In this paper, we investigate the complex dynamics of a classical discrete-time prey-predator system with the cost of anti-predator behaviors. We first give the existence and stability of fixed points of this system. And by using the central manifold theorem and bifurcation theory, we prove that the system will experience flip bifurcation and Neimark-Sacker bifurcation at the equilibrium points. Furthermore, we illustrate the bifurcation phenomenon and chaos characteristics via numerical simulations. The results may enrich the dynamics of the prey-predator systems.
Citation: Ceyu Lei, Xiaoling Han, Weiming Wang. Bifurcation analysis and chaos control of a discrete-time prey-predator model with fear factor[J]. Mathematical Biosciences and Engineering, 2022, 19(7): 6659-6679. doi: 10.3934/mbe.2022313
[1] | Yanjun Liu, Chin-Chen Chang, Peng-Cheng Huang . Security protection using two different image shadows with authentication. Mathematical Biosciences and Engineering, 2019, 16(4): 1914-1932. doi: 10.3934/mbe.2019093 |
[2] | Xuehu Yan, Xuan Zhou, Yuliang Lu, Jingju Liu, Guozheng Yang . Image inpainting-based behavior image secret sharing. Mathematical Biosciences and Engineering, 2020, 17(4): 2950-2966. doi: 10.3934/mbe.2020166 |
[3] | Qi Wang, John Blesswin A, T Manoranjitham, P Akilandeswari, Selva Mary G, Shubhangi Suryawanshi, Catherine Esther Karunya A . Securing image-based document transmission in logistics and supply chain management through cheating-resistant visual cryptographic protocols. Mathematical Biosciences and Engineering, 2023, 20(11): 19983-20001. doi: 10.3934/mbe.2023885 |
[4] | Guozheng Yang, Lintao Liu, Xuehu Yan . A compressed secret image sharing method with shadow image verification capability. Mathematical Biosciences and Engineering, 2020, 17(4): 4295-4316. doi: 10.3934/mbe.2020237 |
[5] | Bo Wang, Yabin Li, Jianxiang Zhao, Xue Sui, Xiangwei Kong . JPEG compression history detection based on detail deviation. Mathematical Biosciences and Engineering, 2019, 16(5): 5584-5594. doi: 10.3934/mbe.2019277 |
[6] | Xuehu Yan, Longlong Li, Lintao Liu, Yuliang Lu, Xianhua Song . Ramp secret image sharing. Mathematical Biosciences and Engineering, 2019, 16(5): 4433-4455. doi: 10.3934/mbe.2019221 |
[7] | Feng Liu, Xuehu Yan, Lintao Liu, Yuliang Lu, Longdan Tan . Weighted visual secret sharing with multiple decryptions and lossless recovery. Mathematical Biosciences and Engineering, 2019, 16(5): 5750-5764. doi: 10.3934/mbe.2019287 |
[8] | Jingju Liu, Lei Sun, Jinrui Liu, Xuehu Yan . Fake and dishonest participant location scheme in secret image sharing. Mathematical Biosciences and Engineering, 2021, 18(3): 2473-2495. doi: 10.3934/mbe.2021126 |
[9] | Shudong Wang, Yuliang Lu, Xuehu Yan, Longlong Li, Yongqiang Yu . AMBTC-based visual secret sharing with different meaningful shadows. Mathematical Biosciences and Engineering, 2021, 18(5): 5236-5251. doi: 10.3934/mbe.2021266 |
[10] | Lina Zhang, Jing Zhang, Jiaqi Sun, Qingpeng Chen . A global progressive image secret sharing scheme under multi-group joint management. Mathematical Biosciences and Engineering, 2024, 21(1): 1286-1304. doi: 10.3934/mbe.2024055 |
In this paper, we investigate the complex dynamics of a classical discrete-time prey-predator system with the cost of anti-predator behaviors. We first give the existence and stability of fixed points of this system. And by using the central manifold theorem and bifurcation theory, we prove that the system will experience flip bifurcation and Neimark-Sacker bifurcation at the equilibrium points. Furthermore, we illustrate the bifurcation phenomenon and chaos characteristics via numerical simulations. The results may enrich the dynamics of the prey-predator systems.
