. Cai, R. Zhou, D. Lei, Fuzzy distributed two-stage hybrid flow shop scheduling problem with setup time: collaborative variable search, J. Intell. Fuzzy Syst., 38 (2020), 3189–3199. https://doi.org/10.3233/JIFS-191175 doi: 10.3233/JIFS-191175
![]() |
[20] |
K. Ying, S. Lin, C. Cheng, C. He, Iterated reference greedy algorithm for solving distributed no-idle permutation flowshop scheduling problems, Comput. Ind. Eng., 110 (2017), 413–423. https://doi.org/10.1016/j.cie.2017.06.025 doi: 10.1016/j.cie.2017.06.025
![]() |
[21] | M. E. Baysal, A. Sarucan, K. Büyüközkan, O. Engin, Distributed fuzzy permutation flow shop scheduling problem: a bee colony algorithm, in International Conference on Intelligent and Fuzzy Systems, Springer, Cham, (2020), 1440–1446. https://doi.org/10.1007/978-3-030-51156-2_167 |
[22] |
J. Lin, Z. Wang, X. Li, A backtracking search hyper-heuristic for the distributed assembly flow-shop scheduling problem, Swarm Evol. Comput., 36 (2017), 124–135. https://doi.org/10.1016/j.swevo.2017.04.007 doi: 10.1016/j.swevo.2017.04.007
![]() |
[23] |
M. E. Baysal, A. Sarucan, K. Büyüközkan, O. Engin, Artificial bee colony algorithm for solving multi-objective distributed fuzzy permutation flow shop problem, J. Intell. Fuzzy Syst., 42 (2022), 439–449. https://doi.org/10.3233/JIFS-219202 doi: 10.3233/JIFS-219202
![]() |
[24] |
K. Wang, Y. Huang, H. Qin, A fuzzy logic-based hybrid estimation of distribution algorithm for distributed permutation flowshop scheduling problems under machine breakdown, J. Oper. Res. Soc., 67 (2016), 68–82. https://doi.org/10.1057/jors.2015.50 doi: 10.1057/jors.2015.50
![]() |
[25] |
Z. Shao, W. Shao, D. Pi, Effective heuristics and metaheuristics for the distributed fuzzy blocking flow-shop scheduling problem, Swarm Evol. Comput., 59 (2020), 100747. https://doi.org/10.1016/j.swevo.2020.100747 doi: 10.1016/j.swevo.2020.100747
![]() |
[26] |
J. Wang, L. Wang, A cooperative memetic algorithm with feedback for the energy-aware distributed flow-shops with flexible assembly scheduling, Comput. Ind. Eng., 168 (2022), 108126. https://doi.org/10.1016/j.cie.2022.108126 doi: 10.1016/j.cie.2022.108126
![]() |
[27] |
C. Lu, L. Gao, J. Yi, X. Li, Energy-efficient scheduling of distributed flow shop with heterogeneous factories: A real-world case from automobile industry in China, IEEE Trans. Ind. Inf., 17 (2020), 6687–6696. https://doi.org/10.1109/TII.2020.3043734 doi: 10.1109/TII.2020.3043734
![]() |
[28] |
F. Zhao, H. Zhang, L. Wang, A pareto-based discrete jaya algorithm for multiobjective carbon-efficient distributed blocking flow shop scheduling problem, IEEE Trans. Ind. Inf., 2022 (2022), 1–10. https://doi.org/10.1109/TII.2022.3220860 doi: 10.1109/TII.2022.3220860
![]() |
[29] |
F. Zhao, S. Di, L. Wang, A hyperheuristic with q-learning for the multiobjective energy-efficient distributed blocking flow shop scheduling problem, IEEE Trans. Cybern., 2022 (2022), 1–14. https://doi.org/10.1109/TCYB.2022.3192112 doi: 10.1109/TCYB.2022.3192112
![]() |
[30] |
Z. Pan, D. Lei, L. Wang, A knowledge-based two-population optimization algorithm for distributed energy-efficient parallel machines scheduling, IEEE Trans. Cybern., 52 (2022), 5051–5063. https://doi.org/10.1109/TCYB.2020.3026571 doi: 10.1109/TCYB.2020.3026571
![]() |
[31] |
F. Zhao, T. Jiang, L. Wang, A reinforcement learning driven cooperative meta-heuristic algorithm for energy-efficient distributed no-wait flow-shop scheduling with sequence-dependent setup time, IEEE Trans. Ind. Inf., 2022 (2022), 1–12. https://doi.org/10.1109/TII.2022.3218645 doi: 10.1109/TII.2022.3218645
![]() |
[32] |
C. Lu, Q. Liu, B. Zhang, L. Yin, A pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of distributed hybrid flowshop, Expert Syst. Appl., 204 (2022), 117555. https://doi.org/10.1016/j.eswa.2022.117555 doi: 10.1016/j.eswa.2022.117555
![]() |
[33] |
J. Zheng, L. Wang, J. Wang, A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop, Knowledge-Based Syst., 194 (2020), 105536. https://doi.org/10.1016/j.knosys.2020.105536 doi: 10.1016/j.knosys.2020.105536
![]() |
[34] | W. Zhang, W. Hou, D. Yang, Z. Xing, M. Gen, Multiobjective particle swarm optimization with directional search for distributed permutation flow shop scheduling problem, in International Conference on Bio-Inspired Computing: Theories and Applications, Springer, Singapore, (2019), 164–176. https://doi.org/10.1007/978-981-15-3425-6_14 |
