[1]
|
X. Liu, H. Wang, Z. Li, L. Qin, Deep learning in ecg diagnosis: A review, Knowl. Based Syst., 227 (2021), 107187. https://doi.org/10.1016/j.knosys.2021.107187 doi: 10.1016/j.knosys.2021.107187
|
[2]
|
H. Hao, M. Liu, P. Xiong, H. Du, H. Zhang, F. Lin, et al., Multi-lead model-based ecg signal denoising by guided filter, Eng. Appl. Artif. Intell., 79 (2019), 34–44. https://doi.org/10.1016/j.engappai.2018.12.004 doi: 10.1016/j.engappai.2018.12.004
|
[3]
|
F. M. Dias, H. L. Monteiro, T. W. Cabral, R. Naji, M. Kuehni, E. J. da S. Luz, Arrhythmia classification from single-lead ecg signals using the inter-patient paradigm, Comput. Methods Prog. Biomed., 202 (2021), 105948. https://doi.org/10.1016/j.cmpb.2021.105948 doi: 10.1016/j.cmpb.2021.105948
|
[4]
|
V. Singh, U. S. Reddy, G. M. Bhargavia, A generic and robust system for automated detection of different classes of arrhythmia, Proc. Comput. Sci., 167 (2020), 1801–1810. https://doi.org/10.1016/j.procs.2020.03.199 doi: 10.1016/j.procs.2020.03.199
|
[5]
|
H. M. Rai, K. Chatterjee, A novel adaptive feature extraction for detection of cardiac arrhythmias using hybrid technique mrdwt & mpnn classifier from ecg big data, Big Data Res., 12 (2018), 13–22. https://doi.org/10.1016/j.bdr.2018.02.003 doi: 10.1016/j.bdr.2018.02.003
|
[6]
|
J. Heo, J. J. Lee, S. Kwon, B. Kim, S. O. Hwang, Y. R. Yoon, A novel method for detecting st segment elevation myocardial infarction on a 12-lead electrocardiogram with a three-dimensional display, Biomed. Signal Process. Control, 56 (2020), 101700. https://doi.org/10.1016/j.bspc.2019.101700 doi: 10.1016/j.bspc.2019.101700
|
[7]
|
R. S. Singh, B. S. Saini, R. K. Sunkaria, Arrhythmia detection based on time-frequency features of heart rate variability and back-propagation neural network, Iran J. Comput. Sci., 2 (2019), 245–257. https://doi.org/10.1007/s42044-019-00042-1 doi: 10.1007/s42044-019-00042-1
|
[8]
|
G. Sannino, G. De Pietro, A deep learning approach for ecg-based heartbeat classification for arrhythmia detection, Future Gener. Comput. Syst., 86 (2018), 446–455. https://doi.org/10.1016/j.future.2018.03.057 doi: 10.1016/j.future.2018.03.057
|
[9]
|
E. Ramirez, P. Melin, G. Prado-Arechiga, Hybrid model based on neural networks, type-1 and type-2 fuzzy systems for 2-lead cardiac arrhythmia classification, Expert Syst. Appl., 126 (2019), 295–307. https://doi.org/10.1016/j.eswa.2019.02.035 doi: 10.1016/j.eswa.2019.02.035
|
[10]
|
M. Sharma, R. S. Tan, U. R. Acharya, Automated heartbeat classification and detection of arrhythmia using optimal orthogonal wavelet filters, Inf. Med. Unlocked, 16 (2019), 100221. https://doi.org/10.1016/j.imu.2019.100221 doi: 10.1016/j.imu.2019.100221
|
[11]
|
Z. Ebrahimi, M. Loni, M. Daneshtalab, A. Gharehbaghi, A review on deep learning methods for ecg arrhythmia classification, Expert Syst. Appl., 7 (2020), 100033. https://doi.org/10.1016/j.eswax.2020.100033 doi: 10.1016/j.eswax.2020.100033
|
[12]
|
