Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article Special Issues

Improved Otsu and Kapur approach for white blood cells segmentation based on LebTLBO optimization for the detection of Leukemia


  • The diagnosis of leukemia involves the detection of the abnormal characteristics of blood cells by a trained pathologist. Currently, this is done manually by observing the morphological characteristics of white blood cells in the microscopic images. Though there are some equipment- based and chemical-based tests available, the use and adaptation of the automated computer vision-based system is still an issue. There are certain software frameworks available in the literature; however, they are still not being adopted commercially. So there is a need for an automated and software- based framework for the detection of leukemia. In software-based detection, segmentation is the first critical stage that outputs the region of interest for further accurate diagnosis. Therefore, this paper explores an efficient and hybrid segmentation that proposes a more efficient and effective system for leukemia diagnosis. A very popular publicly available database, the acute lymphoblastic leukemia image database (ALL-IDB), is used in this research. First, the images are pre-processed and segmentation is done using Multilevel thresholding with Otsu and Kapur methods. To further optimize the segmentation performance, the Learning enthusiasm-based teaching-learning-based optimization (LebTLBO) algorithm is employed. Different metrics are used for measuring the system performance. A comparative analysis of the proposed methodology is done with existing benchmarks methods. The proposed approach has proven to be better than earlier techniques with measuring parameters of PSNR and Similarity index. The result shows a significant improvement in the performance measures with optimizing threshold algorithms and the LebTLBO technique.

    Citation: Nilkanth Mukund Deshpande, Shilpa Gite, Biswajeet Pradhan, Ketan Kotecha, Abdullah Alamri. Improved Otsu and Kapur approach for white blood cells segmentation based on LebTLBO optimization for the detection of Leukemia[J]. Mathematical Biosciences and Engineering, 2022, 19(2): 1970-2001. doi: 10.3934/mbe.2022093

    Related Papers:

    [1] Jin Wang . Least squares solutions of matrix equation AXB=C under semi-tensor product. Electronic Research Archive, 2024, 32(5): 2976-2993. doi: 10.3934/era.2024136
    [2] Keru Wen, Jiaqi Qi, Yaqiang Wang . SDD2 tensors and B2-tensors. Electronic Research Archive, 2025, 33(4): 2433-2451. doi: 10.3934/era.2025108
    [3] Xiang Xu . Recent analytic development of the dynamic Q-tensor theory for nematic liquid crystals. Electronic Research Archive, 2022, 30(6): 2220-2246. doi: 10.3934/era.2022113
    [4] Xin Liu, Guang-Xin Huang . New error bounds for the tensor complementarity problem. Electronic Research Archive, 2022, 30(6): 2196-2204. doi: 10.3934/era.2022111
    [5] Wen Teng, Xiansheng Dai . Nonabelian embedding tensors on 3-Lie algebras and 3-Leibniz-Lie algebras. Electronic Research Archive, 2025, 33(3): 1367-1383. doi: 10.3934/era.2025063
    [6] Gongwei Liu, Mengru Wang, Pengyan Ding . Long-time dynamical behavior for a piezoelectric system with magnetic effect and nonlinear dampings. Electronic Research Archive, 2022, 30(9): 3397-3421. doi: 10.3934/era.2022173
    [7] Xiuwen Zheng, Jingjing Cui, Zhengge Huang . New preconditioned Gauss-Seidel type methods for solving multi-linear systems with M-tensors. Electronic Research Archive, 2025, 33(6): 3450-3481. doi: 10.3934/era.2025153
    [8] Lot-Kei Chou, Siu-Long Lei . High dimensional Riesz space distributed-order advection-dispersion equations with ADI scheme in compression format. Electronic Research Archive, 2022, 30(4): 1463-1476. doi: 10.3934/era.2022077
    [9] R. F. Snider . Eigenvalues and eigenvectors for a hermitian gaussian operator: Role of the Schrödinger-Robertson uncertainty relation. Electronic Research Archive, 2023, 31(9): 5541-5558. doi: 10.3934/era.2023281
    [10] Zhengmao Chen . A priori bounds and existence of smooth solutions to a Lp Aleksandrov problem for Codazzi tensor with log-convex measure. Electronic Research Archive, 2023, 31(2): 840-859. doi: 10.3934/era.2023042
  • The diagnosis of leukemia involves the detection of the abnormal characteristics of blood cells by a trained pathologist. Currently, this is done manually by observing the morphological characteristics of white blood cells in the microscopic images. Though there are some equipment- based and chemical-based tests available, the use and adaptation of the automated computer vision-based system is still an issue. There are certain software frameworks available in the literature; however, they are still not being adopted commercially. So there is a need for an automated and software- based framework for the detection of leukemia. In software-based detection, segmentation is the first critical stage that outputs the region of interest for further accurate diagnosis. Therefore, this paper explores an efficient and hybrid segmentation that proposes a more efficient and effective system for leukemia diagnosis. A very popular publicly available database, the acute lymphoblastic leukemia image database (ALL-IDB), is used in this research. First, the images are pre-processed and segmentation is done using Multilevel thresholding with Otsu and Kapur methods. To further optimize the segmentation performance, the Learning enthusiasm-based teaching-learning-based optimization (LebTLBO) algorithm is employed. Different metrics are used for measuring the system performance. A comparative analysis of the proposed methodology is done with existing benchmarks methods. The proposed approach has proven to be better than earlier techniques with measuring parameters of PSNR and Similarity index. The result shows a significant improvement in the performance measures with optimizing threshold algorithms and the LebTLBO technique.



    A piezoelectric-type tensor is a third-order tensor, which plays an important role in physics [1,2,3,4,5,6] and engineering [7,8,9,10,11]. In particular, the largest C-eigenvalue of a piezoelectric tensor and its associated left and right C-eigenvectors play an important role in the piezoelectric effect and the converse piezoelectric effect in the solid crystal [12,13]. Moreover, in the process of manufacturing and developing micro/nano-electromechanical devices, the development of new multifunctional intelligent structures needs consideration piezoelectric effect [14,15]. In order to explore more information about piezoelectric-type tensors, Chen et al. [12] introduced piezoelectric-type tensors and their C-eigentriples.

    Definition 1.1. [12,Definition 2.1] Let A=(aijk)Rn×n×n be a third-order n-dimensional tensor. If the latter two indices of A are symmetric, i.e., aijk=aikj, where i,j,k[n]:={1,2,,n}, then A is called a piezoelectric-type tensor. When n=3, A is called a piezoelectric tensor.

    Definition 1.2. [12,Definition 2.2] Let A=(aijk)Rn×n×n be a piezoelectric-type tensor. If there is a real number λR, two vectors x:=(x1,x2,,xn)Rn{0} and y:=(y1,y2,,yn)Rn{0} such that

    {Ayy=λx,(1.1)xAy=λy,(1.2)xx=1,(1.3)yy=1,(1.4)

    where

    (Ayy)i:=j,k[n]aijkyjyk,(xAy)k:=i,j[n]aijkxiyj,

    then λ is called a C-eigenvalue of A, and x and y are its associated left and right C-eigenvectors, respectively. Then, (λ,x,y) is called a C-eigentriple of A and σ(A) is used to denote the spectrum of A, which is a set of all C-eigenvalues of A.

    Chen et al. provided the following results for the C-eigenvalues and C-eigenvectors of a piezoelectric-type tensor.

    Property 1.1. [12,Theorem 2.3] Let A=(aijk)Rn×n×n be a piezoelectric-type tensor.

    (a) The C-eigenvalues of A and their associated left and right C-eigenvectors always exist.

    (b) Let λ be a C-eigenvalue and (x,y) be its associated left and right C-eigenvectors. Then

    λ=xAyy:=i,j,k[n]aijkxiyjyk.

    Furthermore, (λ,x,y), (λ,x,y) and (λ,x,y) are also C-eigentriples of A.

    (c) Let λ be the largest C-eigenvalue of A. Then

    λ=max{xAyy:xx=1,yy=1}.

    As we all know, the largest C-eigenvalue of a piezoelectric-type tensor and its associated C-eigenvectors constitute the best rank-one piezoelectric-type approximation. In view of this, Liang and Yang [16,17] designed two methods to calculate the largest C-eigenvalue of a piezoelectric-type tensor. Later, Zhao and Luo [18] provided a method to calculate all C-eigentriples of a piezoelectric-type tensor by converting the C-eigenvalue problem to the Z-eigenvalue problem of tensors. Moreover, many researchers considered the C-eigenvalue localization problem and provided many C-eigenvalue localization sets [19,20,21,22,23,24]. For instance, Che et al. [25] presented the following Geršgorin-type C-eigenvalue localization set.

    Theorem 1.1. [25,Theorem 2.1] Let A=(aijk)Rn×n×n be a piezoelectric-type tensor. Then

    σ(A)Γ(A):=j[n]Γj(A),

    where

    Γj(A):={zR:|z|Rj(A)}andRj(A):=l,k[n]|alkj|.

    Definition 1.2 and Property 1.1 indicate that a C-eigenvalue λ is real and both λ and λ are C-eigenvalues, which implies that a C-eigenvalue localization set is always symmetric with respect to the origin. Therefore, the result of Theorem 1.1 is equivalent to σ(A)[ρΓ,ρΓ], where ρΓ=maxj[n]{Rj(A)}.

    The remainder of the paper is organized as follows. In Section 2, we construct a new C-eigenvalue localization set and prove that it is sharper than some existing sets. In Section 3, we provide a direct method to find all C-eigentriples when n=3. In Section 4, we reviewed the practical application of C-eigentriples of a piezoelectric-type tensor to the piezoelectric effect and converse piezoelectric effect. In Section 5, we verify the effectiveness of obtained results by numerical examples. In Section 6, we give a summary of this paper.

    In this section, we provide a new C-eigenvalue localization set and prove that it is sharper than the set in Theorem 1.1. Before that, the following lemma is needed.

    Lemma 2.1. [26,pp. 10, Cauchy-Schwarz inequality] Let x=(x1,x2,,xn)Rn and y=(y1,y2,,yn)Rn. Then

    (i[n]xiyi)2i[n]x2ii[n]y2i.

    Theorem 2.1. Let A=(aijk)Rn×n×n be a piezoelectric-type tensor. Then

    σ(A)Ω(A):=(i[n]ˆΩi(A))(i,j[n],ij(˜Ωi,j(A)Ki(A))),

    where

    ˆΩi(A):={zR:|z|¯rii(A)},˜Ωi,j(A):={zR:(|z|¯rii(A))(|z|˜rij(A))˜rii(A)¯rij(A)},Ki(A):={zR:|z|ri(A)},

    and

    ¯rij(A):=l[n]a2lij,˜rij(A):=l[n](k[n],ki|alkj|)2,ri(A):=l[n](k[n]|alki|)2,i,j[n].

    Proof. Let (λ,x,y) be a C-eigentriple of A. Let |yt||ys|maxk[n],kt,ks{|yk|}. Then 0|yt|1. From (1.2), we have

    λyt=l,k[n]alktxlyk=l[n]alttxlyt+l,k[n],ktalktxlyk.

    Taking the modulus in above equation and using the triangle inequality and Lemma 2.1, we have

    |λ||yt|l,k[n]|alkt||xl||yt|=|yt|l[n](|xl|k[n]|alkt|)|yt|l[n]|xl|2l[n](k[n]|alkt|)2=|yt|l[n](k[n]|alkt|)2,

    i.e.,

    |λ|l[n](k[n]|alkt|)2=rt(A),

    which implies that λKt(A), and

    |λ||yt|l[n]|altt||xl||yt|+l,k[n],kt|alkt||xl||yk|l[n]|altt||xl||yt|+l,k[n],kt|alkt||xl||ys|=|yt|l[n]|altt||xl|+|ys|l[n](|xl|k[n],kt|alkt|)|yt|l[n]a2lttl[n]x2l+|ys|l[n]x2ll[n](k[n],kt|alkt|)2=|yt|l[n]a2ltt+|ys|l[n](k[n],kt|alkt|)2=¯rtt(A)|yt|+˜rtt(A)|ys|,

    i.e.,

    (|λ|¯rtt(A))|yt|˜rtt(A)|ys|. (2.1)

    If |ys|=0 in (2.1), we have |λ|¯rtt(A), which implies that λˆΩt(A)Ω(A).