In mathematical analysis and its applications, the hypergeometric function plays a vital role. Various special functions which are used in different branches of science are special cases of hypergeometric functions. Numerous extensions of special functions have introduced by many authors (see [1,2,3,4]). The generalized Gamma k-function and its properties are broadly discussed in [5,6,7,8]. Later on, the researchers [9] motivated by the above idea and presented the k-fractional integral and its applications. The integral representation of generalized confluent hypergeometric and hypergeometric k-functions is presented by Mubeen and Habibullah [10]. The series solution of k-hypergeometric differential equation is proposed by Mubeen et al. [11,12,13]. Li and Dong [14] established the hypergeometric series solutions for the second-order non-homogeneous k-hypergeometric differential equation. The Generalized Wright k-function and its different indispensable properties are briefly discussed in [15,16]. A class of Whittaker integral transforms involving confluent hypergeometric function and Fox H-function as kernels are discussed in [17,18]. An extension of some variant of Meijer type integrals in the class of Bohemians is elaborated in [19].
Generalization of Gr¨uss-type and Hermite-Hadamard type inequalities concerning with k-fractional integrals are explored in [20,21]. Many researchers have derived the generalized forms of the Riemann-Liouville k-fractional integrals and established several inequalities by considering various generalized fractional integrals. The readers may confer with [22,23,24,25,26] for details.
The Hadamard k-fractional integrals and Hadamard-type inequalities for k-fractional Riemann-Liouville integrals are presented by Farid et al. [27,28]. In [29,30], the authors have established inequalities by employing Hadamard-type inequalities for k-fractional integrals. Nisar et al. [31] discussed Gronwall type inequalities by considering Riemann-Liouville k and Hadamard k-fractional derivatives. Hadamard k-fractional derivative and its properties are disscussed in [32]. Rahman et al. [33] described generalized k-fractional derivative operator.
The Mittag-Leffler function naturally occurs in the solutions of fractional integrodifferential equations having an arbitrary order that is similar to that of the exponential function. The Mittag-Leffler functions have acquired significant recognition due to their wide applications in assorted fields. The Mittag-Leffler stability of fractional-order nonlinear dynamic systems is studied in [34]. Dos Santos discussed the Mittag-Leffler function in the diffusion process in [35]. The noteworthy role of the Mittag-Leffler function and its generalizations in fractional modelling is explored by Rogosin [36]. We suggest the readers to study the literature [37,38,39] for more details.
Now, we present some basic definitions and results.
The normalized Wright function is defined as
Wγ,δ(z)=Γ(δ)∞∑n=0znΓ(δ+nγ)n!,γ>−1,δ∈C. | (1.1) |
Fox [40] and Wright [41] defined the Fox-Wright hypergeometric function uψv as:
uψv[(γ1,C1),.....,(γu,Cu)(δ1,D1)),.....,(δv,Dv)|z]=∞∑n=0∏ui=1Γ(γi+nCi)zn∏vi=1Γ(δi+nDi)n!, | (1.2) |
where Ci≥0,i=1,...,u;Di≥0,i=1,...,v. The function uψv is the generalized form of the well-known hypergeometric function uFv with u and v number of parameters in numerator and denominator respectively. It is given in [42] as:
uFv[γ1,.....,γuδ1,.....,δv|z]=∞∑n=0∏ui=1 (γi)nzn∏vi=1 (δi)nn!, | (1.3) |
where (κ)n is called the Pochhammer symbol and is defined by Petojevic [43] as:
(κ)0=1,and(κ)n=κ(κ+1).....(κ+n−1)=Γ(κ+n)Γ(κ),n∈N. |
From definitions (1.2) and (1.3), we have the following relation
uψv[(γ1,1),.....,(γu,1)(δ1,1),.....,(δv,1)|z]=Γ(γ1).....Γ(γu)Γ(δ1).....Γ(δv)uFv[γ1,.....,γuδ1,.....,δv|z]. | (1.4) |
The Mittag-Leffler function with 2m parameters [44] is defined as follows:
E(δ,D)m(z)=∞∑n=0zn∏mi=1Γ(δi+nDi),z∈C | (1.5) |
and in the form of Fox-Wright function it can be expressed as:
E(δ,D)m(z)=1ψm[(1,1)(δ1,D1),.....,(δv,Dv)|z],z∈C. | (1.6) |
The function ϕ(δ1,D1)(γ1,δ2):(0,∞)→R is defined in [45] as
ϕ(δ1,D1)(γ1,δ2)(z)=Γ(δ1)Γ(δ2)Γ(γ1)1ψ2[(γ1,1)(δ1,D1),(δ2,D2)|z],z∈C, | (1.7) |
where γ1,δ1,δ2 and D1>0.