S. Parvaneh, J. Rubin, S. Babaeizadeh, M. Xu-Wilson, Cardiac arrhythmia detection using deep learning: A review, J. Electrocardiol., 57 (2019), S70–S74. https://doi.org/10.1016/j.jelectrocard.2019.08.004 doi: 10.1016/j.jelectrocard.2019.08.004
|
[13]
|
R. Jothiramalingam, A. Jude, R. Patan, M. Ramachandran, J. H. Duraisamy, A. H. Gandomi, Machine learning-based left ventricular hypertrophy detection using multi-lead ecg signal, Neural Comput. Appl., 33 (2021), 4445–4455. https://doi.org/10.1007/s00521-020-05238-2 doi: 10.1007/s00521-020-05238-2
|
[14]
|
Z. Golrizkhatami, A. Acan, Ecg classification using three-level fusion of different feature descriptors, Expert Syst. Appl., 114 (2018), 54–64. https://doi.org/10.1016/j.eswa.2018.07.030 doi: 10.1016/j.eswa.2018.07.030
|
[15]
|
H. Martin, W. Izquierdo, M. Cabrerizo, A. Cabrera, M. Adjouadi, Near real-time single-beat myocardial infarction detection from single-lead electrocardiogram using long short-term memory neural network, Biomed. Signal Process. Control, 68 (2021), 102683. https://doi.org/10.1016/j.bspc.2021.102683 doi: 10.1016/j.bspc.2021.102683
|
[16]
|
K. Sugimoto, Y. Kon, S. Lee, Y. Okada, Detection and localization of myocardial infarction based on a convolutional autoencoder, Knowl. Based Syst., 178 (2019), 123–131. https://doi.org/10.1016/j.knosys.2019.04.023 doi: 10.1016/j.knosys.2019.04.023
|
[17]
|
K. Liu, S. Xu, N. Feng, A radial basis probabilistic process neural network model and corresponding classification algorithm, Appl. Intell., 49 (2019), 2256–2265. https://doi.org/10.1007/s10489-018-1369-x doi: 10.1007/s10489-018-1369-x
|
[18]
|
H. Fujita, D. Cimr, Decision support system for arrhythmia prediction using convolutional neural network structure without preprocessing, Appl. Intell., 49 (2019), 3383–3391. https://doi.org/10.1007/s10489-019-01461-0 doi: 10.1007/s10489-019-01461-0
|
[19]
|
M. Srinivasulu, Multi-lead ecg signal analysis using rbfnn-mso algorithm, Int. J. Speech Technol., 24 (2021), 341–350. https://doi.org/10.1007/s10772-021-09799-y doi: 10.1007/s10772-021-09799-y
|
[20]
|
G. Garcia, G. Moreira, D. Menotti, E. Luz, Inter-patient ecg heartbeat classification with temporal vcg optimized by pso, Sci. Rep., 7 (2017), 10543. https://doi.org/10.1038/s41598-017-09837-3 doi: 10.1038/s41598-017-09837-3
|
[21]
|
A. Chen, F. Wang, W. Liu, S. Chang, H. Wang, J. He, et al., Multi-information fusion neural networks for arrhythmia automatic detection, Comput. Methods Prog. Biomed., 193 (2020), 105479. https://doi.org/10.1016/j.cmpb.2020.105479 doi: 10.1016/j.cmpb.2020.105479
|
[22]
|
R. Mahajan, R. Kamaleswaran, O. Akbilgic, Comparative analysis between convolutional neural network learned and engineered features: A case study on cardiac arrhythmia detection, Cardiovass. Digital Health J., 1 (2020), 37–44. https://doi.org/10.1016/j.cvdhj.2020.04.001 doi: 10.1016/j.cvdhj.2020.04.001
|
[23]
|
P. Lu, S. Guo, Y. Wang, L. Qi, X. Han, Y. Wang, Ecg classification based on long short-term memory networks, in Proceedings of the 2nd International Conference on Healthcare Science and Engineering, (2018), 129–140.