    If |ys|>0 in (2.1), then |λ|¯rtt(A)+˜rtt(A)rt(A), which implies that λKt(A). Now, suppose that λˆΩt(A), i.e., |λ|>¯rtt(A). The s-th equation of (1.2) is

    λys=l,k[n]alksxlyk=l[n]altsxlyt+l,k[n],ktalksxlyk,

    which implies that

    |λ||ys|l[n]|alts||xl||yt|+l,k[n],kt|alks||xl||yk|l[n]|alts||xl||yt|+l,k[n],kt|alks||xl||ys|=|yt|l[n]|alts||xl|+|ys|l[n](|xl|k[n],kt|alks|)|yt|l[n]a2ltsl[n]x2l+|ys|l[n]x2ll[n](k[n],kt|alks|)2=|yt|l[n]a2lts+|ys|l[n](k[n],kt|alks|)2=¯rts(A)|yt|+˜rts(A)|ys|,

    i.e.,

    (|λ|˜rts(A))|ys|¯rts(A)|yt|. (2.2)

    By multiplying (2.1) and (2.2) and eliminating |ys||yt|>0, we have

    (|λ|¯rtt(A))(|λ|˜rts(A))˜rtt(A)¯rts(A),

    which implies that λ(˜Ωt,s(A)Kt(A))Ω(A), and consequently, σ(A)Ω(A) by the arbitrariness of λ.

    Next, we discuss the relationship between the set Ω(A) in Theorem 2.1 and the set Γ(A) in Theorem 1.1.

    Theorem 2.2. Let A=(aijk)Rn×n×n be a piezoelectric-type tensor. Then

    Ω(A)Γ(A).

    Proof. Let zΩ(A). By Theorem 2.1, there exists i,j[n] such that zˆΩi(A) or z(˜Ωi,j(A)Ki(A)).

    Case Ⅰ. If zˆΩi(A), then

    |z|¯rii(A)Ri(A),

    which implies that zΓ(A).

    Case Ⅱ. If z(˜Ωi,j(A)Ki(A)), then z˜Ωi,j(A) and zKi(A). If z˜Ωi,j(A), then

    (|z|¯rii(A))(|z|˜rij(A))˜rii(A)¯rij(A).

    If ˜rii(A)¯rij(A)=0, then

    |z|¯rii(A)Ri(A)or|z|˜rij(A)Rj(A),

    which implies that zΓ(A).

    If ˜rii(A)¯rij(A)>0, then

    |z|¯rii(A)˜rii(A)|z|˜rij(A)¯rij(A)1.

    Therefore,

    |z|¯rii(A)˜rii(A)1or|z|˜rij(A)¯rij(A)1,

    i.e.,

    |z|¯rii(A)+˜rii(A)Ri(A)or|z|˜rij(A)+¯rij(A)Rj(A),

    and consequently zΓ(A).

    When zKi(A), we have

    |z|ri(A)Ri(A),

    then zΓ(A). Hence, Ω(A)Γ(A).

    Similarly, we can write the set Ω(A) as [ρΩ,ρΩ], where

    ρΩ:=max{maxi[n]{¯rii(A)},maxi,j[n],ijmin{12νi,j(A),ri(A)}}, (2.3)

    and

    νi,j(A):=˜rij(A)+¯rii(A)+(˜rij(A)¯rii(A))2+4˜rii(A)¯rij(A).

    Theorem 2.2 indicates that ρΩρΓ and [ρΩ,ρΩ][ρΓ,ρΓ].

    By the idea to find all M-eigenpairs of a fourth-order tensor in Theorem 7 of [27], we in this section present a direct method to find all C-eigenpair when n=3.

    Theorem 3.1. Let A=(aijk)Rn×n×n be a piezoelectric-type tensor.Then all C-eigentriples are given as follows:

    (a) If a211=a311=a112=a113=0, then (a111,(1,0,0),(±1,0,0)) and (a111,(1,0,0),(±1,0,0)) are four C-eigentriples of A.

    (b) (λ,x,y) is a C-eigentriple of A, where

    λ=a111x1+a211x2+a311x3,

    and

    x=(x1,x2,x3),y=(±1,0,0),

    x1, x2 and x3 are the real roots of the following equations:

    {a211x1a111x2=0,(3.1)a311x1a111x3=0,(3.2)a112x1+a212x2+a312x3=0,a113x1+a213x2+a313x3=0,x21+x22+x23=1.

    (c) (λ,x,y) and (λ,x,y) are two C-eigentriples of A, where

    λ=a111y21+a122y22+a133y23+2a112y1y2+2a113y1y3+2a123y2y3,

    and

    x=(1,0,0),y=(y1,y2,y3),

    y1, y2 and y3 are the real roots of the following equations:

    {a222y22+a211y21+a233y23+2a221y2y1+2a232y3y2+2a231y3y1=0,a333y23+a311y21+a322y22+2a331y3y1+2a323y2y3+2a321y2y1=0,a112y21+(a122a111)y1y2+a132y1y3a121y22a131y2y3=0,(3.3)a113y21+(a133a111)y1y3+a123y1y2a121y2y3a131y23=0,(3.4)y21+y22+y23=1.

    (d) (λ,x,y) is a C-eigentriple of A, where

    λ=a112x1t+a122x1+a222x2+a212x2t+a322x3+a312x3t,

    and

    x=(x1,x2,x3),y=±(t,1,0)t2+1,

    x1, x2 and x3 and t are the real roots of the following equations:

    {a222x1+a211x1t2+2a221x1ta111x2t2a122x22a112tx2=0,(3.5)a311t2x1+a322x1+2a321x1ta111x3t2a122x32a112x3t=0,(3.6)a112x1t2+(a122a111)x1t+(a222a211)x2t+(a322a311)x3t+a212x2t2+a312x3t2a321x3a221x2a121x1=0,(3.7)a113x1t+a123x1+a223x2+a213x2t+a313x3t+a323x3=0,x21+x22+x23=1.

    (e) (λ,x,y) and (λ,x,y) are two C-eigentriples of A, where

    λ=t2+1(a222y22+a211y22+a233y23+2a221y1y2+2a232y2y3+2a231y1y3), (3.8)

    and

    x=(t,1,0)t2+1,y=(y1,y2,y3),

    y1, y2, y3 and t are the real roots of the following equations:

    {a222y22t+a211y21t+a233y23t+2a221y2y1t+2a232y3y2t+2a231y3y1ta111y21a122y22a133y232a112y1y22a113y1y32a123y2y3=0,(3.9)a333y23+a311y21+a322y22+2a331y3y1+2a323y2y3+2a321y2y1=0,a112ty21+(a122a111)ty1y2+a132ty1y3+(a222a211)y2y1+a212y21+a232y1y3a121ty22a131y2ty3a221y22a231y2y3=0,(3.10)a113ty21+(a133a111)ty1y3+a123ty1y2+a223y1y2+a213y21+(a233a211)y1y3a121ty2y3a131ty23a221y2y3a231y23=0,(3.11)y21+y22+y23=1.

    (f) (λ,x,y) is a C-eigentriple of A, where

    λ=±(a113u1v1+a123u1v2+a133u1+a213u2v1+a223u2v2+a233u2+a313v1+a323v2+a333)/u21+u22+1, (3.12)

    and

    x=±(u1,u2,1)u21+u22+1,y=±(v1,v2,1)v21+v22+1, (3.13)

    u1, u2, v1 and v2 are the real roots of the following equations:

    {a222u1v22+a211v21u1+a233u1+2a221v1u1v2+2a232u1v2+2a231v1u1a111u2v21a122u2v22a133u22a112u2v1v22a113u2v12a123u2v2=0,(3.14)a333u1+a311u1v21+a322u1v22+2a331u1v1+2a323u1v2+2a321u1v1v2a111v21a122v22a1332a112v1v22a113v12a123v2=0,(3.15)a112u1v21+(a122a111)u1v1v2+a132v1u1+(a222a211)u2v1v2+a212u2v21+a232v1u2+a332v1+(a322a311)v1v2+a312v21a121u1v22a131u1v2a221u2v22a231v2u2a331v2a321v22=0,(3.16)a113u1v21+(a133a111)u1v1+a123v1u1v2+a223v1u2v2+a323v1v2+(a233a211)u2v1+a213u2v21+(a333a311)v1+a313v21a121u1v2a131u1a221u2v2a231u2a331a321v2=0.(3.17)

    Proof. When n=3, the specific form of (1.1)–(1.4) is

    {a111y21+a122y22+a133y23+2a112y1y2+2a113y1y3+2a123y2y3=λx1,(3.18)a222y22+a211y21+a233y23+2a221y2y1+2a232y3y2+2a231y3y1=λx2,(3.19)a333y23+a311y21+a322y22+2a331y3y1+2a323y2y3+2a321y2y1=λx3,(3.20)a111x1y1+a121x1y2+a131x1y3+a221x2y2+a211x2y1+a231x2y3+a331x3y3+a311x3y1+a321x3y2=λy1,(3.21)a112x1y1+a122x1y2+a132x1y3+a222x2y2+a212x2y1+a232x2y3+a332x3y3+a322x3y2+a312x3y1=λy2,(3.22)a113x1y1+a133x1y3+a123x1y2+a223x2y2+a233x2y3+a213x2y1+a333x3y3+a313x3y1+a323x3y2=λy3,(3.23)x21+x22+x23=1,(3.24)y21+y22+y23=1.(3.25)

    To proceed, we break the arguments into six Cases.

    (a) Assume that x=(1,0,0) and y=(±1,0,0). Then (3.18)–(3.25) becomes λ=a111 and a211=a311=a112=a113=0.

    Assume that x=(1,0,0) and y=(±1,0,0). Then (3.18)–(3.25) becomes λ=a111 and a211=a311=a112=a113=0.

    Hence, if a211=a311=a112=a113=0, then (a111,(1,0,0),(±1,0,0)) and (a111,(1,0,0),(±1,0,0)) are four C-eigentriples of A.

    (b) Assume that y=(±1,0,0). Then (3.18)–(3.25) becomes

    {a111=λx1,(3.26)a211=λx2,(3.27)a311=λx3,(3.28)a111x1+a211x2+a311x3=λ,(3.29)a112x1+a212x2+a312x3=0,(3.30)a113x1+a213x2+a313x3=0,(3.31)x21+x22+x23=1.

    By (3.26) and (3.27), we have (3.1). By (3.26) and (3.28), we have (3.2). Next, solving (3.1), (3.2), (3.30), (3.31) and (3.24), we can obtain x1, x2 and x3, which implies that x=(x1,x2,x3) and y=(±1,0,0) are a pair of C-eigenvectors. Furthermore, by (3.29), we can get a C-eigenvalue λ of A.

    (c) Assume that x=(1,0,0). Then (3.18)–(3.25) becomes

    {a111y21+a122y22+a133y23+2a112y1y2+2a113y1y3+2a123y2y3=λ,(3.32)a222y22+a211y21+a233y23+2a221y2y1+2a232y3y2+2a231y3y1=0,(3.33)a333y23+a311y21+a322y22+2a331y3y1+2a323y2y3+2a321y2y1=0,(3.34)a111y1+a121y2+a131y3=λy1,(3.35)a112y1+a122y2+a132y3=λy2,(3.36)a113y1+a133y3+a123y2=λy3,(3.37)y21+y22+y23=1.

    By (3.35) and (3.36), we have (3.3). By (3.35) and (3.37), we have (3.4). Next, solving (3.3), (3.4), (3.25), (3.33) and (3.34), we can obtain y1, y2 and y3, which implies that x=(1,0,0) and y=(y1,y2,y3) are a pair of C-eigenvectors. Furthermore, by (3.32), we can get a C-eigenvalue λ of A.

    Assume that x=(1,0,0). Similarly, we have

    λ=(a111y21+a122y22+a133y23+2a112y1y2+2a113y1y3+2a123y2y3),

    with its a pair of C-eigenvectors are x=(1,0,0) and y=(y1,y2,y3), which also satisfies (3.3), (3.4), (3.25), (3.33) and (3.34).

    (d) Assume that y=(y1,y2,0), where y20. Then (3.18)–(3.25) becomes

    {a111y21+a122y22+2a112y1y2=λx1,a222y22+a211y21+2a221y2y1=λx2,a311y21+a322y22+2a321y2y1=λx3,a111x1y1+a121x1y2+a221x2y2+a211x2y1+a311x3y1+a321x3y2=λy1,a112x1y1+a122x1y2+a222x2y2+a212x2y1+a322x3y2+a312x3y1=λy2,a113x1y1+a123x1y2+a223x2y2+a213x2y1+a313x3y1+a323x3y2=0,x21+x22+x23=1,y21+y22=1.