Diaz and Pariguan [46] proposed the following Pochhammer's k-symbol (z)n,k and the generalized Gamma k-function by
(u)n,k=u(u+k)(u+2k)....(u+(n−1)k);u∈C,k∈R,n∈N+ |
Γk(u)=limn→∞=n!kn(nk)uk−1u)n,k,k>0,u∈C−kZ, |
respectively. They also introduced the generalized hypergeometric k-function in [46] as follows:
uFv,k[(γ1,k),.....,(γu,k)(δ1,k),.....,(δv,k)|z]=∞∑n=0∏ui=1 (γi)n,k z n∏vi=1 (δi)n,k n!. | (1.8) |
Now, we define the normalized Wright k-function as follows:
Wγ,δ,k(z)=Γk(δ)∞∑n=0znΓk(δ+knγ)n!,γ>−1,δ∈C |
and the Fox -Wright type k-function is as follows:
uψv[(γ1,kC1),.....,(γu,kCu)(δ1,kD1)),.....,(δv,kDv)|z]=∞∑n=0∏ui=1 Γk (γi+nkCi)zn∏vi=1 Γk (δi+nkDi)n!, | (1.9) |
So from Eqs (1.9) and (1.8), we have
uψv,k[(γ1,k),.....,(γu,k)(δ1,k),.....,(δv,k)|z]=Γk(γ1).....Γk(γu)Γk(δ1).....Γk(δv)uFv,k[(γ1,k),.....,(γu,k)(δ1,k),.....,(δv,k)|z] | (1.10) |
and (1.5) takes the form
E(δ,D)m,k(z)=∞∑n=0zn∏mi=1Γk(δi+nkDi),z∈C. | (1.11) |
The function E(δ,D)m,k(z) in terms of the function uψv,k is expressed as
E(δ,D)m,k(z)=1ψm,k[(1,k)(δ1,kD1),.....,(δv,kDv)|z]z∈C. | (1.12) |
So the function (1.7) is given by
ϕ(δ1,D1)γ1,δ2,k(z)=Γk(δ1)Γk(δ2)Γk(γ1)1ψ2,k[(γ1,k)(δ1,kD1),(δ2,k)|z]z∈C. | (1.13) |
Redheffer [47] presented the following inequality in 1969,
π2−x2π2+x2≤sinxx. | (1.14) |
In the same year, Redheffer and Williams [48] proved the above inequality. Zhu and Sun [49] used the hyperbolic functions sinhx and coshx and proved the following Redheffer-type inequalities
(r2+x2r2−x2)γ≤sinhxx≤(r2+x2r2−x2)δ | (1.15) |
and
(r2+x2r2−x2)γ≤coshx≤(r2+x2r2−x2)δ1, | (1.16) |
where 0<x<r,γ≤0,δ≥r212 and δ1≥r24. By using the inequalities (1.15) and (1.16), Mehrez proved the following Theorem (see[50]).
Theorem 1.1. The following inequalities
(s+zs−z)σγ,δ≤Wγ,δ(z)≤(s+zs−z)ργ,δ | (1.17) |
holds true for all s>0, γ,δ>0, 0<z<s, where σγ,δ=0 and ργ,δ=sΓ(δ)2Γ(δ+γ) are the best possible constants and Wγ,δ is the normalized Wright function defined by (1.1).
Recently, the same author has proved the following inequality (see[45]).
Theorem 1.2. Suppose that r,γ1,δ1,δ2,D1>0. Then the subsequent inequalities
(r+zr−z)λ(δ1 ,D1)γ1,δ2≤ϕ(δ1,D1)γ1,δ2(z)≤(r+zr−z)μ(δ1 ,D1)γ1,δ2 | (1.18) |
are true for all z∈(0,r), where λ(δ1,D1)γ1,δ2=0 and μ(δ1,D1)γ1,δ2=rγ1Γ(δ1)2δ2Γ(δ1+D1) are the best possible constants. Where ϕ(δ1,D1)γ1,δ2(z) is defined in (1.7).
In this article, we extend the Redheffer-type inequality (1.18) for the normalized Fox-Wright k-functions ϕ(δ1,D1)γ1,δ2,k(z) and establish new Redheffertype inequalities for the hypergeometric k-function 1F2,k and for the four parametric Mittag-Leffler k-function ˜Eδ1,D1;δ2,1,k(z)=Γk(δ1)Γk(δ2)Eδ1,D1;δ2,1,k(z).
In this section, we first state the two lemmas which are helpful for proving the main results. The first lemma from [51] describes the monotonicity of two power series, and the second lemma is the monotone form of the L'Hospitals' rule [52]. The two lemmas are stated below.
Lemma 2.1. Suppose that the two sequences {un}n≥0 and {vn}n≥0 of real numbers, and let the power series f(x)=∑n≥0unxn and g(x)=∑n≥0vnxn be convergent for |x|<r. If vn>0 for n≥0 and if the sequence {unvn}n≥0 is (strictly) increasing (decreasing), then the function x→f(x)g(x) is (strictly) increasing (decreasing) on (0,r).
Lemma 2.2. Suppose that the two functions f1,g1:[a,b]→R be continuous and differentiable on (a,b). Assume that g′1≠0 on (a,b). If f′1g′1 is increasing (decreasing) on (a,b), then the functions
x↦f1(x)−f1(a)g1(x)−g1(a)andx↦f1(x)−f1(b)g1(x)−g1(b) |
are also increasing (decreasing) on (a,b).
Theorem 2.3. Letr>0γ1,δ1,δ2,D1>0. Then the following inequalities holds
(r+zr−z)λ(δ1 ,D1)γ1,δ2≤ϕ(δ1 ,D1)γ1,δ2,k(z)≤(r+zr−z)μ(δ1 ,D1)γ1,δ2, | (2.1) |
where z∈(0,r), λ(δ1,D1)γ1,δ2=0 and μ(δ1,D1)γ1,δ2=rγ1Γk(δ1)2δ2Γk(δ1+kD1) are the appropriate constants.
Proof. From definition of the function ϕ(δ1,D1)γ1,δ2,k(z) from Eq (1.13), we have
ddz(ϕ(δ1 ,D1)γ1,δ2,k(z))=Γk(δ1)Γk(δ2)Γk(γ1)×∞∑n=0Γk(γ1+(n+1)k)znΓk(δ1+D1(n+1)k)Γk(δ2+(n+1)k)n!. | (2.2) |
Let
M(z)=logϕ(δ 1, D 1)γ 1 ,δ 2 ,k (z)log(r+zr−z)=g(z)h(z), |
where g(z)=log(ϕ(δ1,D1)γ1,δ2,k(z)) and h(z)=log(r+zr−z). Now we will find g′(z)h′(z) as given below
g′(z)h′(z)=(r2−z2)ddz(ϕ(δ 1, D 1)γ 1 ,δ 2 ,k (z))2rϕ(δ 1 ,D 1)γ 1 ,δ 2 ,k (z)=G(z)2rH(z), |
where G(z)=(r2−z2)ddz(ϕ(δ1,D1)γ1,δ2,k) and H(z)=ϕ(δ1,D1)γ1,δ2,k(z)
Using 2.2, we have
G(z)=Γk(δ1)Γk(δ2)Γk(γ1)(r2−z2)×∞∑n=0Γk(γ1+(n+1)k)znΓk(δ1+D1(n+1)k)Γk(δ2+(n+1)k)n!=Γk(δ1)Γk(δ2)Γk(γ1)(r2−z2)(∞∑n=0Γk(γ1+(n+1)k)znΓk(δ1+D1(n+1)k)Γk(δ2+(n+1)k)n!−∞∑n=2Γk(γ1+(n−1)k)znΓk(δ1+D1(n−1)k)Γk(δ2+(n−1)k)(n−2)!)=r2Γk(δ1)Γk(δ2)Γk(γ1+k)Γk(γ1)Γk(δ1+D1k)Γk(δ2+k)+r2Γk(δ1)Γk(δ2)Γk(γ1+2k)Γk(γ1)Γk(δ1+2D1k)Γk(δ2+2k)+Γk(δ1)Γk(δ2)Γk(γ1)∞∑n=2(r2Γk(γ1+(n+1)k)znΓk(δ1+D1(n−+)k)Γk(δ2+(n+1)k)n!−Γk(γ1+(n−1)k)znΓk(δ1+D1(n−1)k)Γk(δ2+(n−1)k)(n−2)!)zn=∞∑n=0vnzn, |
where b0, b1 and vn are as follows:
b0=r2Γk(δ1)Γk(δ2)Γk(γ1+k)Γk(γ1)Γk(δ1+D1k)Γk(δ2+k),b1=r2Γk(δ1)Γk(δ2)Γk(γ1+2k)Γk(γ1)Γk(δ1+2D1k)Γk(δ2+2k) |
and for n≥2, we have
vn=Γk(δ1)Γk(δ2)Γk(γ1)∞∑n=2(r2Γk(γ1+(n+1)k)Γk(δ1+D1(n−+)k)Γk(δ2+(n+1)k)n! |
−Γk(γ1+(n−1)k)znΓk(δ1+D1(n−1)k)Γk(δ2+(n−1)k)(n−2)!). |
Similarly, we can write H(z) as
H(z)=∞∑n=0dnzn, |
where
dn=Γk(δ1)Γk(δ2)Γk(γ1+nk)Γk(γ1)Γk(δ1+nkD1)Γk(δ2+nk). |
Next, we consider the sequence wn=vndn such that w0=a0 and w1=b1d1 and so on.