|
[24]
|
J. Liao, D. Liu, G. Su, L. Liu, Recognizing diseases with multivariate physiological signals by a deepcnn-lstm network, Appl. Intell., 51 (2021), 7933–7945. https://doi.org/10.1007/s10489-021-02309-2 doi: 10.1007/s10489-021-02309-2
|
[25]
|
J. Zhang, A. Liu, M. Gao, X. Chen, X. Zhang, X. Chen, Ecg-based multi-class arrhythmia detection using spatio-temporal attention-based convolutional recurrent neural network, Artif. Intell. Med., 106 (2020), 101856. https://doi.org/10.1016/j.artmed.2020.101856 doi: 10.1016/j.artmed.2020.101856
|
[26]
|
Q. Yao, R. Wang, X. Fan, J. Liu, Y. Li, Multi-class arrhythmia detection from 12-lead varied-length ecg using attention-based time-incremental convolutional neural network, Inf. Fusion, 53 (2020), 174–182. https://doi.org/10.1016/j.inffus.2019.06.024 doi: 10.1016/j.inffus.2019.06.024
|
[27]
|
C. Che, P. Zhang, M. Zhu, Y. Qu, B. Jin, Constrained transformer network for ecg signal processing and arrhythmia classification, BMC Med. Inf. Decis. Making, 21 (2021), 184. https://doi.org/10.1186/s12911-021-01546-2 doi: 10.1186/s12911-021-01546-2
|
[28]
|
L. Wu, Y. Wang, S. Xu, K. Liu X. Li, An rbf-lvqpnn model and its application to time-varying signal classification, Appl. Intell., 51 (2021), 4548–4560. https://doi.org/10.1007/s10489-020-02094-4 doi: 10.1007/s10489-020-02094-4
|
[29]
|
P. Hao, X. Gao, Z. Li, J. Zhang, F. Wu, C. Bai, Multi-branch fusion network for myocardial infarction screening from 12-lead ecg images, Comput. Methods Prog. Biomed., 184 (2020), 105286. https://doi.org/10.1016/j.cmpb.2019.105286 doi: 10.1016/j.cmpb.2019.105286
|
[30]
|
A. K. Dohare, V. Kumar, R. Kumar, Detection of myocardial infarction in 12 lead ecg using support vector machine, Appl. Soft Comput., 64 (2018), 138–147. https://doi.org/10.1016/j.asoc.2017.12.001 doi: 10.1016/j.asoc.2017.12.001
|
[31]
|
P. Barmpoutis, K. Dimitropoulos, A. Apostolidis, N. Grammalidis, Multi-lead ecg signal analysis for myocardial infarction detection and localization through the mapping of grassmannian and euclidean features into a common hilbert space, Biomed. Signal Process. Control, 52 (2019), 111–119. https://doi.org/10.1016/j.bspc.2019.04.003 doi: 10.1016/j.bspc.2019.04.003
|
[32]
|
P. Xiong, Y. Xue, J. Zhang, M. Liu, H. Du, H. Zhang, et al., Localization of myocardial infarction with multi-lead ecg based on densenet, Comput. Methods Prog. Biomed., 203 (2021), 106024. https://doi.org/10.1016/j.cmpb.2021.106024 doi: 10.1016/j.cmpb.2021.106024
|
[33]
|
H. He, Y. Tan, J. Xing, Unsupervised classification of 12-lead ecg signals using wavelet tensor decomposition and two-dimensional gaussian spectral clustering, Knowl. Based Syst., 163 (2019), 392–403. https://doi.org/10.1016/j.knosys.2018.09.001 doi: 10.1016/j.knosys.2018.09.001
|
[34]
|
C. Han, L. Shi, Ml–resnet: A novel network to detect and locate myocardial infarction using 12 leads ecg, Comput. Methods Prog. Biomed., 185 (2020), 105138. https://doi.org/10.1016/j.cmpb.2019.105138 doi: 10.1016/j.cmpb.2019.105138
|
[35]
|
M. Sepahvand, F. Abdali-Mohammadi, A novel multi-lead ecg personal recognition based on signals functional and structural dependencies using time-frequency representation and evolutionary morphological cnn, Biomed. Signal Process. Control, 68 (2021), 102766. https://doi.org/10.1016/j.bspc.2021.102766 doi: 10.1016/j.bspc.2021.102766
|
[36]
|
R. Li, S. Wang, F. Zhu, J. Huang, Adaptive graph convolutional neural networks, in Proceedings of the AAAI Conference on Artificial Intelligence, (2018), 3546–3553. https://doi.org/10.1609/aaai.v32i1.11691
|
[37]
|
P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph attention networks, in Proceedings of International Conference on Learning Representations(ICLR), (2018), 1–12.