    Let t=y1y2. Then the above equations become

    {(a111t2+a122+2a112t)y22=λx1,(3.38)(a222+a211t2+2a221t)y22=λx2,(3.39)(a311t2+a322+2a321t)y22=λx3,(3.40)a111x1t+a121x1+a221x2+a211x2t+a311x3t+a321x3=λt,(3.41)a112x1t+a122x1+a222x2+a212x2t+a322x3+a312x3t=λ,(3.42)a113x1t+a123x1+a223x2+a213x2t+a313x3t+a323x3=0,(3.43)x21+x22+x23=1.

    By (3.38) and (3.39), we have (3.5). By (3.38) and (3.40), we have (3.6). By (3.4) and (3.42), we have (3.7). Next, solving (3.5)–(3.7), (3.24) and (3.43), we can obtain x1, x2, x3 and t, which leads to its a pair of C-eigenvectors x=(x1,x2,x3) and y=±(t,1,0)t2+1. Furthermore, by (3.42), we can get a C-eigenvalue λ of A.

    (e) Assume that x=(x1,x2,0), where x20. Then (3.18)–(3.25) becomes

    {a111y21+a122y22+a133y23+2a112y1y2+2a113y1y3+2a123y2y3=λx1,a222y22+a211y21+a233y23+2a221y2y1+2a232y3y2+2a231y3y1=λx2,a333y23+a311y21+a322y22+2a331y3y1+2a323y2y3+2a321y2y1=0,a111x1y1+a121x1y2+a131x1y3+a221x2y2+a211x2y1+a231x2y3=λy1,a112x1y1+a122x1y2+a132x1y3+a222x2y2+a212x2y1+a232x2y3=λy2,a113x1y1+a133x1y3+a123x1y2+a223x2y2+a233x2y3+a213x2y1=λy3,x21+x22=1,y21+y22+y23=1.

    Let t=x1x2. Then the above equations become

    {a111y21+a122y22+a133y23+2a112y1y2+2a113y1y3+2a123y2y3=λtx2,(3.44)a222y22+a211y21+a233y23+2a221y2y1+2a232y3y2+2a231y3y1=λx2,(3.45)a333y23+a311y21+a322y22+2a331y3y1+2a323y2y3+2a321y2y1=0,(3.46)a111tx2y1+a121tx2y2+a131tx2y3+a221x2y2+a211x2y1+a231x2y3=λy1,(3.47)a112tx2y1+a122tx2y2+a132tx2y3+a222x2y2+a212x2y1+a232x2y3=λy2,(3.48)a113tx2y1+a133tx2y3+a123tx2y2+a223x2y2+a233x2y3+a213x2y1=λy3,(3.49)y21+y22+y23=1.

    By (3.44) and (3.45), we have (3.9). By (3.47) and (3.48), we have (3.10). By (3.47) and (3.49), we have (3.11). Next, solving (3.9)–(3.11), (3.25) and (3.46), we can obtain y1, y2, y3 and t. And then, by x21+x22=1, we have x2=±1t2+1. Furthermore, by (3.45), we can get a C-eigenvalue λ of A in (3.8) and its a pair of C-eigenvectors x=±(t,1,0)t2+1 and y=(y1,y2,y3).

    (f) Assume that x=(x1,x2,x3) and y=(y1,y2,y3), where x30 and y30. Let

    u1=x1x3,u2=x2x3,v1=y1y3,v2=y2y3.

    Then (3.18)–(3.25) becomes

    {a111v21y23+a122v22y23+a133y23+2a112v1v2y23+2a113v1y23+2a123v2y23=λu1x3,(3.50)a222v22y23+a211v21y23+a233y23+2a221v1v2y23+2a232v2y23+2a231v1y23=λu2x3,(3.51)a333y23+a311v21y23+a322v22y23+2a331v1y23+2a323v2y23+2a321v1v2y23=λx3,(3.52)a111u1v1x3+a121u1v2x3+a131u1x3+a221u2v2x3+a211u2v1x3+a231u2x3+a331x3+a311v1x3+a321v2x3=λv1,(3.53)a112u1v1x3+a122u1v2x3+a132u1x3+a222u2v2x3+a212u2v1x3+a232u2x3+a332x3+a322v2x3+a312v1x3=λv2,(3.54)a113u1v1x3+a133u1x3+a123u1v2x3+a223u2v2x3+a233u2x3+a213u2v1x3+a333x3+a313v1x3+a323v2x3=λ.(3.55)

    By (3.50) and (3.51), we have (3.14). By (3.50) and (3.52), we have (3.15). By (3.53) and (3.54), we have (3.16). By (3.53) and (3.55), we have (3.17). Next, solving (3.14)–(3.17), we can obtain u1, u2, v1 and v2. Furthermore, by x21+x22+x23=1 and y21+y22+y23=1, we can get x and y in (3.13); by (3.55), we can get a C-eigenvalue λ of A in (3.12).

    Remark 3.1. ⅰ) Solving the system of nonlinear equations in (b) of Theorem 3.1, we can choose any three of the first four equations to form a system of linear equations. If the determinant of the coefficient matrix of the system of linear equations is not equal to 0, then the system of linear equations has only zero solution and obviously it is not the solution of the last equation in the system of nonlinear equations, which implies that the system of nonlinear equations in (b) has no solution. If the determinant is equal to 0, then we need to verify that whether this solution satisfies the other two equations.

    ⅱ) Solving these system of nonlinear equations in (c)–(f) of Theorem 3.1, we can use the resultant method in algebraic geometry [28] to find their solutions, which has been verified and is feasible in finding all M-eigenpairs of an order 4 dimension 2 tensor in Theorem 7 of [27].

    Given two polynomials f(x) and g(x), where

    f(x)=a0xn+a1xn1++an,a00,n>0.g(x)=b0xm+b1xm1++bm,b00,m>0.

    Then the resultant of f(x) and g(x) is represented by Resx(f,g), that is, the determinant of (n+m)×(n+m) is as follows:

    Resx(f,g)=det(a0a1a0a2a1a2a0ama1ama2amncolumnsd0d1d0d2d1d2b0dnb1dnb2bn)mcolumns,

    where the blank spaces are filled with zeros. It is showed in [28,pp. 78] that over the complex field f(x) and g(x) have a common root if and only if their resultant is zero.

    Solving the systems (3.14)–(3.17) with four variables u1, u2, v1 and v2, we can obtain its solutions by successive elimination of variables as follows:

    Step 1: Mark the four equations in the systems (3.14)–(3.17) as f1(u1,u2,v1,v2), f2(u1,u2,v1,v2), f3(u1,u2,v1,v2) and f4(u1,u2,v1,v2) in turn, and regard f1, f2, f3 and f4 as functions with u1 as a variable and u2, v1 and v2 as their coefficients. If Resu1(f1,f2)=0, which is a function with u2, v1 and v2 as three variables, then f1 and f2 have a common root. Similarly, Resu1(f1,f3)=0 and Resu1(f1,f4)=0 can be obtained and they are functions with u2, v1 and v2 as three variables.

    Step 2: Let

    g1(u2,v1,v2):=Resu1(f1,f2)=0,g2(u2,v1,v2):=Resu1(f1,f3)=0,

    and

    g3(u2,v1,v2):=Resu1(f1,f4)=0,

    and g1, g2 and g3 be regarded as functions with u2 as a variable and v1 and v2 as their coefficients. If Resu2(g1,g2)=0, which is a function with v1 and v2 as two variables, then g1 and g2 have a common root. Similarly, Resu2(g1,g3)=0 can be obtained and it is a function with v1 and v2 as two variables.

    Step 3: Let

    h1(v1,v2):=Resu2(g1,g2)=0andh2(v1,v2):=Resu2(g1,g3)=0.

    and h1 and h2 be regarded as functions with v1 as a variable and v2 as a coefficient. If Resv1(h1,h2)=0, which is a function with v2 as a variable, then h1 and h2 have a common root.

    Step 4: Solving the function Resv1(h1,h2)=0 with v2 as a variable by Matlab command 'solve', its all real solutions v2 can be obtained.

    Step 5: Substituting v2 to h1(v1,v2)=0 and h2(v1,v2)=0 to find all their real solutions v1. And then, substituting v2 and v1 to g1(u2,v1,v2)=0, g2(u2,v1,v2)=0 and g3(u2,v1,v2)=0 to find all their real solutions u2. Furthermore, substituting v2, v1 and u2 to fi(u1,u2,v1,v2)=0 for i[4] to find all their real solutions u1. Then, all real roots u1, u2, v1 and v2 of (3.14)–(3.17) are obtained. Finally, by (3.12) and (3.13), we can find all C-eigentriples of A in the Case (f) in Theorem 3.1.

    It is shown in [12,29] that the largest C-eigenvalue λ of a piezoelectric tensor determines the highest piezoelectric coupling constant, and its corresponding C-eigenvector y is the corresponding direction of the stress where this appears. In this section, let's review its physical background, which is shown in [29].

    In physics, for non-centrosymmetric materials, we can write the linear piezoelectric equation as

    pi=j,k[3]aijkTjk,

    where A=(aijk)R3×3×3 is a piezoelectric tensor, T=(Tjk)R3×3 is the stress tensor, and p=(pi)R3 is the electric change density displacement.

    Now, it is worth considering, under what conditions can the maximal piezoelectricity be triggered under a unit uniaxial stress? In this case, the stress tensor T can be rewritten as T=yy with yy=1. Then, this maximal piezoelectricity problem can be formulated into an optimization model

    {max

    By a dual norm, \|p\|_2 = \max\limits_{x^{\top}x = 1}x^{\top}p = \max\limits_{x^{\top}x = 1}x\mathcal{A}yy is derived and hence the above optimization model is converted to the following optimization problem

    \begin{eqnarray*} \max\; \; \; \; x\mathcal{A}yy \qquad {\text{s.t.}}\; \; x^{\top}x = 1, \; \; y^{\top}y = 1. \end{eqnarray*}

    If (x^*, y^*) is an optimal solution of the above optimization problem, then \lambda^* = x^*\mathcal{A}y^*y^* is the largest C-eigenvalue of \mathcal{A} and y^* is the unit uniaxial direction that the maximal piezoelectric effect take place along.

    Theorem 4.1. [29,Theorem 7.12] Let \lambda^* be the largest C-eigenvalue, x^* and y^* be the associated C-eigenvectors of a piezoelectric tensor \mathcal{A} .Then, \lambda^* is the maximum value of the 2-norm of the electric polarization under a unit uniaxial stress along the optimal axial direction y^* .

    Moreover, the linear equation of the inverse piezoelectric effect is

    \begin{eqnarray*} S_{jk} = \sum\limits_{i}a_{ijk}e_{i}, \end{eqnarray*}

    where S = (S_{jk})\in\mathbb{R}^{3\times3} is the strain tensor and e = (e_i) \in \mathbb{R}^3 is the electric field strength. Next, the following maximization problem is considered:

    \left\{ {\begin{array}{*{20}{l}} { \max}&{\|S\|_2: = \max\limits_{y^{\top}y = 1}y^{\top}Sy}\\ {s.t.}&{S_{jk} = \sum\limits_{i\in [3]}e_ia_{ijk}, \forall j, k\in [3], }\\ {}&{e^{\top}e = 1.} \end{array}} \right.

    By \|S\|_2 = \max\limits_{y^{\top}y = 1}y^{\top}Sy = \max\limits_{y^{\top}y = 1}e\mathcal{A}yy , the above maximization problem is rewritten as

    \begin{eqnarray*} \max\{e\mathcal{A}yy:\quad e^{\top}e = 1, \quad y^{\top}y = 1\}. \end{eqnarray*}

    If (e^*, y^*) is an optimal solution of the above optimization problem, then \lambda^* = e^*\mathcal{A}y^*y^* is the largest C-eigenvalue of \mathcal{A} , e^* and y^* are its associated C-eigenvectors.

    Theorem 4.2. [29,Theorem 7.13] Let \lambda^* be the largest C-eigenvalue and x^* and y^* be its associated C-eigenvectors of a piezoelectric tensor \mathcal{A} .Then, \lambda^* is the largest spectral norm of a strain tensor generated by the converse piezoelectric effect under unit electric field strength \|x^*\| = 1 .

    In this section, numerical examples are given to verify the obtained theoretical results.

    Example 1. Consider the eight piezoelectric tensors in [12,Examples 1-8].