[35] |
S. Chanas, A. Kasperski, On two single machine scheduling problems with fuzzy processing times and fuzzy due dates, Eur. J. Oper. Res., 147 (2003), 281–296. https://doi.org/10.1016/S0377-2217(02)00561-1 doi: 10.1016/S0377-2217(02)00561-1
![]() |
[36] |
M. Sakawa, R. Kubota, Fuzzy programming for multiobjective job shop scheduling with fuzzy processing time and fuzzy duedate through genetic algorithms, Eur. J. Oper. Res., 120 (2000), 393–407. https://doi.org/10.1016/S0377-2217(99)00094-6 doi: 10.1016/S0377-2217(99)00094-6
![]() |
[37] |
B. Liu, Y. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE Trans. Fuzzy Syst., 10 (2002), 445–450. https://doi.org/10.1109/TFUZZ.2002.800692 doi: 10.1109/TFUZZ.2002.800692
![]() |
[38] |
J. J. Palacios, I. G. Rodriguez, C. R. Vela, J. Puente, Robust multiobjective optimisation for fuzzy job shop problems, Appl. Soft Comput., 56 (2017), 604–616. https://doi.org/10.1016/j.asoc.2016.07.004 doi: 10.1016/j.asoc.2016.07.004
![]() |
[39] | J. D. Schaffer, Multiple objective optimization with vector evaluated genetic algorithms, in Proceedings of the First International Conference of Genetic Algorithms and Their Application, Psychology Press, (1985), 93–100. https://doi.org/10.4324/9781315799674 |
[40] |
W. Zhang, M. Gen, J. Jo, Hybrid sampling strategy-based multiobjective evolutionary algorithm for process planning and scheduling problem, J. Intell. Manuf., 25 (2014), 881–897. https://doi.org/10.1007/s10845-013-0814-2 doi: 10.1007/s10845-013-0814-2
![]() |
[41] |
W. Li, J. Li, K. Gao, Y. Han, B. Niu, Z. Liu, et al., Solving robotic distributed flowshop problem using an improved iterated greedy algorithm, Int. J. Adv. Rob. Syst., 16 (2019), 1729881419879819. https://doi.org/10.1177/1729881419879819 doi: 10.1177/1729881419879819
![]() |
[42] |
W. Xu, Y. Wang, D. Yan, Z. Ji, Flower pollination algorithm for multi-objective fuzzy flexible job shop scheduling, J. Syst. Simul., 30 (2018), 4403. https://doi.org/10.16182/j.issn1004731x.joss.201811042 doi: 10.16182/j.issn1004731x.joss.201811042
![]() |
[43] |
D. Lei, X. Guo, An effective neighborhood search for scheduling in dual-resource constrained interval job shop with environmental objective, Int. J. Prod. Econ., 159 (2015), 296–303. https://doi.org/10.1016/j.ijpe.2014.07.026 doi: 10.1016/j.ijpe.2014.07.026
![]() |
[44] |
W. Zhang, C. Li, M. Gen, W. Yang, Z. Zhang, G. Zhang, Multiobjective particle swarm optimization with direction search and differential evolution for distributed flow-shop scheduling problem, Math. Biosci. Eng., 19 (2022), 8833–8865. https://doi.org/10.3934/mbe.2022410 doi: 10.3934/mbe.2022410
![]() |
1. | Shingo Kosuge, Kazuo Aoki, Navier–Stokes Equations and Bulk Viscosity for a Polyatomic Gas with Temperature-Dependent Specific Heats, 2022, 8, 2311-5521, 5, 10.3390/fluids8010005 | |
2. | Niclas Bernhoff, Linearized Boltzmann Collision Operator: I. Polyatomic Molecules Modeled by a Discrete Internal Energy Variable and Multicomponent Mixtures, 2023, 183, 0167-8019, 10.1007/s10440-022-00550-6 | |
3. | Ricardo Alonso, Milana Čolić, Integrability Propagation for a Boltzmann System Describing Polyatomic Gas Mixtures, 2024, 56, 0036-1410, 1459, 10.1137/22M1539897 | |
4. | Niclas Bernhoff, Compactness Property of the Linearized Boltzmann Collision Operator for a Mixture of Monatomic and Polyatomic Species, 2024, 191, 1572-9613, 10.1007/s10955-024-03245-4 | |
5. | Ricardo J. Alonso, Milana Čolić, Irene M. Gamba, The Cauchy Problem for Boltzmann Bi-linear Systems: The Mixing of Monatomic and Polyatomic Gases, 2024, 191, 1572-9613, 10.1007/s10955-023-03221-4 | |
6. | Renjun Duan, Zongguang Li, Global bounded solutions to the Boltzmann equation for a polyatomic gas, 2023, 34, 0129-167X, 10.1142/S0129167X23500362 | |
7. | Gyounghun Ko, Sung-jun Son, Global stability of the Boltzmann equation for a polyatomic gas with initial data allowing large oscillations, 2025, 425, 00220396, 506, 10.1016/j.jde.2025.01.038 | |
8. | Stephane Brull, Annamaria Pollino, An ES-BGK model for non polytropic gases with a general framework, 2025, 0, 1937-5093, 0, 10.3934/krm.2025010 |