|
[38]
|
S. Guo, Y. Lin, N. Feng, C. Song, H. Wan, Attention based spatial-temporal graph convolutional networks for traffic flow forecasting, in Proceedings of the AAAI Conference on Artificial Intelligence, (2019), 922–929. https://doi.org/10.1609/aaai.v33i01.3301922
|
[39]
|
J. Justin, G. Agrim, F. F. Li, Image generation from scene graphs, in Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2018), 1219–1228.
|
[40]
|
A. Fout, J. Byrd, B. Shariat, A. Ben-Hur, Protein interface prediction using graph convolutional networks, in Proceedings of the 31st International Conference on Neural Information Processing Systems, (2017), 6533–6542.
|
[41]
|
C. Gunavathi, K. Sivasubramanian, P. Keerthika, C. Paramasivam, A review on convolutional neural network based deep learning methods in gene expression data for disease diagnosis, Mater. Today Proc., 45 (2021), 2282–2285. https://doi.org/10.1016/j.matpr.2020.10.263 doi: 10.1016/j.matpr.2020.10.263
|
[42]
|
A. Bessadok, M. A. Mahjoub, I. Rekik, Brain multigraph prediction using topology-aware adversarial graph neural network, Med. Image Anal., 72 (2021), 102090. https://doi.org/10.1016/j.media.2021.102090 doi: 10.1016/j.media.2021.102090
|
[43]
|
B. Yu, H. Yin, Z. Zhu, Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting, in Proceedings of Twenty-Seventh International Joint Conference on Artificial Intelligence IJCAI-18, (2018), 3634–3640.
|
[44]
|
X. Yu, S. Lu, L. Guo, S. H. Wang, Y. D. Zhang, Resgnet-c: A graph convolutional neural network for detection of covid-19, Neurocomputing, 452 (2021), 592–605. https://doi.org/10.1016/j.neucom.2020.07.144 doi: 10.1016/j.neucom.2020.07.144
|
[45]
|
C. Zhang, D. Song, C. Huang, Heterogeneous graph neural network, in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2019), 793–803. https://doi.org/10.1145/3292500.3330961
|
[46]
|
X. Wang, H. Ji, C. Shi, B. Wang, P. Cui, P. Yu, et al., Heterogeneous graph attention network, in Proceedings of The World Wide Web Conference, (2019), 2022–2032. https://doi.org/10.1145/3308558.3313562
|
[47]
|
Y. Ding, L. P. Tian, X. Lei, B. Liao, F. X. Wu, Variational graph auto-encoders for mirna-disease association prediction, Methods, 192 (2021), 25–34. https://doi.org/10.1016/j.ymeth.2020.08.004 doi: 10.1016/j.ymeth.2020.08.004
|
[48]
|
T. Yang, L. Hu, C. Shi, H. Ji, X. Li, L. Nie, Hgat: Heterogeneous graph attention networks for semi-supervised short text classification, ACM Trans. Inf. Syst., 39 (2021), 1–29. https://doi.org/10.1145/3450352 doi: 10.1145/3450352
|
[49]
|
P. PhysioBank, Physionet: components of a new research resource for complex physiologic signals, Circulation, 101 (2000), e215–e220.
|
[50]
|
W. Yang, Y. Si, D. Wang, G. Zhang, A novel approach for multi-lead ecg classification using dl-ccanet and tl-ccanet, Sensors, 19 (2019), 3214. https://doi.org/10.3390/s19143214 doi: 10.3390/s19143214
|
[51]
|
J. N. Lee, Y. H. Byeon, S. B. Pan, K. C. Kwak, An eigenecg network approach based on pcanet for personal identification from ecg signal, Sensors, 18 (2018), 4024. https://doi.org/10.3390/s18114024 doi: 10.3390/s18114024
|
[52]
|
I. C. Tanoh, P. Napoletano, A novel 1-d ccanet for ecg classification, Appl. Sci., 11 (2021), 2758. https://doi.org/10.3390/app11062758 doi: 10.3390/app11062758
|