    (a) The first piezoelectric tensor is \mathcal{A}_{\rm VFeSb} with its nonzero entries

    \begin{eqnarray*} a_{123} = a_{213} = a_{312} = -3.68180667. \end{eqnarray*}

    (b) The second piezoelectric tensor \mathcal{A}_{\rm SiO_2} with its nonzero entries

    \begin{eqnarray*} a_{111} = -a_{122} = -a_{212} = -0.13685, \quad a_{123} = -a_{213} = -0.009715. \end{eqnarray*}

    (c) The third piezoelectric tensor \mathcal{A}_{\rm Cr_2AgBiO_8} with its nonzero entries

    \begin{align*} a_{123}& = a_{213} = -0.22163, \quad a_{113} = -a_{223} = 2.608665, \\ a_{311}& = -a_{322} = 0.152485, \quad a_{312} = -0.37153. \end{align*}

    (d) The fourth piezoelectric tensor \mathcal{A}_{\rm RbTaO_3} with its nonzero entries

    \begin{align*} a_{113}& = a_{223} = -8.40955, \quad a_{311} = a_{322} = -4.3031, \\ a_{222}& = -a_{212} = -a_{211} = -5.412525, \quad a_{333} = -5.14766. \end{align*}

    (e) The fifth piezoelectric tensor \mathcal{A}_{\rm NaBiS_2} with its nonzero entries

    \begin{align*} a_{113}& = -8.90808, \quad a_{223} = -0.00842, \quad a_{311} = -7.11526, \\ a_{322}& = -0.6222, \quad a_{333} = -7.93831. \end{align*}

    (f) The sixth piezoelectric tensor \mathcal{A}_{\rm LiBiB_2O_5} with its nonzero entries

    \begin{align*} a_{112}& = 0.34929, \quad a_{211} = 0.16101, \quad a_{222} = 0.12562, \quad a_{312} = 2.57812, \\ a_{123}& = 2.35682, \quad a_{213} = -0.05587, \quad a_{233} = 0.1361, \quad a_{323} = 6.91074. \end{align*}

    (g) The seventh piezoelectric tensor \mathcal{A}_{\rm KBi_2F_7} with its nonzero entries

    \begin{align*} a_{111}& = 12.64393, \quad a_{211} = 2.59187, \quad a_{311} = 1.51254, \quad a_{123} = 1.59052, \\ a_{122}& = 1.08802, \quad a_{212} = 0.10570, \quad a_{312} = 0.08381, \quad a_{233} = 0.81041, \\ a_{113}& = 1.96801, \quad a_{213} = 0.71432, \quad a_{313} = 0.39030, \quad a_{333} = -0.23019, \\ a_{112}& = 0.22465, \quad a_{222} = 0.08263, \quad a_{322} = 0.68235, \quad a_{323} = 0.19013, \\ a_{133}& = 4.14350, \quad a_{223} = 0.51165. \end{align*}

    (h) The eigth piezoelectric tensor \mathcal{A}_{\rm BaNiO_3} with its nonzero entries

    \begin{align*} a_{113} = 0.038385, \; a_{223} = 0.038385, \; a_{311} = a_{322} = 6.89822, \; a_{333} = 27.4628. \end{align*}

    Ⅰ. Localization for all C-eigenvalues of the above eight piezoelectric tensors.

    Now, we use these C-eigenvalues intervals in Theorems 2.1 and 1.1, Theorems 1 and 2 of [20], Theorem 2.1 of [13], Theorems 2.2 and 2.4 of [25], Theorem 2.1 of [24], Theorem 2.1 of [23], Theorem 5 of [19], Theorem 7 of [21], Theorems 2.3–2.5 of [18] and Theorem 2.1 of [22] to locate all Ceigenvalues of the above eight piezoelectric tensors. Numerical results are shown in Table 1. Since these intervals are symmetric about the origin, only their right boundaries are listed in Table 1.

    Table 1.  Comparison among \varrho , \varrho_{\min} , \widetilde{\varrho}_{\min} , \rho_{\Gamma} , \rho_{\mathcal{L}} , \rho_{\mathcal{M}} , \rho_{\Upsilon} , \rho_{\gamma} , \rho_{\Omega^{S}} , \rho_{C} , \rho_{G} , \rho_{B} , \rho_{\min} , \rho_{\Psi} , \rho_{\Omega} and \lambda^{*} .
    \mathcal{A}_{\rm VFeSb} \mathcal{A}_{\rm SiO_2} \mathcal{A}_{\rm Cr_2AgBiO_8} \mathcal{A}_{\rm RbTaO_3} \mathcal{A}_{\rm NaBiS_2} \mathcal{A}_{\rm LiBiB_2O_5} \mathcal{A}_{\rm KBi_2F_7} \mathcal{A}_{\rm BaNiO_3}
    \varrho 7.3636 0.2882 5.6606 30.0911 17.3288 15.2911 22.6896 33.7085
    \varrho_{\min} 7.3636 0.2834 5.6606 23.5377 16.8548 12.3206 20.2351 27.5396
    \widetilde{\varrho}_{\min} 7.3636 0.2393 4.6717 22.7163 14.5723 12.1694 18.7025 27.5396
    \rho_{\Gamma} 7.3636 0.2834 5.6606 23.5377 16.8548 12.3206 20.2351 27.5396
    \rho_{\mathcal{L}} 7.3636 0.2744 4.8058 23.5377 16.5640 11.0127 18.8793 27.5109
    \rho_{\mathcal{M}} 7.3636 0.2834 4.7861 23.5377 16.8464 11.0038 19.8830 27.5013
    \rho_{\Upsilon} 7.3636 0.2834 4.7335 23.5377 16.8464 10.9998 19.8319 27.5013
    \rho_{\gamma} 7.3636 0.2744 4.7860 23.0353 16.4488 10.2581 18.4090 27.5013
    \rho_{\Omega^{S}} 7.3636 0.2744 4.2732 23.0353 16.4486 10.2581 17.7874 27.4629
    \rho_C 6.3771 0.1943 3.7242 16.0259 11.9319 7.7540 13.5113 27.4629
    \rho_G 6.3771 0.2506 4.0455 21.5313 13.9063 9.8718 14.2574 29.1441
    \rho_B 5.2069 0.2345 4.0026 19.4558 13.4158 10.0289 15.3869 27.5396
    \rho_{\min} 6.5906 0.1942 3.5097 18.0991 11.9324 8.1373 14.3299 27.4725
    \rho_{\Psi} 6.5906 0.1942 4.2909 18.9140 11.9319 8.1501 14.0690 27.4629
    \rho_{\Omega} 5.2069 0.2005 3.5097 19.2688 11.9319 8.6469 13.6514 27.4629
    \lambda^{*} 4.2514 0.1375 2.6258 12.4234 11.6674 7.7376 13.5021 27.4628

     | Show Table
    DownLoad: CSV

    In Table 1, \lambda^{*} is the largest C-eigenvalue of a piezoelectric tensor; \varrho and \varrho_{\min} are respectively the right boundaries of the interval [-\varrho, \varrho] and [-\varrho_{\min}, \varrho_{\min}] obtained by Theorems 1 and 2 in [20]; \widetilde{\varrho}_{\min} are respectively the right boundary of the interval [-\widetilde{\varrho}_{\min}, \widetilde{\varrho}_{\min}] obtained by Theorem 2.1 of [13]; \rho_{\mathcal{L}} and \rho_{\mathcal{M}} are respectively the right boundaries of the intervals [-\rho_{\mathcal{L}}, \rho_{\mathcal{L}}] and [-\rho_{\mathcal{M}}, \rho_{\mathcal{M}}] obtained by 2.2 and 2.4 in [25]; \rho_{\Upsilon} is the right boundary of the interval [-\rho_{\Upsilon}, \rho_{\Upsilon}] obtained by Theorem 2.1 of [24]; \rho_{\gamma} is the right boundary of the interval [-\rho_{\gamma}, \rho_{\gamma}] obtained by Theorem 2.1 of [23]; \rho_{\Omega^{S}} is the right boundary of the interval [-\rho_{\Omega^{S}}, \rho_{\Omega^{S}}] obtained by Theorem 5 of [19]; \rho_{C} is the right boundary of the interval [-\rho_{C}, \rho_{C}] obtained by Theorem 7 of [21]; \rho_{G} , \rho_{B} and \rho_{\min} are respectively the right boundaries of the intervals [-\rho_{G}, \rho_{G}] , [-\rho_{B}, \rho_{B}] and [-\rho_{\min}, \rho_{\min}] obtained by Theorems 2.3–2.5 in [18]; \rho_{\Psi} is the right boundary of the interval [-\rho_{\Psi}, \rho_{\Psi}] obtained by Theorem 2.1 of [22]; \rho_{\Gamma} is the right boundary of the interval [-\rho_{\Gamma}, \rho_{\Gamma}] obtained by Theorem 1.1; \rho_{\Omega} is the right boundary of the interval [-\rho_{\Omega}, \rho_{\Omega}] obtained by Theorem 2.1.

    From Table 1, it can be seen that:

    ⅰ) \rho_{\Omega} is smaller than \varrho , \varrho_{\min} , \widetilde{\varrho}_{\min} , \rho_{\Gamma} , \rho_{\mathcal{L}} , \rho_{\mathcal{M}} , \rho_{\Upsilon} , \rho_{\gamma} for the eight piezoelectric tensors.

    ⅱ) \rho_{\Omega}\leq \rho_{\Omega^S} , \rho_{\Omega}\leq \rho_B for the eight piezoelectric tensors.

    ⅲ) For some tensors, \rho_{\Omega} is smaller than \rho_C , \rho_G , \rho_{\min} and \rho_{\Psi} .For the other tensors, \rho_{\Omega} is bigger than or equal to \rho_{C} , \rho_{G} , \rho_{\min} and \rho_{\Psi} .For examples, for \mathcal{A}_{\rm VFeSb} , \rho_{\Omega} < \rho_C , \rho_\Omega < \rho_G , \rho_\Omega < \rho_{\min} and \rho_\Omega < \rho_{\Psi} ; For \mathcal{A}_{\rm SiO_2} , \rho_{\Omega} > \rho_C , \rho_\Omega > \rho_{\min} and \rho_\Omega > \rho_{\Psi} ; For \mathcal{A}_{\rm BaNiO_3} , \rho_{\Omega} > \rho_G .

    Ⅱ. Calculation for all C-eigentriples of the seventh piezoelectric tensor \mathcal{A}_{\rm KBi_2F_7} by Theorem 3.1.

    All C-eigentriples of \mathcal{A}_{\rm KBi_2F_7} are obtained by Theorem 3.1 and are showen in Table 2. And the calculation process is shown in Appendix.

    Table 2.  All C-eigentriples of \mathcal{A}_{\rm KBi_2F_7} .
    \lambda x_{1} x_{2} x_{3} y_{1} y_{2} y_{3}
    13.50214 0.97050 0.20974 0.11890 0.97226 0.05065 0.22836
    13.50214 0.97050 0.20974 0.11890 -0.97226 -0.05065 -0.22836
    4.46957 0.98196 0.18905 -0.00362 0.22771 -0.41491 -0.88091
    4.46957 0.98196 0.18905 -0.00362 -0.22771 0.41491 0.88091
    0.54486 0.75981 -0.36879 0.53544 0.06168 0.87047 -0.48833
    0.54486 0.75981 -0.36879 0.53544 -0.06168 -0.87047 0.48833
    -0.54486 -0.75981 0.36879 -0.53544 0.06168 0.87047 -0.48833
    -0.54486 -0.75981 0.36879 -0.53544 -0.06168 -0.87047 0.48833
    -4.46957 -0.98196 -0.18905 0.00362 0.22771 -0.41491 -0.88091
    -4.46957 -0.98196 -0.18905 0.00362 -0.22771 0.41491 0.88091
    -13.50214 -0.97050 -0.20974 -0.11890 0.97226 0.05065 0.22836
    -13.50214 -0.97050 -0.20974 -0.11890 -0.97226 -0.05065 -0.22836

     | Show Table
    DownLoad: CSV

    Let \mathcal{A}\in \mathbb{R}^{n\times n\times n} be a piezoelectric-type tensor. In this paper, we in Theorem 2.1 constructed a C-eigenvalue interval \Omega(\mathcal{A}) to locate all C-eigenvalues of \mathcal{A} and proved that it is tighter than that in [25,Theorem 2.1]. Subsequently, we in Theorem 3.1 provided a direct method to find all C-eigentriples of \mathcal{A} when n = 3 . Although the method in Theorem 3.1 is divided into six Cases, it is indeed a little complicated, but it can be seen from Example 1 that this method is feasible.