Now, we have
w1−w0=r2Γk(δ2+k)Γk(γ1+2k)Γk(δ1+kD1)Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)−r2Γk(δ1)Γk(δ2)Γk(γ1+k)Γk(γ1)Γk(δ1+D1k)Γk(δ2+k)=r2(γ1+k)Γk(δ1+kD1)(δ2+k)Γk(δ1+2D1k)−r2Γk(δ1)δ2)Γk(δ1+D1k)≤γ1δ2[Γk(δ1+kD1))Γk(δ1+2kD1)−Γk(δ1)Γk(δ1+kD1)]≤0. | (2.3) |
Since γ1≥δ2 and employing the log-convexity property of Γk function, the ratio z↦Γk(z+c)Γk(z) is increasing on (0,∞) for c>0. This shows that the inequality stated below
Γk(z+c)Γk(z)≤Γk(z+c+d)Γk(z+d) | (2.4) |
holds for all z,c,d>0. Using (2.4) in (2.3) by letting z=δ1 and c=d=kD1, we observed that w1≤w0. Likely, we have
w2−w1=r2Γk(γ1+3k)Γk(δ2+2k)Γk(δ1+2kD1)Γk(δ2+3k)Γk(δ1+3kD1)Γk(γ1+2k)−r2Γk(δ2+k)Γk(δ1+kD1)Γk(γ1+2k)Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)−2Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)Γk(δ2+k)Γk(δ1+kD1)Γk(γ1+2k)=r2(γ1+2k)Γk(γ1+2k)(δ2+k)Γk(δ2+k)Γk(δ1+2kD1)(δ2+2k)Γk(δ2+2k)Γk(δ1+3kD1)(γ1+k)Γk(γ1+k)−r2Γk(δ2+k)Γk(δ1+kD1)Γk(γ1+2k)Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)−2Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)Γk(δ2+k)Γk(δ1+kD1)Γk(γ1+2k) |
=r2Γk(γ1+2k)Γk(δ2+k)Γk(δ2+2k)Γk(γ1+k)[(γ1+2k)(δ2+k)Γk(δ1+2kD1)(γ1+k)(δ2+2k)Γk(δ1+3kD1)−Γk(δ1+kD1)Γk(δ1+2kD1)]−2Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)Γk(δ2+k)Γk(δ1+kD1)Γk(γ1+2k)≤0. | (2.5) |
Since by using Eq (2.4), when z=δ1+kD1 and c=d=kD1, we have w2≤w1.
Now, for n≥2, we have
wn+1−wn=r2Γk(γ1+(n+2)k)Γk(δ2+(n+1)k)Γk(δ1+(n+1)kD1)Γk(γ1+(n+1)k)Γk(δ2+(n+1)k)Γk(δ1+(n+2)kD1)−(n+1)!Γk(γ1+nk)Γk(δ2+(n+1)k)Γk(δ1+(n+1)kD1)(n−1)!Γk(γ1+(n+1)k)Γk(δ2+nk)Γk(δ1+nkD1)−r2Γk(γ1+(n+1)k)Γk(δ2+nk)Γk(δ1+nkD1)Γk(γ1+nk)Γk(δ2+(n+1)k)Γk(δ1+(n+1)kD1)+n!Γk(γ1+(n−1)k)Γk(δ2+nk)Γk(δ1+nkD1)(n−2)!Γk(γ1+nk)Γk(δ2+(n11)k)Γk(δ1+(n−1)kD1)=r2[(γ1+(n+1)k)Γk(δ1+(n+1)kD1)(δ2+(n+1)k)Γk(δ1+(n+2)kD1)−(γ1+n)k)Γk(δ1+nkD1)(δ2+nk)Γk(δ1+(n+1)kD1)]+n!(n−2)![(δ2+(n−1)k)Γk(δ1+nkD1)(γ1+(n−1)k)Γk(δ1+(n−2)kD1)−(n+1)(δ2+n)k)Γk(δ1+(n+1)kD1)(n−1)(γ1+nk)Γk(δ1+nkD1)]≤r2(γ1+nk)(δ2+nk)[Γk(δ1+(n+1)kD1)Γk(δ1+(n+2)kD1)−Γk(δ1+nkD1)Γk(δ1+(n+1)kD1)]+n!(δ2+(n−1)k)(n−2)!(γ+(n−1)k)[Γk(δ1+nkD1)Γk(δ1+(n−1)kD1)−Γk(δ1+(n+1)kD1)Γk(δ1+nkD1)] | (2.6) |
Using z=δ1+nkD1 and c=d=kD1, we have the inequality (2.4) in the following form
Γk(δ1+(n+2)kD1)Γk(δ1+nkD1)−Γ2k(δ1+(n+1)kD1)≥0 | (2.7) |
and similarly for using z=δ1+(n−1)kD1 and c=d=kD1, we have from (2.4)
Γk(δ1+(n+2)kD1)Γk(δ1+nkD1)−Γ2k(δ1+(n+1)kD1)≥0 | (2.8) |
so by using (2.7) and (2.8) in (2.6), we have
wn+1≤wn. | (2.9) |
Now from Eqs (2.3), (2.10) and (2.9), we conclude that the sequence {wn}n≥0 is a decreasing sequence.
From Lemma (2.1), we deduce that g′h′ is decreasing on (0,r) and accordingly the function M(z) is also decreasing on (0,r). Alternatively, using the Bernoulli-L'Hospital's rule we get
limz→0M(z)=rγ1Γk(δ1)2δ2Γk(δ1+kD1)andlimz→0M(z)=0. |
It is essential to reveal that there is another proof of this theorem which is described as following.
For this, we define a function Υ:(0,r)→R by
Υ(z)=rγ1Γk(δ1)2δ2Γk(δ1+D1)log(r+zr−z)−log(ϕ(δ1,kD1)γ1,δ2,k(z)). |
Consequently,
ϕ(δ1,kD1)γ1,δ2,k(z)Υ′(z)=r2γ1Γk(δ1)δ2Γk(δ1+D1)(r2−z2)ϕ(δ1,D1)γ1,δ2,k(z)−ddz(ϕ(δ1,D1)γ1,δ2,k(z))=Γk(δ1)Γk(δ2)Γk(γ1)[r2γ1Γk(δ1)δ2Γk(δ1+kD1)(r2−z2)∞∑n=0Γk(γ1+nk)znΓk(δ1+D1nk)Γk(δ2+nk)n!−∞∑n=0Γk(γ1+(n+1)k)znΓk(δ1+D1(n+1)k)Γk(δ2+(n+1)k)n!]≥Γk(δ1)Γk(δ2)Γk(γ1)[γ1Γk(δ1)δ2Γk(δ1+kD1)∞∑n=0Γk(γ1+nk)znΓk(δ1+D1nk)Γk(δ2+nk)n!−∞∑n=0Γk(γ1+(n+1)k)znΓk(δ1+D1(n+1)k)Γk(δ2+(n+1)k)n!]=Γk(δ1)Γk(δ2)Γk(γ1)∞∑n=0Γk(γ1+nk)znΓk(δ2+nk)n![γ1Γk(δ1)δ2Γk(δ1+kD1)−(γ1+nk)(δ2+nk)Γk(δ1+D1(n+1)k)]. | (2.10) |
Since γ1≥δ2, therefore γ1δ2≥γ1+nkδ2+nk for every n≥0 and resultantly
ϕ(δ1,D1)γ1,δ2,k(z)Υ′(z)≥Γk(δ1)Γk(δ2)Γk(γ1)∞∑n=0Γk(γ1+nk)znΓk(δ2+nk)n![Γk(δ1)Γk(δ1+kD1)−1Γk(δ1+kD1(n+1))]. |
Now, using the values z=δ1,c=kD1 and d=nkD1 in (2.4), function Υ(z) is increasing on (0,r) and consequently Υ(z)≥Υ(0)=0. This completes the proof of right hand side of the inequality 2.1. For proving the left hand side of (2.1), we conclude from Eq (2.2) that the function ϕ(δ1,D1)γ1,δ2,k(z) is increasing on (0,∞) and finally
ϕ(δ1,D1)γ1,δ2,k(z)≥ϕ(δ1,D1)γ1,δ2,k(0)=1. |
This ends the proof process of theorem 2.3.
Corollary 2.4. Let r,γ1,δ1,δ2>0. Then inequalities
(r+zr−z)λ(δ1,1)γ1,δ2≤1F2,k(γ1;δ1,δ2;z)≤(r+zr−z)μ(δ1,1)γ1,δ2, |
are true for all z∈(0,r), where λ(δ1,1)γ1,δ2=0 and μ(δ1,1)γ1,δ2=rγ12δ2δ1 are the suitable values of constants.
Proof. This inequality can be proved by using D1=1 in (2.1).
Corollary 2.5. Let r,δ1,D1>0. If 0<δ2≤1, then the following inequalities
(r+zr−z)λ(δ1,D1)1,δ2≤˜Eδ1,D1;δ2,1,k(z)≤(r+zr−z)μ(δ1,D1)1,δ2, |
hold for all z∈(0,r), where λ(δ1,D1)1,δ2=0 and μ(δ1,D1)1,δ2=rΓk(δ1)2δ2Γk(δ1+kD1) are the suitable values of constants.
Proof. This inequality can be proved by using γ1=1 in (2.1).
Remark 2.6. The particular cases of the inequalities in Corollaries 2.4 and 2.5 for k=1 are reduce to the results in [45,Corollaries 1.2 and 1.3] respectively.
This article deals with the Redheffer-type inequalities by using the more general Fox-Wright function. Moreover, from the newly established inequalities, the results for generalized hypergeometric functions and the four-parametric generalized Mittag-Leffler functions are also obtained by using the appropriate values of exponents in generalized inequalities. The obtained results are more general, as shown by relating the special cases with the existing literature. The idea we used in this article attracts scientists' attention, and they may stimulate further research in this direction.
Taif University Researchers Supporting Project number (TURSP-2020/275), Taif University, Taif, Saudi Arabia.
The authors declares that there is no conflict of interests regarding the publication of this paper.
[1] | H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker Inc., New York, 1980. |
[2] | M. Kot, Elements of Mathematical Ecology, Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511608520 |
[3] |
M. A. Aziz-Alaoui, O. M. Daher, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-Type Ⅱ schemes, Appl. Math. Lett., 16 (2003), 1069–1075. https://doi.org/10.1016/S0893-9659(03)90096-6 doi: 10.1016/S0893-9659(03)90096-6
![]() |
[4] |
M. Sen, M. Banerjee, A. Morozov, Bifurcation analysis of a ratio-dependent prey-predator model with the Allee effect, Ecol. Complexity, 11 (2012), 12–27. https://doi.org/10.1016/j.ecocom.2012.01.002 doi: 10.1016/j.ecocom.2012.01.002
![]() |
[5] |
J. C. Huang, D. M. Xiao, Analyses of bifurcations and stability in a predator-prey system with Holling Type-Ⅳ functional response, Acta Math. Appl. Sinica, 20 (2004), 167–178. https://doi.org/10.1007/s10255-004-0159-x doi: 10.1007/s10255-004-0159-x
![]() |
[6] |
J. Wang, Y. Cai, S. Fu, W. Wang, The effect of the fear factor on the dynamics of a predator-prey model incorporating the prey refuge, Chaos, 29 (2019), 83109. https://doi.org/10.1063/1.5111121 doi: 10.1063/1.5111121
![]() |
[7] |
T. Qiao, Y. Cai, S. Fu, W. Wang, Stability and Hopf bifurcation in a predator-prey model with the cost of anti-predator behaviors, Int. J. Bifurcation Chaos, 29 (2019), 1950185. https://doi.org/10.1142/S0218127419501852 doi: 10.1142/S0218127419501852
![]() |
[8] |
H. Zhang, Y. Cai, S. Fu, W. Wang, Impact of the fear effect in a prey-predator model incorporating a prey refuge, Appl. Math. Comput., 356 (2019), 328–337. https://doi.org/10.1016/j.amc.2019.03.034 doi: 10.1016/j.amc.2019.03.034
![]() |
[9] |
R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459–467. https://doi.org/10.1038/261459a0 doi: 10.1038/261459a0
![]() |
[10] |
L. Yuan, Q. Yang, Bifurcation, invariant curve and hybrid control in a discrete-time predator-prey system, Appl. Math. Modell., 39 (2015), 2345–2362. https://doi.org/10.1016/j.apm.2014.10.040 doi: 10.1016/j.apm.2014.10.040
![]() |
[11] |
M. Zhao, C. Li, J. Wang, Complex dynamic behaviors of a discrete-time predator-prey system, J. Appl. Anal. Comput., 7 (2017), 478–500. https://doi.org/10.11948/2017030 doi: 10.11948/2017030
![]() |
[12] | S. M. Rana, Bifurcation and complex dynamics of a discrete-time predator-prey system, Comput. Ecol. Software, 5 (2015), 187–200. |
[13] |
A. Q. Khan, K. Tanzeela, Neimark-Sacker bifurcation and hybrid control in a discrete-time Lotka-Volterra model, Math. Methods Appl. Sci., 43 (2020), 5887–5904. https://doi.org/10.1002/mma.6331 doi: 10.1002/mma.6331
![]() |
[14] |
H. N. Agiza, E. M. ELabbasy, H. EL-Metwally, A. A. Elsadany, Chaotic dynamics of a discrete prey-predator model with Holling-Type Ⅱ, Nonlinear Anal. Real World Appl., 10 (2019), 116–129. https://doi.org/10.1016/j.nonrwa.2007.08.029 doi: 10.1016/j.nonrwa.2007.08.029
![]() |
[15] |
G. Feng, X. Song, Bifurcation and chaos of a discrete-time population model, Discrete Dyn. Nat. Soc., 2020 (2020), 1–7. https://doi.org/10.1155/2020/8474715 doi: 10.1155/2020/8474715
![]() |
[16] |
A. G. M. Selvam, S. B. Jacob, R Dhineshbabu, Bifurcation and chaos control for prey predator model with step size in discrete time, J. Phys. Conf. Ser., 1543 (2020), 12010. https://doi.org/10.1088/1742-6596/1543/1/012010 doi: 10.1088/1742-6596/1543/1/012010
![]() |
[17] |
E. M. Elabbasy, A. A. Elsadany, Y. Zhang, Bifurcation analysis and chaos in a discrete reduced Lorenz system, Appl. Math. Comput., 228 (2014), 184–194. https://doi.org/10.1016/j.amc.2013.11.088 doi: 10.1016/j.amc.2013.11.088
![]() |
[18] |
L. F. Cheng, H. J. Cao, Bifurcation analysis of a discrete-time ratio-dependent predator-prey Model with Allee effect, Commun. Nonlinear Sci. Numer. Simul., 38 (2016), 288–302. https://doi.org/10.1016/j.cnsns.2016.02.038 doi: 10.1016/j.cnsns.2016.02.038
![]() |
[19] |
Z. M. He, X. Lai, Bifurcation and chaotic behavior of a discrete-time predator-prey system, Nonlinear Anal. Real World Appl., 12 (2011), 403–417. https://doi.org/10.1016/j.nonrwa.2010.06.026 doi: 10.1016/j.nonrwa.2010.06.026
![]() |
[20] |
X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol., 73 (2016), 1179–1204. https://doi.org/10.1007/s00285-016-0989-1 doi: 10.1007/s00285-016-0989-1
![]() |
[21] | R.M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, 1973. |
[22] |
X. Li, W. Jiang, J. Shi, Hopf bifurcation and turing instability in the reaction-diffusion Holling-Tanner predator-prey model, IMA J. Appl. Math., 78 (2013), 287–306. https://doi.org/10.1093/imamat/hxr050 doi: 10.1093/imamat/hxr050
![]() |
[23] | J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983. https://doi.org/10.1007/978-1-4612-1140-2 |
[24] | Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 1998. https://doi.org/10.1007/b98848 |
[25] | S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 1990. https://doi.org/10.1007/978-1-4757-4067-7 |
[26] | G. Chen, X. Dong, From Chaos to Order: Perspectives, Methodologies, and Applications, World Scientific, Singapore, 1998. https://doi.org/10.1142/3033 |
[27] | S. Elaydi, An Introduction to Difference Equations, 3rd edition, Springer-Verlag, New York, 2005. https://doi.org/10.1007/0-387-27602-5 |
[28] | S. Lynch, Dynamical Systems with Applications Using Mathematica, 1st edition, Birkhauser, Boston, 2007. https://doi.org/10.1007/978-0-8176-4586-1 |
1. | Juncai Yao, Jing Shen, Congying Yao, Image quality assessment based on the perceived structural similarity index of an image, 2023, 20, 1551-0018, 9385, 10.3934/mbe.2023412 | |
2. | Yue Jiang, Kejiang Chen, Wei Yan, Xuehu Yan, Guozheng Yang, Kai Zeng, Robust Secret Image Sharing Resistant to JPEG Recompression Based on Stable Block Condition, 2024, 26, 1520-9210, 10446, 10.1109/TMM.2024.3407694 |