    The authors are very grateful to the five anonymous referees for their insightful comments and constructive suggestions, which considerably improve our manuscript. Caili Sang's work is supported by Science and Technology Plan Project of Guizhou Province (Grant No. QKHJC-ZK[2021]YB013). Jianxing Zhao's work is supported by Science and Technology Plan Project of Guizhou Province (Grant No. QKHJC-ZK[2022]YB215).

    The author declares there is no confict of interest.

    The following is the calculation process for all C-eigentriples of \mathcal{A}_{\rm KBi_2F_7} by Theorem 3.1.

    (a) Because a_{211}\neq 0 , Case (a) in Theorem 3.1 does not holds.

    (b) The system in Case (b) of Theorem 3.1 is

    \left\{ {\begin{array}{*{20}{l}} { 2.59187x_{1}-12.64393x_{2} = 0, }&{}&{}&{\left( {{\rm{A}}{\rm{.1}}} \right)}\\ {1.51254x_{1}-12.64393x_{3} = 0, }&{}&{}&{\left( {{\rm{A}}{\rm{.2}}} \right)}\\ {1.08802x_{1}+0.10570x_{2}+0.08381x_{3} = 0, }&{}&{}&{\left( {{\rm{A}}{\rm{.3}}} \right)}\\ { 1.96801x_{1}+0.71432x_{2}+0.39030x_{3} = 0, }&{}&{}&{}\\ {x_1^2+x_2^2+x_3^2 = 1.}&{}&{}&{} \end{array}} \right.

    The three Eqs (A.1)–(A.3) yield a linear system of equation Ax = 0 , where x = (x_{1}, x_{2}, x_{3})^{\top} and

    \begin{equation*} A = \left( \begin{array}{ccc} 2.59187&-12.64393&0\\ 1.51254&0&-12.64393\\ 1.08802&0.10570&0.08381 \end{array} \right). \end{equation*}

    From \det(A) = 179.0074\neq 0 , the solution of Ax = 0 is x = (x_1, x_2, x_3)^\top = (0, 0, 0)^\top , which contradicts with x_1^2+x_2^2+x_3^2 = 1 . Hence, the system in Case (b) of Theorem 3.1 has no solution.

    (c) The system in Case (c) of Theorem 3.1 is

    \left\{ \begin{array}{l} f_1(y_1, y_2, y_3) = 0.08263y_2^2+2.59187y_1^{2}+0.81041y_3^{2}+0.2114y_1y_2\\ +1.0233y_2y_3+1.42864y_1y_3 = 0, \\ f_2(y_1, y_2, y_3) = -0.23019y_3^{2}+1.51254y_1^{2}+0.68235y_2^{2}+0.7806y_1y_3\\ + 0.38026y_2y_3+0.16762y_1y_2 = 0, \\ f_3(y_1, y_2, y_3) = 0.22465y_1^2-0.22465y_2^{2}-11.55591y_1y_2+1.59052y_1y_3\\ -1.96801y_2y_3 = 0, \\ f_4(y_1, y_2, y_3) = 1.96801y_1^{2}-1.96801y_3^{2}-8.50043y_1y_3+a_{123}y_1y_2\\ -0.22465y_2y_3 = 0, \\ f_5(y_1, y_2, y_3) = y_1^2+y_2^2+y_3^2 = 1. \end{array} \right.

    We now regard f_i(y_1, y_2, y_3) , i\in [5] as a function with y_1 as a variable and y_2 and y_3 as two coefficients and obtain their resultants as follows:

    \begin{align*} {\text{Res}}_{y_1}(f_1, f_2) = &2.68640y_2^4-1.92404y_3y_2^3-5.51122y_2^2y_3^2+2.09880y_3^3y_2+3.18879y_3^4, \\ {\text{Res}}_{y_1}(f_1, f_3) = &27.58122y_2^4+331.64703y_3y_2^3+134.75405y_3^2y_2^2-55.45236y_3^3y_2 +4.93315y_3^4. \end{align*}

    Let g_1(y_2, y_3): = {\text{Res}}_{y_1}(f_1, f_2) , g_2(y_2, y_3): = {\text{Res}}_{y_1}(f_1, f_3) , and its resultant

    \begin{align*} {\text{Res}}_{y_2}(g_1, g_2) = 95376348203.97653y_3^{16} = 0. \end{align*}

    Then y_3 = 0 . Substituting y_3 = 0 into g_1 and g_2 , we have

    \begin{align*} g_1(y_2, y_3) = 2.68640y_2^4, \quad g_2(y_2, y_3) = 27.58122y_2^4. \end{align*}

    Let g_1(y_2, y_3) = 0 and g_2(y_2, y_3) = 0 . We have y_2 = 0 . Substituting y_2 = 0 and y_3 = 0 into f_1 , we have f_1(y_1, y_2, y_3) = 2.59187y_1^2 . Solving f_1(y_1, y_2, y_3) = 0 , we have y_1 = 0 . However, y_1 = y_2 = y_3 = 0 is not solution of y_1^2+y_2^2+y_3^2 = 1 . Hence, the system in Case (c) of Theorem 3.1 has no solution.

    (d) Similar to solution for Case (c), the system in Case (d) of Theorem 3.1 has no solution.

    (e) Similar to solution for Case (c), the system in Case (e) of Theorem 3.1 has no solution.

    (f) The system in Case (f) of Theorem 3.1 is

    \left\{ \begin{array}{l} f_1(u_{1}, u_{2}, v_{1}, v_{2}): = 0.08263u_{1}v_{2}^{2}+2.59187v_{1}^{2}u_{1}+0.81041u_{1}+ 0.21140v_{1}u_{1}v_{2}\\ +1.02330u_{1}v_{2}+1.42864v_{1}u_{1}-12.64393u_{2}v_{1}^{2}-1.08802u_{2}v_{2}^{2}\\ -4.14350u_{2}-0.44930u_{2}v_{1}v_{2}-3.93602u_{2}v_{1}-3.18104u_{2}v_{2} = 0, \\ f_2(u_{1}, u_{2}, v_{1}, v_{2}): = -0.23019u_{1}+1.51254u_{1}v_{1}^{2}+0.68235u_{1}v_{2}^{2}+0.78060u_{1}v_{1}\\ +0.38026u_{1}v_{2}+0.16762u_{1}v_{1}v_{2}-12.64393v_{1}^{2}-1.08802v_{2}^{2}\\ -0.44930v_{1}v_{2}-3.93602v_{1}-3.18104v_{2}-4.14350 = 0, \\ f_3(u_{1}, u_{2}, v_{1}, v_{2}): = 0.22465u_{1}v_{1}^{2}-11.55591u_{1}v_{1}v_{2}+1.59052v_{1}u_{1}\\ -2.50924u_{2}v_{1}v_{2}+0.10570u_{2}v_{1}^{2}+0.51165v_{1}u_{2}+0.19013v_{1}\\ -0.83019v_{1}v_{2}+0.08381v_{1}^{2}-0.22465u_{1}v_{2}^{2}-1.96801u_{1}v_{2}\\ -0.10570u_{2}v_{2}^{2}-0.71432v_{2}u_{2}-0.39030v_{2}-0.08381v_{2}^{2} = 0, \\ f_4(u_{1}, u_{2}, v_{1}, v_{2}): = 1.96801u_{1}v_{1}^{2}-8.50043u_{1}v_{1}+1.59052v_{1}u_{1}v_{2}+0.51165v_{1}u_{2}v_{2}\\ +0.19013v_{1}v_{2}-1.78146u_{2}v_{1}+0.71432u_{2}v_{1}^{2}-1.742730v_{1}\\ +0.39030v_{1}^{2}-0.22465u_{1}v_{2}-1.96801u_{1}-0.10570u_{2}v_{2}\\ -0.71432u_{2}-0.08381v_{2}-0.39030 = 0. \end{array} \right.

    We now regard f_i(u_1, u_2, v_1, v_2) , i\in [4] as a function with u_1 as a variable and u_2 , v_1 and v_2 as three coefficients and obtain their resultants as follows:

    \begin{align*} {\text{Res}}_{u_1}(f_1, f_2) = &(0.84336v_{2}-0.95379+2.32838v_{1}+3.78649v_{2}^2+2.58431v_{2}^3\nonumber\\ &+0.74241v_{2}^4+6.42916v_{1}^2+15.82324v_{1}^3+19.12445v_{1}^4+10.62991v_{2}v_{1}^2\nonumber\\ &+4.23911v_{2}^2v_{1}+2.79896v_{2}v_{1}^3+ 0.48895v_{2}^3v_{1}+10.34857v_{2}^2v_{1}^2\nonumber\\ &+4.57094v_{2}v_{1})u_{2}-9.10936v_{1}-3.95976v_{2}^2v_{1}^2-6.81799v_{2}\nonumber\\ &-9.81234v_{2}v_{1}-22.65734v_{2}v_{1}^2-3.01186v_{2}^2v_{1}-3.83745v_{2}v_{1}^3\nonumber\\ &-0.26713v_{2}^3v_{1}-4.47928v_{2}^2-1.37622v_{2}^3-0.08990v_{2}^4-26.60934v_{1}^2\nonumber\\ &-28.26528v_{1}^3-32.771423v_{1}^4-3.35793 = 0, \end{align*}
    \begin{align*} {\text{Res}}_{u_1}(f_1, f_3) = &(-8.73334v_{2}+7.00497v_{1}-8.00778v_{2}^2-3.02304v_{2}^3-0.25316v_{2}^4\nonumber\\ &+8.00778v_{1}^2+22.47179v_{1}^3+3.11442v_{1}^4-74.15833v_{2}v_{1}^2-39.62519v_{2}^2v_{1}\nonumber\\ &-152.49246v_{2}v_{1}^3-12.90368v_{2}^3v_{1}-8.58379v_{2}^2v_{1}^2-53.09898v_{2}v_{1})u_{2}\nonumber\\ &+0.15408v_{1}-0.31630v_{2}-0.38580v_{2}^2v_{1}^2-1.03583v_{2}v_{1}-2.07169v_{2}v_{1}^2\nonumber\\ &-1.03607v_{2}^2v_{1}-2.13403v_{2}v_{1}^3- 0.08632v_{2}^3v_{1}-0.46731v_{2}^2-0.11801v_{2}^3\nonumber\\ &-0.00693v_{2}^4+0.33955v_{1}^2+0.61253v_{1}^3+0.21722v_{1}^4 = 0, \end{align*}

    and

    \begin{align*} {\text{Res}}_{u_1}(f_1, f_4) = &(-8.73334-8.00778v_{2}-45.43188v_{1}-3.02304v_{2}^2-0.25316v_{2}^3\nonumber\\ &-54.00439v_{1}^2-103.32952v_{1}^3+26.73481v_{1}^4+6.67230v_{2}v_{1}^2\nonumber\\ &-3.93604v_{2}^2v_{1}+22.47179v_{2}v_{1}^3+1.77280v_{2}^3v_{1}+ 3.02304v_{2}^2v_{1}^2\nonumber\\ &-23.92868v_{2}v_{1})u_{2}+0.07244v_{2}^2v_{1}^2-1.96992v_{1}-0.46731v_{2}\nonumber\\ &-1.83150v_{2}v_{1}+0.08538v_{2}v_{1}^2+0.03284v_{2}^2v_{1}+0.57530v_{2}v_{1}^3\nonumber\\ &+0.01571v_{2}^3v_{1}-0.11801v_{2}^2-0.00693v_{2}^3-3.18504v_{1}^2-3.95933v_{1}^3\\ &+1.01161v_{1}^4-0.31630 = 0. \end{align*}

    Let

    \begin{align*} &g_1(u_2, v_1, v_2): = {\text{Res}}_{u_1}(f_1, f_2), \quad g_2(u_2, v_1, v_2): = {\text{Res}}_{u_1}(f_1, f_3), \\ &g_3(u_2, v_1, v_2): = {\text{Res}}_{u_1}(f_1, f_4). \end{align*}

    Then their resultants are

    \begin{align*} {\text{Res}}_{u_{2}}(g_1, g_2) = &106.21826v_{1}^8+(-5025.64756v_{2}+839.61383)v_{1}^7+(-865.25666v_{2}^2\nonumber\\ &-6653.08038v_{2}+998.05266)v_{1}^6+(-1083.52137v_{2}^3-5229.62871v_{2}^2\nonumber\\ &-7381.37411v_{2}+1094.99786)v_{1}^5+(-137.50780v^4-1593.23550v_{2}^3\nonumber\\ &-4933.36887v_{2}^2-4733.12663v_{2}+632.08073)v_{1}^4+(-70.75506v_{2}^5\nonumber\\ &-741.31965v_{2}^4-2567.50800v_{2}^3-4243.14169v_{2}^2-2467.61827v_{2}\nonumber\\ &+335.99902)v_{1}^3+(-5.62145v_{2}^6-90.33840v_{2}^5-524.86290v_{2}^4\nonumber\\ &-1366.09759v_{2}^3-1783.36316v_{2}^2-843.25156v_{2}+90.73526)v_{1}^2\nonumber\\ &+(-1.29518v_{2}^7-23.97008v_{2}^6-135.36791v_{2}^5-405.58564v_{2}^4\nonumber\\ &-682.18237v_{2}^3-624.18604v_{2}^2-209.71678v_{2}+23.37525)v_{1}\nonumber\\ &+(-0.02790v_{2}^8-0.72569v_{2}^7-6.69240v_{2}^6-28.96790v_{2}^5\nonumber\\ &-72.02906v_{2}^4-105.34644v_{2}^3-86.25447v_{2}^2-29.02430v_{2}) = 0 \end{align*}

    and

    \begin{align*} {\text{Res}}_{u_2}(g_1, g_3) = &895.48403v_{1}^8+(852.85983v_{2}-2690.30193)v_{1}^7+(304.63154v_{2}^2\nonumber\\ &+1073.45667v_{2}-4096.10056)v_{1}^6+(172.77376v_{2}^3+134.01848v_{2}^2\nonumber\\ &-2360.05799v_{2}-5632.48044)v_{1}^5+(29.00602v_{2}^4+203.47367v_{2}^3\nonumber\\ &-304.10992v_{2}^2-2878.73753v_{2}-3926.74222)v_{1}^4+(10.47279v_{2}^5\nonumber\\ &+55.51707v_{2}^4-189.59056v_{2}^3-1392.51379v_{2}^2-3083.36023v_{2}\nonumber\\ &-2315.99105)v_{1}^3+(0.80682v_{2}^6+8.30736v_{2}^5-4.53864v_{2}^4\nonumber\\ &-259.96426v_{2}^3-927.90427v_{2}^2-1442.92349v_{2}-831.16935)v_{1}^2\nonumber\\ &+(0.17104v_{2}^7+2.07986v_{2}^6-2.49973v_{2}^5-63.10600v_{2}^4\nonumber\\ &-263.71529v_{2}^3-525.06788v_{2}^2-551.19369v_{2}-230.96997)v_{1}\nonumber\\ &+(-0.02790v_{2}^7-0.72569v_{2}^6-6.69240v_{2}^5-28.96790v_{2}^4\nonumber\\ &-72.02906v_{2}^3-105.34644v_{2}^2-86.25447v_{2}-29.02430) = 0. \end{align*}

    Let

    \begin{align*} h_1(v_1, v_2): = {\text{Res}}_{u_2}(g_1, g_2)\quad\rm{and}\quad h_2(v_1, v_2): = {\text{Res}}_{u_2}(g_1, g_3). \end{align*}

    Their results are

    \begin{align*} {\text{Res}}_{v_1}(h_1, h_2) = &-1.62711\times10^{-46}v_{2}^{64}-1.18415\times10^{-44}v_{2}^{63}-4.48673\times10^{-43}v_{2}^{62}\nonumber\\ &-1.18681\times10^{-41}v_{2}^{61}- 2.43052\times10^{-40}v_{2}^{60}-4.06317\times10^{-39}v_{2}^{59}\nonumber\\ &-5.7302\times10^{-38}v_{2}^{58}-6.93518\times10^{-37}v_{2}^{57}-7.24748\times10^{-36}v_{2}^{56}\nonumber\\ &- 6.49253\times10^{-35}v_{2}^{55}-4.87257\times10^{-34}v_{2}^{54}-2.98951\times10^{-33}v_{2}^{53}\nonumber\\ &-1.49477\times10^{-32}v_{2}^{52}-6.3372\times10^{-32}v_{2}^{51}- 2.51516\times10^{-31}v_{2}^{50}\nonumber\\ &-1.06401\times10^{-30}v_{2}^{49}-5.02246\times10^{-30}v_{2}^{48}- 2.43069\times10^{-29}v_{2}^{47}\nonumber\\ &-1.09655\times10^{-28}v_{2}^{46}- 4.44371\times10^{-28}v_{2}^{45}-1.60392\times10^{-27}v_{2}^{44}\nonumber\\ &-5.08938\times10^{-27}v_{2}^{43}- 1.39566\times10^{-26}v_{2}^{42}-3.2426\times10^{-26}v_{2}^{41}\nonumber\\ &- 6.05752\times10^{-26}v_{2}^{40}-7.48945\times10^{-26}v_{2}^{39}+1.29902\times10^{-26}v_{2}^{38}\nonumber\\ &+ 4.01056\times10^{-25}v_{2}^{37}+1.382\times10^{-24}v_{2}^{36}+3.13265\times10^{-24}v_{2}^{35}\nonumber\\ &+ 5.06222\times10^{-24}v_{2}^{34}+4.80914\times10^{-24}v_{2}^{33}-1.80398\times10^{-24}v_{2}^{32}\nonumber\\ &-1.82876\times10^{-23}v_{2}^{31}-4.38298\times10^{-23}v_{2}^{30}-7.14302\times10^{-23}v_{2}^{29}\nonumber\\ &- 8.82265\times10^{-23}v_{2}^{28}-7.81232\times10^{-23}v_{2}^{27}-3.29361\times10^{-23}v_{2}^{26}\nonumber\\ &+1.21659\times10^{-23}v_{2}^{25}-5.53171\times10^{-23}v_{2}^{24}-2.91829\times10^{-22}v_{2}^{23}\nonumber\\ &-3.73689\times10^{-22}v_{2}^{22}+1.93914\times10^{-22}v_{2}^{21}+1.01905\times10^{-21}v_{2}^{20}\nonumber\\ &+8.28494\times10^{-22}v_{2}^{19}-4.6185\times10^{-22}v_{2}^{18}-1.27125\times10^{-21}v_{2}^{17}\nonumber\\ &-9.35242\times10^{-22}v_{2}^{16}-3.19849\times10^{-22}v_{2}^{15}+7.28108\times10^{-24}v_{2}^{14}\nonumber\\ &+6.11682\times10^{-23}v_{2}^{13}+6.78336\times10^{-24}v_{2}^{12}+1.47291\times10^{-24}v_{2}^{11}\nonumber\\ &+8.0039\times10^{-24}v_{2}^{10}-2.71136\times10^{-24}v_{2}^{9}-1.27876\times10^{-24}v_{2}^{8}\nonumber\\ &+1.35623\times10^{-24}v_{2}^{7}+3.48519\times10^{-25}v_{2}^{6}+2.48651\times10^{-26}v_{2}^{5}\nonumber\\ &-2.61144\times10^{-26}v_{2}^{4}-1.87784\times10^{-27}v_{2}^{3}-6.6019\times10^{-29}v_{2}^{2}\nonumber\\ &+2.43536\times10^{-29}v_{2}- 6.98911\times10^{-31}. \label{v2} \end{align*}

    Next, we obtain the solution of the system (f) by the following steps:

    Step 1. Solving {\text{Res}}_{v_1}(h_1, h_2) = 0 , we have

    \begin{align*} v_{2} = &-0.85035, \quad 0.22179, \quad -7.79725, \quad -1.78254, \quad -11.53378, \\ &-0.75907, \quad -0.70532, \quad 0.47100. \end{align*}

    Step 2. Substituting v_2 = -0.85035 into h_1(v_1, v_2) , and letting h_1(v_1, v_2) = 0 , it all real roots are v_1 = -0.43450 or v_1 = 4.25751 . Substituting v_2 = -0.85035 into h_2(v_1, v_2) , and letting h_2(v_1, v_2) = 0 , it all real roots are v_1 = -0.48184 , -0.17296 , 0.0000000000038876, or 5.04918. It is easy to see that h_1(v_1, v_2) = 0 and h_2(v_1, v_2) = 0 have no common solution, which implies that v_2 = -0.85035 is not a solution of the system (f).

    Step 3. Substituting v_2 = 0.22179 into h_1(v_1, v_2) , and letting h_1(v_1, v_2) = 0 , it all real roots are v_1 = -0.43450 or 4.25751. substituting v_2 = 0.22179 into h_2(v_1, v_2) , and letting h_2(v_1, v_2) = 0 , it all real roots are v_1 = -0.24034 or 4.25751. It is easy to see that v_1 = 4.25751 is a common solution of h_1(v_1, v_2) = 0 and h_2(v_1, v_2) = 0 .

    Step 4. Substituting v_2 = 0.22179 and v_1 = 4.25751 into g_1(u_2, v_1, v_2) , g_2(u_2, v_1, v_2) and g_3(u_2, v_1, v_2) , and letting g_1(u_2, v_1, v_2) = 0 , its all real roots are u_2 = 1.76393 ; letting g_2(u_2, v_1, v_2) = 0 , its all real roots are u_2 = 1.76393 ; letting g_3(u_2, v_1, v_2) = 0 , its all real roots are u_2 = 1.76393 . Hence, the common solution of g_1(u_2, v_1, v_2) = 0 , g_2(u_2, v_1, v_2) = 0 and g_3(u_2, v_1, v_2) = 0 is u_2 = 1.76393 .

    Step 5. Substituting v_2 = 0.22179 , v_1 = 4.25751 and u_2 = 1.76393 into f_1 , and letting f_1(u_1, u_2, v_1, v_2) = 0 , we can get its all real roots u_1 = 8.16186 .

    Step 6. By v_2 = 0.22179 , v_1 = 4.25751 , u_2 = 1.76393 , u_1 = 8.16186 , (3.2) and (3.3), we can get the corresponding C-eigentriples as follows:

    \bullet \lambda = 13.50214 and its C-eigenvectors are

    \begin{align*} x = (0.97050, 0.20974, 0.11890)^{\top}, \quad y = \pm(0.97226, 0.05065, 0.22836)^{\top}. \end{align*}

    \bullet \lambda = -13.50214 and its C-eigenvectors are

    \begin{align*} x = (-0.97050, -0.20974, -0.11890)^{\top}, \quad y = \pm(0.97226, 0.05065, 0.22836)^{\top}. \end{align*}

    Step 7. For other values of v_2 , such as, -7.79725 , -1.78254 , -11.53378 , -0.75907 , -0.70532 , 0.47100, we can also obtain their corresponding C-eigentriples by using the method similar to Steps 3–6.

    Finally, we find all C-eigentriples, which is listed in Table 2.



    [1] N. M. Deshpande, S. S. Gite, R. Aluvalu, A brief bibliometric survey of leukemia detection by machine learning and deep learning approaches, Lib. Philo. Pract., 4569 (2020).
    [2] S. Shafique, S. Tehsin, S. Anas, F. Masud, Computer-assisted acute lymphoblastic leukemia detection and diagnosis, in 2nd International Conference on Communication, Computing and Digital Systems, (2019), 184–189.
    [3] H. Singh, G. Kaur, Automatic detection of blood cancer in microscopic images: a review, Int. J. Innovations. Adv. Comput. Sci., 6 (2017), 40–43.
    [4] G. Biji, S. Hariharan, White blood cell segmentation techniques in microscopic images for leukemia detection, IOSR J. Dental Med. Sci., 15 (2016), 45–51.
    [5] E. U. Alam, S. Banik, L. Chowdhury. A statistical approach to classify the leukemia patients from generic gene features, in 2020 International Conference on Computer Communication and Informatics, (2020), 1–6.
    [6] H. M. Amin, Y. Yang, Y. Shen, E. H. Estey, F. J. Giles, S. A. Pierce, et al., Having a higher blast percentage in circulation than bone marrow: clinical implications in myelodysplastic syndrome and acute lymphoid and myeloid leukemias., Leukemia, 19 (2005), 1567–1572. doi: 10.1038/sj.leu.2403876. doi: 10.1038/sj.leu.2403876
    [7] C. Matek, S. Schwarz, K. Spiekermann, C. Marr, Human-level recognition of blast cells in acute myeloid leukaemia with convolutional neural networks, Nat. Mach. Intell., 1 (2019), 538–544. doi: 10.1038/s42256-019-0101-9. doi: 10.1038/s42256-019-0101-9
    [8] N. M. Deshpande, S. S. Gite, R. Aluvalu, Microscopic analysis of blood cells for disease detection: a review, Tracking. Pre. Dis. Artif. Intell., 206 (2022), 125–151. doi: 10.1007/978-3-030-76732-7-6. doi: 10.1007/978-3-030-76732-7-6
    [9] Leukemic-versus-normal-blood, 2021. Available from: https://www.shutterstock.com/image-illustration/leukemic-versus-normal-blood-73621156.
    [10] F. Al-Tahhan, A. A. Sakr, D. A. Aladle, M. Fares, Improved image segmentation algorithms for detecting types of acute lymphatic leukemia, IET Image Process., 13 (2019), 2595–2603.
    [11] S. Mohapatra, D. Patra, S. Satpathi, Image analysis of blood microscopic images for acute leukemia detection, in 2010 International Conference on Industrial Electronics, Control and Robotics IEEE, (2010), 215–219.
    [12] N. M. Deshpande, S. S. Gite, A brief bibliometric survey of explainable ai in medical field, Lib. Philo. Pract., (2021), 1–27.
    [13] A. Khashman, E. Al-Zgoul, Image segmentation of blood cells in leukemia patients, Rec. Adv. Comput. Eng. Appl., 2 (2010), 104-109.
    [14] B. Houwen, Blood film preparation and staining procedures, Clin. Lab. Med., 22 (2002), 1–14.
    [15] B. Nwogoh, A. Adewoyin, Peripheral blood film: a review, Ann. Ib. Postgrad. Med., 12 (2014), 71–79.
    [16] N. M. Deshpande, S. S. Gite, R. Aluvalu, A review of microscopic analysis of blood cells for disease detection with ai perspective, PeerJ Comput. Sci., 7 (2021), e460. doi: 10.7717/peerj-cs.460. doi: 10.7717/peerj-cs.460
    [17] M. Makem, A. Tiedeu, An efficient algorithm for detection of white blood cell nuclei using adaptive three stage PCA-based fusion, Inform. Med. Unlocked, 20 (2020), 100416. doi: 10.1016/j.imu.2020.100416. doi: 10.1016/j.imu.2020.100416
    [18] P. Guruprasad, Overview of different thresholding methods in image processing, in TEQIP Sponsored 3rd National Conference on ETACC, (2020).
    [19] S. K. Dubey, S. Vijay, A review of image segmentation using clustering methods, Int. J. Appl. Eng. Res., 13 (2018), 2484-2489.
    [20] H. G. Kaganami, Z. Beiji, Region-based segmentation versus edge detection, in Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, (2009), 1217-1221. doi: 10.1109/IIH-MSP.2009.13.
    [21] M. Mueller, K. Segl, H. Kaufmann, Edge-and region-based segmentation technique for the extraction of large, man-made objects in high-resolution satellite imagery, Pattern Recognit., 37 (2004), 1619-1628. doi: 10.1016/j.patcog.2004.03.001. doi: 10.1016/j.patcog.2004.03.001
    [22] C. Amza, A review on neural network-based image segmentation techniques, 2012. Available from: https://www.researchgate.net/profile/Catalin-Gheorghe-Amza-2/publication/228873725.
    [23] J. Rogowska, Overview and fundamentals of medical image segmentation, Academic Press, (2009), 73–90.
    [24] A. Singh, S. Sawan, M. Hanmandlu, V. K. Madasu, B.C. Lovell, An abandoned object detection system based on dual background segmentation, in Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, (2009), 352-357.
    [25] N. Mittal, A. Garg, P. Singh, S. Singh, H. Singh, Improvement in learning enthusiasm-based TLBO algorithm with enhanced exploration and exploitation properties, Nat. Comput., 20 (2021), 577–609. doi: 10.1007/s11047-020-09811-5. doi: 10.1007/s11047-020-09811-5
    [26] S. Singh, N. Mittal, H. Singh, A multilevel thresholding algorithm using lebtlbo for image segmentation, Neural. Comput Appl., 32 (2020), 16681–16706. doi: 10.1007/s00521-020-04989-2. doi: 10.1007/s00521-020-04989-2
    [27] J. S. Chohan, N. Mittal, R. Kumar, Parametric optimization of fused deposition modeling using learning enthusiasm enabled teaching learning based algorithm, SN Appl. Sci., 2 (2020), 1–2. doi: 10.1007/s42452-020-03818-4. doi: 10.1007/s42452-020-03818-4
    [28] X. Chen, B. Xu, K. Yu, W. Du, Teaching learning-based optimization with learning enthusiasm mechanism and its application in chemical engineering, J. Appl. Math., 2018 (2018), 1806947. doi: 10.1155/2018/1806947. doi: 10.1155/2018/1806947
    [29] M. Yildirim, A. C. Cinar, Classification of white blood cells by deep learning methods for diagnosing disease, Rev. Artif. Intell., 33 (2019), 335–340. doi: 10.18280/ria.330502. doi: 10.18280/ria.330502
    [30] J. N. Kapur, P. K. Sahoo, A. K. Wong, A new method for gray level picture thresholding using the entropy of the histogram, Comput. Vis. Graphics. Image Process., 29 (1985), 273–285. doi: 10.1016/0734-189X(85)90125-2. doi: 10.1016/0734-189X(85)90125-2
    [31] A. S. Negm, O. A. Hassan, A. H. Kandil, A decision support system for acute leukaemia classification based on digital microscopic images, Alex. Eng. J., 57 (2018), 2319–2332. doi: 10.1016/j.aej.2017.08.025. doi: 10.1016/j.aej.2017.08.025
    [32] N. Pombo, P. Rebelo, P. Araxujo, J. Viana, Combining data imputation and statistics to design a clinical decision support system for postoperative pain monitoring, Procedia Comput. Sci., 64 (2015), 1018–1025. doi: 10.1016/j.procs.2015.08.621 doi: 10.1016/j.procs.2015.08.621
    [33] H. Miao, C. Xiao, Simultaneous segmentation of leukocyte and erythrocyte in microscopic images using a marker-controlled watershed algorithm, Comput. Math. Methods Med., (2018), 1-10. doi: 10.1155/2018/7235795. doi: 10.1155/2018/7235795
    [34] S. C. Neoh, W. Srisukkham, L. Zhang, S. Todryk, B. Greystoke, C. P. Lim, et al., An intelligent decision support system for leukaemia diagnosis using microscopic blood images, Sci. Rep., 5 (2015), 1–14. doi: 10.1038/srep14938. doi: 10.1038/srep14938
    [35] H. Miao, C. Xiao, Simultaneous segmentation of leukocyte and erythrocyte in microscopic images using a marker-controlled watershed algorithm, Comput. Math. Methods Med., 1 (2018), 1–10. doi: 10.1155/2018/7235795. doi: 10.1155/2018/7235795
    [36] P. P. Guan, H. Yan, Blood cell image segmentation based on the Hough transform and fuzzy curve tracing, Int. Conf. Mach. Learn. Cybern., 4 (2011), 1696–1701. doi: 10.1109/ICMLC.2011.6016961. doi: 10.1109/ICMLC.2011.6016961
    [37] S. Biswas, D. Ghoshal, Blood cell detection using thresholding estimation based watershed transformation with Sobel filter in frequency domain, Procedia Comput. Sci., 89 (2016), 651–657. doi: 10.1016/j.procs.2016.06.029. doi: 10.1016/j.procs.2016.06.029
    [38] S. Mishra, B. Majhi, P. K. Sa, Texture feature based classification on microscopic blood smear for acute lymphoblastic leukemia detection, Biomed. Signal. Process. Control., 47 (2019), 303–311. doi: 10.1016/j.bspc.2018.08.012. doi: 10.1016/j.bspc.2018.08.012
    [39] Y. Duan, J. Wang, M. Hu, M. Zhou, Q. Li, L. Sun, et al., Leukocyte classification based on spatial and spectral features of microscopic hyperspectral images, Opt. Laser. Technol., 112 (2019), 530–538. doi: 10.1016/j.optlastec.2018.11.057. doi: 10.1016/j.optlastec.2018.11.057
    [40] N. Salem, N. M. Sobhy, M. El Dosoky, A comparative study of white blood cells segmentation using otsu threshold and watershed transformation, J. Biomed. Eng. Med. Imaging, 3 (2016), 15. doi: 10.14738/jbemi.33.2078. doi: 10.14738/jbemi.33.2078
    [41] M. Poostchi, I. Ersoy, K. McMenamin, E. Gordon, N. Palaniappan, S. Pierce, et al., Malaria parasite detection and cell counting for human and mouse using thin blood smear microscopy, J. Med. Imaging, 5 (2018), 1-13. doi: 10.1117/1.JMI.5.4.044506. doi: 10.1117/1.JMI.5.4.044506
    [42] M. Shahzad, A. I. Umar, M. A. Khan, S. H. Shirazi, Z. Khan, W. Yousaf, Robust method for semantic segmentation of whole-slide blood cell microscopic images, Comput. Math. Methods Med., 2020 (2020). doi: 10.1155/2020/4015323. doi: 10.1155/2020/4015323
    [43] T. G. Debelee, F. Schwenker, S. Rahimeto, D. Yohannes, Evaluation of modified adaptive k-means segmentation algorithm, Com. Vis. Med., 5 (2019), 347–361. doi: 10.1007/s41095-019-0151-2. doi: 10.1007/s41095-019-0151-2
    [44] M. Tuba, Multilevel image thresholding by nature inspired algorithms: A short review, Comput. Sci. J. Mold., 66 (2014), 318–338.
    [45] A. S. Dar, D. Padha, Medical image segmentation: A review of recent techniques, advancements and a comprehensive comparison, Int. J. Comput. Sci. Eng., (2019), 114-124. doi: 10.26438/ijcse/v7i7.114124. doi: 10.26438/ijcse/v7i7.114124
    [46] F. Sadeghian, Z. Seman, A. R. Ramli, B. H. Kahar, M. I. Saripan, A framework for white blood cell segmentation in microscopic blood images using digital image processing, Biol. Proced. Online, (2009), 196-206. doi: 10.1007/s12575-009-9011-2. doi: 10.1007/s12575-009-9011-2
    [47] J. Al-Muhairy, Y. Al-Assaf, Automatic white blood cell segmentation based on image processing, in 16th IFAC World Congress, (2005), 1-6.
    [48] Y. Yang, Y. Cao, W. Shi, A method of leukocyte segmentation based on S component and B component images, J. Innovative Opt. Health Sci., 7 (2014), 1-8. doi: 10.1142/S1793545814500072. doi: 10.1142/S1793545814500072
    [49] The truth that stares us in the face in our blood panels, 2021. Available from: http://extralymey.com/the-truth-that-stares-us-in-the-face-in-our-blood-panels.
    [50] N. Bakhashwain, A. Sagheer, Online tuning of hyperparameters in deep LSTM for time series applications, Int. J. Intell. Eng. Syst., 14 (2021), 212–220. doi: 10.22266/ijies2021.0228.21. doi: 10.22266/ijies2021.0228.21
    [51] Common-hematology-tests, 2021. Available from: https://askhematologist.com/common-hematology-tests/.
    [52] M. P. Starmans, S. R. van der Voort, J. M. C. Tovar, J. F. Veenland, S. Klein, W.J. Niessen, Radiomics: Data mining using quantitative medical image features, Academic Press, (2020), 429-456.
    [53] B. Panda, A survey on application of population based algorithm on hyperparameter selection, Department of Computer Science: Course 761: Semester 2, (2019), 1-9.
    [54] J. G. Barbedo, Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification, Comput. Electron. Agric., 153 (2018), 46–53. doi: 10.1016/j.compag.2018.08.013. doi: 10.1016/j.compag.2018.08.013
    [55] S. Christin, E. Hervet, N. Lecomte, Applications for deep learning in ecology, Methods Ecol. Evol., 10 (2019), 1632–1644. doi: 10.1111/2041-210X.13256. doi: 10.1111/2041-210X.13256
    [56] S.S. Khan, A. Ahmad, Cluster center initialization algorithm for K-means clustering, Pattern. Recognit. Lett., 25 (2004), 1293–302. doi: 10.1016/j.patrec.2004.04.007. doi: 10.1016/j.patrec.2004.04.007
    [57] E. Suganya, S. Sountharrajan, S. K. Shandilya, M. Karthiga, Iot in agriculture investigation on plant diseases and nutrient level using image analysis techniques, In Internet of Things in Biomedical Engineering, Academic Press, 2019 (2019), 117-130. doi: 10.1016/B978-0-12-817356-5.00007-3. doi: 10.1016/B978-0-12-817356-5.00007-3
    [58] W. Wang, L. Duan, Y. Wang, Fast image segmentation using two-dimensional Otsu based on estimation of distribution algorithm, J. Electr. Comput. Eng., 2017 (2017). doi: 10.1155/2017/1735176. doi: 10.1155/2017/1735176
    [59] C. Huang, X. Li, Y. Wen, An otsu image segmentation based on fruitfly optimization algorithm, Alexandria Comput. Vis. Graphics. Image Process., Eng. J., 60 (2021), 183-188. doi: 10.1016/j.aej.2020.06.054. doi: 10.1016/j.aej.2020.06.054
    [60] R. Rao, Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems, Int. J. Ind. Eng. Comput., 7 (2016), 19–34. doi: 10.5267/j.ijiec.2015.8.004. doi: 10.5267/j.ijiec.2015.8.004
    [61] R. V. Rao, V. Patel, Multi-objective optimization of heat exchangers using a modified teaching-learning based optimization algorithm, Appl. Math. Modell., 37 (2013), 1147–1162. doi: 10.1016/j.apm.2012.03.043. doi: 10.1016/j.apm.2012.03.043
    [62] R. Rao, V. Patel, An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems, Int. J. Ind. Eng. Comput., 3 (2012), 535–560. doi: 10.5267/j.ijiec.2012.03.007. doi: 10.5267/j.ijiec.2012.03.007
    [63] D. P. Kanungo, J. Nayak, B. Naik, H. S. Behera, Hybrid clustering using elitist teaching learning-based optimization: an improved hybrid approach of TLBO, Int. J. Rough Sets Data Anal., 3 (2016), 1–9. doi: 10.4018/IJRSDA.2016010101. doi: 10.4018/IJRSDA.2016010101
    [64] R. D. Labati, V. Piuri, F. Scotti. All-idb: The acute lymphoblastic leukemia image database for image processing, in 2011 18th IEEE International Conference on Image Processing, (2011), 2045–2048.
    [65] F. Scotti, Robust segmentation and measurements techniques of white cells in blood microscope images, in 2006 IEEE Instrumentation and Measurement Technology Conference Processdings, (2006), 43–48.
    [66] F. Scotti, Automatic morphological analysis for acute leukemia identification in peripheral blood microscope images, in CIMSA. 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, (2005), 96–101.
    [67] K. G. Dhal, A. Das, S. Ray, J. Gxalvez, S. Das, Nature-inspired optimization algorithms and their application in multi-thresholding image segmentation, Arch. Comput. Methods Eng., 27 (2020), 855–888. doi: 10.1007/s11831-019-09334-y. doi: 10.1007/s11831-019-09334-y
    [68] N. Senthilkumaran, S. Vaithegi, Image segmentation by using thresholding techniques for medical images, Com. Sci. Eng: An Int. J., 6 (2016), 1-13.
    [69] S. Kotte, P. R. Kumar, S. K. Injeti, An efficient approach for optimal multilevel thresholding selection for gray scale images based on improved differential search algorithm, Ain Sha. Eng. Jo., 9 (2018), 1043–1067. doi: 10.1016/j.asej.2016.06.007. doi: 10.1016/j.asej.2016.06.007
    [70] N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. Syst., Man Cyber., 9 (1979), 62–66.
    [71] C. Wang, J. Yang, H. Lv, Otsu multi-threshold image segmentation algorithm based on improved particle swarm optimization, in IEEE 2nd International Conference on Information Communication and Signal Processing, (2019), 440–443.
    [72] P. Yang, W. Song, X. Zhao, R. Zheng, L. Qingge, An improved Otsu threshold segmentation algorithm, Int. J. Comput Sci. Eng., 22 (2020), 146–153.
    [73] Y. Zhan, G. Zhang, An improved OTSU algorithm using histogram accumulation moment for ore segmentation, Symmetry, 11 (2019), 431. doi: 10.3390/sym11030431. doi: 10.3390/sym11030431
    [74] W. Ji, X. He, Kapur's entropy for multilevel thresholding image segmentation based on moth-flame optimization, Math. Biosci. Eng., 18 (2021), 7110–7142. doi: 10.3934/mbe.2021353. doi: 10.3934/mbe.2021353
    [75] J. N. Kapur, P. K. Sahoo, A. K. Wong, A new method for gray-level picture thresholding using the entropy of the histogram, Comput. Vis. Graphics. Image Process., 29 (1985), 273–285. doi: 10.1016/0734-189X(85)90125-2. doi: 10.1016/0734-189X(85)90125-2
    [76] Z. Yan, J. Zhang, Z. Yang, J. Tang, Kapur's entropy for underwater multilevel thresholding image segmentation based on whale optimization algorithm, IEEE Access, 9 (2020), 41294–41319. doi: 10.1109/ACCESS.2020.3005452. doi: 10.1109/ACCESS.2020.3005452
    [77] J. N. Kapur, P. K. Sahoo, A. K. Wong, A new method for graylevel picture thresholding using the entropy of the histogram, Comput. Vis. Graphics. Image Process., 29 (1985), 273–285. doi: 10.1016/0734-189X(85)90125-2. doi: 10.1016/0734-189X(85)90125-2
    [78] D. Feng, S. Wenkang, C. Liangzhou, D. Yong, Z. Zhenfu, Infrared image segmentation with 2-d maximum entropy method based on particle swarm optimization (pso), Pattern. Recognit. Lett., 26 (2005), 597–603. doi: 10.1016/j.patrec.2004.11.002. doi: 10.1016/j.patrec.2004.11.002
    [79] H. Liang, H. Jia, Z. Xing, J. Ma, X. Peng, Modified grasshopper algorithm-based multilevel thresholding for color image segmentation, IEEE Access, 7 (2019), 11258–11295. doi: 10.1109/ACCESS.2019.2891673. doi: 10.1109/ACCESS.2019.2891673
    [80] M. Sánchez-Silva, C. Gómez, Risk assessment and management of civil infrastructure networks: a systems approach, Woodhead Publishing, (2013), 437-464.
    [81] C. Tan, Y. Sun, G. Li, B. Tao, S. Xu, F. Zeng, Image segmentation technology based on genetic algorithm, in Proceedings of the 3rd International Conference on Digital Signal Processing, (2019), 27-31. doi: 10.1145/3316551.3318229.
    [82] S. Ait-Aoudia, E. Guerrout, R. Mahiou, Medical image segmentation using particle swarm optimization, in 18th International Conference on Information Visualization, (2014), 287-291, doi: 10.1109/IV.2014.68.
    [83] E. Cuevas, F. Sención-Echauri, D. Zaldivar, M. Pérez, Image segmentation using artificial Bee colony optimization, Springer, (2013), 965-990.
    [84] S. C. Satapathy, A. Naik, Modified teaching-learning-based optimization algorithm for global numerical optimization-a comparative study, Swarm Evol. Comput., 16 (2014), 28–37. doi: 10.1016/j.swevo.2013.12.005. doi: 10.1016/j.swevo.2013.12.005
    [85] F. Zou, L. Wang, D. Chen, X. Hei, An improved teaching learning-based optimization with differential learning and its application, Math. Probl. Eng., 1 (2015), 1–20. doi: 10.1155/2015/754562. doi: 10.1155/2015/754562
    [86] Z. S. Wu, W. P. Fu, R. Xue, Nonlinear inertia weighted teaching learning-based optimization for solving global optimization problem, Comput. Intell. Neursci., 1 (2015), 1–15. doi: 10.1155/2015/292576. doi: 10.1155/2015/292576
    [87] F. Zou, L. Wang, X. Hei, D. Chen, Teaching-learning-based optimization with learning experience of other learners and its application, Appl. Soft Comput., 37 (2015), 725–736. doi: 10.1016/j.asoc.2015.08.047. doi: 10.1016/j.asoc.2015.08.047
    [88] X. Chen, K. Yu, W. Du, W. Zhao, G. Liu, Parameters identification of solar cell models using generalized oppositional teaching learning based optimization, Energy, 99 (2016), 170–180. doi: 10.1016/j.energy.2016.01.052. doi: 10.1016/j.energy.2016.01.052
    [89] A. Tiwari, M. K. Pradhan, Applications of TLBO algorithm on various manufacturing processes: A review, Mater. Today Proc., 4 (2017), 1644-1652. doi: 10.1016/j.matpr.2017.02.003. doi: 10.1016/j.matpr.2017.02.003
    [90] B. S. Khehra, A. S. Pharwaha, Image segmentation using teaching-learning-based optimization algorithm and fuzzy entropy, in 15th International Conference on Computational Science and Its Applications, (2015), 67-71. doi: 10.1109/ICCSA.2015.10.
    [91] V. Yeghiazaryan, I. Voiculescu, Family of boundary overlap metrics for the evaluation of medical image segmentation, J. Med. Imaing, 5 (2018), 015006. doi: 10.1117/1.JMI.5.1.015006. doi: 10.1117/1.JMI.5.1.015006
    [92] S. Yousefi, N. Kehtarnavaz, A. Gholipour, Improved labeling of subcortical brain structures in atlas-based segmentation of magnetic resonance images, IEEE Tran. Biomed. Eng., 59 (2011), 1808-1817. doi: 10.1109/TBME.2011.2122306. doi: 10.1109/TBME.2011.2122306
    [93] J. Bertels, T. Eelbode, M. Berman, D. Vandermeulen, F. Maes, R. Bisschops, M. B. Blaschko, Optimizing the dice score and jaccard index for medical image segmentation: Theory and practice, in International Conference on Medical Image Computing and Computer-Assisted Intervention, (2019), 92-100. doi: 10.1007/978-3-030-32245-8_11.
    [94] S. J. Jemila, A. B. Therese, Selection of suitable segmentation technique based on image quality metrics, Imaing Sci. J., 67 (2019), 475-480. doi: 10.1080/13682199.2020.1718298. doi: 10.1080/13682199.2020.1718298
    [95] A. Oulefki, S. Agaian, T. Trongtirakul, A. K. Laouar, Automatic COVID-19 lung infected region segmentation and measurement using CT-scans images, Pattern Recognit., 114 (2021). doi: 10.1016/j.patcog.2020.107747. doi: 10.1016/j.patcog.2020.107747
    [96] A. Rahman, Y. Wang, Optimizing intersection-over union in deep neural networks for image segmentation, in Proceedings of the International Symposium on Visual Computing, (2016), 234-244.
    [97] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612. doi: 10.1109/TIP.2003.819861. doi: 10.1109/TIP.2003.819861
    [98] D. Asamoah, E. Ofori, S. Opoku, J. Danso, Measuring the performance of image contrast enhancement technique, Int. J. Comput. Appl., 181 (2018), 6-13.
    [99] K. G. Dhal, J. Gálvez, S. Ray, A. Das, S. Das, Acute lymphoblastic leukemia image segmentation driven by stochastic fractal search, Multimed. Tools Appl., (2020), 1-29. doi: 10.1007/s11042-019-08417-z. doi: 10.1007/s11042-019-08417-z
    [100] C. Militello, L. Rundo, V. Conti, L. Minafra, F. P. Cammarata, G. Mauri, et al., Area-based cell colony surviving fraction evaluation: A novel fully automatic approach using general-purpose acquisition hardware, Comput. Biol. Med., 89 (2017), 454-465, doi: 10.1016/j.compbiomed.2017.08.005. doi: 10.1016/j.compbiomed.2017.08.005
    [101] A. U. M. Khan, A. Torelli, I. Wolf, N. Gretz, AutoCellSeg: robust automatic colony forming unit (CFU)/cell analysis using adaptive image segmentation and easy-to-use post-editing techniques, Sci. Rep., 8 (2018), 1-10. doi: 10.1038/s41598-018-24916-9. doi: 10.1038/s41598-018-24916-9
    [102] L. Rundo, A. Tangherloni, D. R. Tyson, R. Betta, C. Militello, S. Spolaor, et al., ACDC: Automated cell detection and counting for time-lapse fluorescence microscopy, Appl. Sci., 10 (2020), 1-22. doi: 10.3390/app10186187. doi: 10.3390/app10186187
    [103] G. Sergioli, C. Militello, L. Rundo, L. Minafra, F. Torrisi, G. Russo, et al., A quantum-inspired classifier for clonogenic assay evaluations, Sci. Rep., 11 (2021), 1–10. doi: 10.1038/s41598-021-82085-8. doi: 10.1038/s41598-021-82085-8
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4162) PDF downloads(206) Cited by(22)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog