
A mechanical ventilator is an important medical equipment that assists patients who have breathing difficulties. In recent times a huge percentage of COVID-19 infected patients suffered from respiratory system failure. In order to ensure the abundant availability of mechanical ventilators during COVID-19 pandemic, most of the manufacturers around the globe utilized open source designs. Patients safety is of utmost importance while using mechanical ventilators for assisting them in breathing. Closed loop feedback control system plays vital role in ensuring the stability and reliability of dynamical systems such as mechanical ventilators. Ideal characteristics of mechanical ventilators include safety of patients, reliability, quick and smooth air pressure buildup and release.Unfortunately most of the open source designs and mechanical ventilator units with classical control loops cannot achieve the above mentioned ideal characteristics under system uncertainties. This article proposes a cascaded approach to formulate robust control system for regulating the states of ventilator unit using blower model reduction techniques. Model reduction allows to cascade the blower dynamics in the main controller design for airway pressure. The proposed controller is derived based on both integer and non integer calculus and the stability of the closed loop is ensured using Lyapunov theorems. The effectiveness of the proposed control method is demonstrated using extensive numerical simulations.
Citation: Nasim Ullah, Al-sharef Mohammad. Cascaded robust control of mechanical ventilator using fractional order sliding mode control[J]. Mathematical Biosciences and Engineering, 2022, 19(2): 1332-1354. doi: 10.3934/mbe.2022061
[1] | T. A. Shaposhnikova, M. N. Zubova . Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain. Networks and Heterogeneous Media, 2008, 3(3): 675-689. doi: 10.3934/nhm.2008.3.675 |
[2] | Ken-Ichi Nakamura, Toshiko Ogiwara . Periodically growing solutions in a class of strongly monotone semiflows. Networks and Heterogeneous Media, 2012, 7(4): 881-891. doi: 10.3934/nhm.2012.7.881 |
[3] | Junlong Chen, Yanbin Tang . Homogenization of nonlinear nonlocal diffusion equation with periodic and stationary structure. Networks and Heterogeneous Media, 2023, 18(3): 1118-1177. doi: 10.3934/nhm.2023049 |
[4] | Benjamin Contri . Fisher-KPP equations and applications to a model in medical sciences. Networks and Heterogeneous Media, 2018, 13(1): 119-153. doi: 10.3934/nhm.2018006 |
[5] | Thomas Geert de Jong, Georg Prokert, Alef Edou Sterk . Reaction–diffusion transport into core-shell geometry: Well-posedness and stability of stationary solutions. Networks and Heterogeneous Media, 2025, 20(1): 1-14. doi: 10.3934/nhm.2025001 |
[6] | Iryna Pankratova, Andrey Piatnitski . Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111 |
[7] | Feiyang Peng, Yanbin Tang . Inverse problem of determining diffusion matrix between different structures for time fractional diffusion equation. Networks and Heterogeneous Media, 2024, 19(1): 291-304. doi: 10.3934/nhm.2024013 |
[8] | Xavier Blanc, Claude Le Bris . Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5(1): 1-29. doi: 10.3934/nhm.2010.5.1 |
[9] | Avner Friedman . PDE problems arising in mathematical biology. Networks and Heterogeneous Media, 2012, 7(4): 691-703. doi: 10.3934/nhm.2012.7.691 |
[10] | Bendong Lou . Self-similar solutions in a sector for a quasilinear parabolic equation. Networks and Heterogeneous Media, 2012, 7(4): 857-879. doi: 10.3934/nhm.2012.7.857 |
A mechanical ventilator is an important medical equipment that assists patients who have breathing difficulties. In recent times a huge percentage of COVID-19 infected patients suffered from respiratory system failure. In order to ensure the abundant availability of mechanical ventilators during COVID-19 pandemic, most of the manufacturers around the globe utilized open source designs. Patients safety is of utmost importance while using mechanical ventilators for assisting them in breathing. Closed loop feedback control system plays vital role in ensuring the stability and reliability of dynamical systems such as mechanical ventilators. Ideal characteristics of mechanical ventilators include safety of patients, reliability, quick and smooth air pressure buildup and release.Unfortunately most of the open source designs and mechanical ventilator units with classical control loops cannot achieve the above mentioned ideal characteristics under system uncertainties. This article proposes a cascaded approach to formulate robust control system for regulating the states of ventilator unit using blower model reduction techniques. Model reduction allows to cascade the blower dynamics in the main controller design for airway pressure. The proposed controller is derived based on both integer and non integer calculus and the stability of the closed loop is ensured using Lyapunov theorems. The effectiveness of the proposed control method is demonstrated using extensive numerical simulations.
Nonlinear partial differential equations (PDEs) impart multi-scale characteristics to the system, thereby allowing for a more accurate prediction of the transmission process of soliton solutions. In practical uses, nonlinear PDEs and soliton solutions are vital for characterizing various phenomena in science and engineering such as biology, physics, ocean engineering, and many more [1,2,3]. Various types of soliton solutions have been reported for integrable systems. For instance, horse-shoe like soliton and lump chain solitons have been studied for the elliptic cylindrical Kadomtsev–Petviashvili equation [4]. Yang et al. analyzed degenerating lump chains into anomalously scattered lumps for the Mel'nikov equation [5]. In literature [6], a series of ripple waves with decay modes for the (3+1)‑dimensional Kadomtsev–Petviashvili equation have been reported. Rogue wave solutions to the (3+1)-dimensional Korteweg-de Vries Benjamin-Bona-Mahony equation were studied via the Hirota bilinear approach [7]. The propagation features and interactions of Rossby waves soliton of the geophysical equation were studied [8]. Breather, lump, and its interaction solutions for the higher dimensional evolution equation were studied[9]. Multisoliton solutions for the variable coefficient Schrödinger equation has been explored in the literature [10]. Some other solitons solutions have been reported for the regularized long-wave equation [11], the Sharma-Tasso-Olver-Burgers equation [12], the modified Schrödinger's equation [13], the complex Ginzburg–Landau equation [14], the (2+1) dimensional Chaffee–Infante equation [15], and many more [16,17,18].
Stochastic differential equations (DEs) deal with phenomena having randomness or uncertainties. Stochastic DEs can be used in various field of science and engineering [19,20,21]. Solving stochastic nolinear PDEs is very challenging and hard due to randomness. Therefore, various methods have been introduced and implemented to derive solutions of stochatics PDEs such as the modified tanh method [22], the modified Kudrayshov technique [23], the Sardar subequation method [24], and many more [25,26].
Fractional operators (FOs) have been frequently used for modelling the physical phenomena in various fields due to its memory process [27,28,29]. In literature, several FOs have been constructed by researchers and scientists [30,31,32]. Most of them do not satisfy some properties such as the chain and quotient rules. A few years ago, Atangana [33] defined a local FO called beta derivative, which generalized the classical operator. The {beta derivative (BD)} is defined as follows:
DβxΨ(x)=dβΨdxβ=limh0→0Ψ(x+h0(x+1Γ(β))1−β−Ψ(x))h0,0<β≤1. |
Here, the BD has the following characteristics: For every real numbers, m and n:
(1)DβxΨ(x)=(x+1Γ(β))1−βdΨdx.(2)Dβx(mΨ+nΦ)=m(x+1Γ(β))1−βdΨdx+n(x+1Γ(β))1−βdΦdx.(3)Dβx(Ψ∘Φ(x))=(x+1Γ(β))1−βdΨdxΦ′(x)(Ψ′(x)).(4)DβxΨ(m)=0. |
The BD has been used for the analysis of soliton solutions with the fractional behavior of nonlinear PDEs [34,35,36]. This work modifies the Benjamin-Bona-Mahony equation (BBME) as follows:
Mt+6MDβxM+DβxxxM−ρDβxxMt=τ(M−ρDβxxM)dPdt, | (1.1) |
where ρ is real parameter, M=M(x,t) is a real valued wave profile, τ is the intensity of sound, and P=P(t) is a white noise having the following properties:
(i)P possesses constant trajectories.
(ii)P(0)=0.
(iii)P(tj+1)−P(tj) has a normal standard distribution.
When we consider τ=0 and β=1, we get the BBME as follows:
Mt+6MMx+Mxxx−ρMxxt=0. | (1.2) |
Benjamin, Bona, and Mahony examined equation (1.2) as an adjustment to the KdV equation. The BBME has been used to analyze the prorogation of long surface gravity pulses with small amplitudes. There are several studies on the BBME. For instance, BBME was studied by using the variational method [37], the deep learning method [38], the generalized exp-function method [39], and many more [40,41]. In [42], the authors have used the F-expansion method to study the solitary waves BBME under BD with white noise. In this paper, we use two advanced analytical methods to deduce more solitary waves solutions and to study the influence of the BD and the white noise.
This section provides the general procedure of the suggested approaches that one can use to find solitary and other waves solutions.
Here, we present the general procedure of the G′G′+G+A-expansion technique. Consider a PDE under space BD as follows
A1(M,∂βxM,∂tM,∂βx∂βxM,∂βx∂tM,∂t∂tM,⋯)=0, | (2.1) |
where A1 is a polynomial in M=M(x,t) and its partial derivatives. To use the proposed procedure, one should abide by the following:
Step 1. First using the wave transformation, one can obtain ODE as follows:
M(x,t)=M(ω1)eτP(t)−12τ2t, | (2.2) |
where ω1=ξ1β(x+1Γ(β))β+ξ2t. Additionally, ξ1 and ξ2 are referred to as the wave speed and the wave number, respectively. By inserting Eq (2.2) in Eq (2.1), the following will be obtained:
A1(M,M′,M′′,M′′′)=0, | (2.3) |
where the ordinary derivatives of different orders are indicated by primes.
Step 2. According to the proposed strategy, we examine the following form for the solution to Eq (2.3):
M(ω1)=ℵ∑i=0Fi(G′(ω1)G′(ω1)+G(ω1)+A)i, | (2.4) |
where Fi is the function of the polynomial's coefficients (G′G′+G+A)i,i=0,1,2,…,ℵ. Assume that G(ω1) is a function that fulfills the subsequent relation:
G′′+AG′+BG+BA=0. | (2.5) |
The value of ℵ can be determined using the homogeneous balance rule (HBR) between the highest nonlinear term and the highest order derivative in Eq (2.3).
Step 3. In this step, the result obtained from the substitution of Eq (2.4) into Eq (2.3) and the coefficients of various powers of (G′G′+G+A) should be compared in terms of A,B,ξ1,ξ2, and i=0,1,2,…,ℵ. Using Mathematica or any other mathematical package, one can determine the solution's values G in the term (G′G′+G+A), and ultimately for the principles of (G′G′+G+A), Fi and ω1. In doing so, the solution of Eq (2.2) can be obtained.
Here, we present the general procedure of applying the modified G′G2-expansion approach to obtain the wave solutions of a nonlinear PDE. This approach contains the following expansion:
M(ω1)=F0+ℵ∑i=1(Fi(G′(ω1)G(ω1)2)i+Si(G′(ω1)G(ω1)2)−i), | (2.6) |
where G(ω1) satisfies the following the equation:
G′′(ω1)=ΨG′(ω1)2G(ω1)2+ψG′(ω1)+2G′(ω1)2G(ω1)+ϖG(ω1)2, | (2.7) |
where Ψ,ψ, and ϖ are the arbitrary constants. Next, one should find the value of ℵ as previously mentioned. Then, substituting Eq (2.6) and using Eq (2.7) into Eq (2.3), one can obtain a differential equation in G(ω1). Then, collecting those terms which contain (G′G2)i, (i=0,1,2,…,n), and setting all the coefficients of (G′G2)i equal to zero, one can acquire a system of algebraic equations. Solving the obtained system can possibly result in the following families.
Family 1. If Ψϖ>0 and ψ=0, the we have the following:
G′G2=√Ψϖ(p1cos(ω1√Ψϖ)+p2sin(ω1√Ψϖ))ϖ(p2cos(ω1√Ψϖ)−p1sin(ω1√Ψϖ)), | (2.8) |
where p1,p2,Ψ, and ϖ are arbitrary constants.
Family 2. If Ψϖ<0 and ψ=0, then we have the following:
G′G2=−√Ψϖ(p1sinh(2ω1√Ψϖ)+p1cosh(2ω1√Ψϖ)+p2)ϖ(p1sinh(2ω1√Ψϖ)+p1cosh(2ω1√Ψϖ)+p2). | (2.9) |
Here, we explore the wave solutions for the proposed stochastic BBME under BD as given in Eq (1.1) with the following procedure:
M(x,t)=M(ω1)eτP(t)−12τ2t. | (3.1) |
Furthermore, we have the following:
Mt=(ξ2M′+τMPt+12τ2M−12τ2M)eτP(t)−12τ2t, | (3.2) |
and
DβxxMt=(ξ21ξ2M′′′+τPtξ21M′′)eτP(t)−12τ2t,DβxM=(ξ1M′)eτP(t)−12τ2t,DβxxxM=(ξ31M′′′)eτP(t)−12τ2t. | (3.3) |
Inserting Eq (3.1) into Eq (1.1) and using Eqs (3.2) and (3.3), we obtain the following:
ξ2M′+(ξ31−ρξ21ξ2)M′′′+6ξ1MM′e−12τ2tEeτP(t)=0. | (3.4) |
By considering P(t), the Gaussian process, and EeτP(t)=e12τ2t, then, Eq (3.4) becomes:
ξ2M′+(ξ31−ρξ21ξ2)M′′′+6ξ1MM′=0. | (3.5) |
Integrating Eq (3.5) one time while considering the integration constant to be zero, we obtain the following:
ζM+M′′+ηM2=0, | (3.6) |
where
ζ=ξ2ξ31−ρξ21ξ2,η=3ξ21−ρξ1ξ2. |
In Eq (3.6), by using the homogeneous balance principle, we obtain ℵ=2. Now, we have Eq (2.4) in the following form:
M1(ω1)=F0+F1(G′G′+G+A)+F2(G′G′+G+A)2. | (3.7) |
Inserting the solution of Eq (3.7) with Eq (2.5) into Eq (3.6), the polynomial of the left side will be in (G′G′+G+A)i,i=0,1,2⋯ℵ. By further equating the coefficients of various powers of (G′G′+G+A) to zero, we obtain a system of algebraic equations. Using Mathematica to solve the system of equations, we obtain the following sets:
{F0=ξ1ξ2(A2−12AB+4B(3B+2))−ξ2√ξ21(A2−4B)26ξ1√ξ21(A2−4B)2,F1=∓2ξ2(A−2B)(A−B−1)√ξ21(A2−4B)2,F2=2ξ2(−A+B+1)2√ξ21(A2−4B)2,ρ=ξ21√ξ21(A2−4B)2+ξ41ξ2ξ31. | (3.8) |
Now, inserting the parameter values presented in Eq (3.8) into Eq (3.7), we get the exact solutions of Eq (3.6) in the following two cases:
Set 1. For D=A2−4B>0, we have the following:
M(ω1)=(ξ1ξ2(A2−12AB+(12B2+8B))−ξ2√ξ21(A2−4B)26ξ1√ξ21(A2−4B)2−(2ξ2(A−2B)(A−B−1))(ν2e√Dω1(A−√D)+ν1(√D+A))√ξ21(A2−4B)2(ν2e√Dω1(−√D+A−2)+ν1(√D+A−2))(2ξ2(−A+B+1)2)(ν2e√Dω1(A−√D)+ν1(√D+A)ν2e√Dω1(−√D+A−2)+ν1(√D+A−2))2√ξ21(A2−4B)2)eτP(t)−12τ2t, | (3.9) |
where ν1 and ν2 remain constants.
Set 2. For D=A2−4B<0, we have the following:
M(ω1)=(ξ1ξ2(A2−12AB+(12B2+8B))−ξ2√ξ21(A2−4B)26ξ1√ξ21(A2−4B)2−(2ξ2(A−2B)(A−B−1))√ξ21(A2−4B)2(Aν2+ν1√−D)sin(√−D2)+(Aν1−ν2√−D)cos(√−D2)((A−2)ν2+ν1√−D)sin(√−D2)+((A−2)ν1−ν2√−D)cos(√−D2)(2ξ2(−A+B+1)2)√ξ21(A2−4B)2((Aν2+ν1√−D)sin(√−D2)+(Aν1−ν2√−D)cos(√−D2)((A−2)ν2+ν1√−D)sin(√−D2)+((A−2)ν1−ν2√−D)cos(√−D2))2)eτP(t)−12τ2t. | (3.10) |
Since the highest-order nonlinear term and the highest-order derivative term are balanced according to the homogenous balance principle in Eq (3.6), we know that the balance number is ℵ=2. Therefore, we have the following:
M(ω1)=F0+F1G′G2+F2(G′G2)2+S1G′G2+S2(G′G2)2. | (4.1) |
Inserting Eq (4.1) with aid of Eq (2.7) into Eq (3.6), and following the same procedure as earlier, we obtain the following:
F1=−2Ψξ21ψ4ρΨξ21ϖ+ρξ21(−ψ2)+1,F2=−2Ψ2ξ214ρΨξ21ϖ+ρξ21(−ψ2)+1,S1=0,S2=0,ξ2=ξ31(4Ψϖ−ψ2)4ρΨξ21ϖ+ρξ21(−ψ2)+1,F0=−2Ψξ21ϖρξ21(4ϖΨ−ψ2)+1. | (4.2) |
Putting the values of the parameters presented in Eq (4.1) into Eq (3.6) and making use of Eqs (2.8) and (2.9), we obtain the following exact solutions.
Family 1. If Ψϖ>0 and ψ=0, then we have the following:
M(ω1)=(−(2Ψ2ξ21)(√Ψϖ(p1cos(ω1√Ψϖ)+p2sin(ω1√Ψϖ))ϖ(p2cos(ω1√Ψϖ)−p1sin(ω1√Ψϖ))2)24Ψξ21ϖρ+1−2Ψξ21ϖ4Ψξ21ϖρ+1)eτP(t)−12τ2t. | (4.3) |
Family 2. If Ψϖ<0 and ψ=0, then we have the following:
M(ω1)=(−(2Ψ2ξ21)(−√Ψϖ(p1sinh(2ω1√Ψϖ)+p1cosh(2ω1√Ψϖ)+p2)(ϖ(p1sinh(2ω1√Ψϖ)+p1cosh(2ω1√Ψϖ)+p2))2)24Ψξ21ϖρ+1−2Ψξ21ϖ4Ψξ21ϖρ+1)eτP(t)−12τ2t. |
This portion of the present work graphically visualize the obtained solutions and presents some physical interpretations and discussions on the obtained results. In Figure 1, solution (3.9) with particular values (i.e, ν1=5,ν2=−.5,ξ1=−.2,ξ2=−1,A=3,B=2.6,τ=0,P=0) is visualized. In Figure 1, the value of β is varied while the noise intensity τ is considered as zero. The β is used as 1, 0.9, and 0.8 for subfigures (1a, 1d), (1b, 1e), and (1c, 1f), respectively. Here, we observed the dark soliton wave, where we see that as the fractional order decreases when the wave separation is increased.
Furthermore, Figure 2 shows the dynamics of the exact solution (2.2) by varying the noise intensity while keeping the β=0.95. Other parameters are used for the simulation of Figure 1. The τ is used as 0.1, 0.4, and 0.9 for subfigures (2a, 2d), which is (2b, 2e), and (2c, 2f), respectively. In Figure 2, one can observe the affects of noise on the dynamics of the solution, which is simulated here. Furthermore, the dynamics of the exact solution (3.10) are visualized in Figures 3 and 4 by varying β and τ, respectively. In the simulation of these figures, the parameters are selected in the form ν1=.5,ν2=1,ξ1=−.7,ξ2=.5,p1=2,p2=1,A=−4,B=0,τ=0,P=0; alternatively in Figure 3, the τ is considered as zero. and in Figure 4. the β is fixed as 0.95. The β is used as 1, 0.9, and 0.8 for subfigures (3a, 3d), (3b, 3e), and (3c, 3f), respectively. Similarly, τ is used as 0.2, 0.5, and 0.8 for subfigures (4a, 4d), (4b, 4e), and (4c, 4f), respectively. Here, we observed the interaction of the bright wave with a kink wave, where the amplitude of the bright wave decreases as the β decreases in the negative region of the spatial coordinate.
In Figure 5, the solution (3.9) with particular values (i.e, ν1=5,ν2=−.5,ξ1=−.2,ξ2=−1,A=3,B=2.6,τ=0, and P=0) is visualized. In Figure 5, the various values for β are considered, while the noise intensity τ is supposed to be zero. The β is considered as 1, 0.95, and 0.9 for subfigures (5a, 5d), (5b, 5e), and (5c, 5f), respectively. Here, we observed the hybrid bright-dark soliton wave, where we see that as the fractional order decreases when then amplitude of the dark solitons increases and the bright soliton is decreases.
Moreover, Figure 6 shows the dynamics of the exact solution (3.9) by varying the noise intensity while keeping the β=0.95. Other parameters are used for the simulation of Figure 5. The τ is used as 0.5, 0.6, and 0.9 for subfigures (6a, 6d), (6b, 6e), and (6c, 6f), respectively. In Figure 6, one can observe the affects of noise on the dynamics of the solution, which is simulated here; it can be seen that the highest and lowest amplitude areas become more random as τ increases.
Furthermore, the dynamics of the exact solution (3.10) are visualized in Figures 7 and 8 by varying β and τ, respectively. In the simulation of these figures, the parameters are selected in the form ρ=1,ϖ=−.1,ξ1=1,Ψ=1,p1=1,p2=1,P=0, and τ=0; alternatively, in Figure 7, the τ is considered as zero, and in Figure 8, the β is fixed as 0.95. The β is used as 1, 0.9, and 0.8 for subfigures (7a, 7d), (7b, 7e), and (7c, 7f), respectively. Similarly, τ is used as 0.05, 0.3, and 0.6 for subfigures (8a, 8d), (8b, 8e), and (8c, 4f), respectively. Here, we observed the periodic wave solution, where the amplitude of the periodic waves decreases as the β decreases in the negative region of the spatial coordinate. Furthermore, we see that the wave profile behaves more randomly in areas where the amplitude is either low or high. Thus, from these analyses, it can be noticed that the obtained results are more generalized than the solutions reported in previous papers. Indeed, when the BD operators equals one, the solution converges to the stochastic integer order solutions. If the intensity of the white noise is zero, then the solutions converge to a deterministic case. When β=1 and τ=0, the obtained solutions converge to the determinsitic case.
This study has explored the stochastic BBME with the BD, thereby incorporating multiplicative noise in the Itô sense. We have derived various analytical soliton solutions for these equations by utilizing two distinct expansion methods, both within the framework of beta derivatives. A fractional multistep transformation was employed to convert the equations into nonlinear forms with respect to an independent variable. After performing algebraic manipulations, the solutions were found to be trigonometric and hyperbolic trigonometric functions. Our analysis demonstrated that the wave behavior was influenced by the fractional-order derivative in the proposed equations, thus providing deeper insights into the wave composition as the fractional order increases or decreases. Additionally, we examined the effect of white noise on the propagation of wave solutions. This study has underscored the computational robustness and adaptability of the proposed approach to investigate various phenomena in the physical sciences and engineering.
Conceptualization: M.S.D.S. Methodology: K.A.A. Software: S.S. Validation: A.K. Formal analysis: A.K. Investigation: M.H. Writing-original draft preparation: K.A.A. Writing-review and editing: H.S., A.M.
The Researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support (QU-APC-2024-9/1). The authors wish to extend their sincere gratitude to the Deanship of Scientific Research at the Islamic University of Madinah.
All authors declare no conflicts of interest in this paper.
[1] |
C. Wu, X. Chen, Y. Cai, J. Xia, X. Zhou, S. Xu, et al., Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China, JAMA Intern. Med., 180 (2020), 934–943. doi:10.1001/jamainternmed.2020.0994. doi: 10.1001/jamainternmed.2020.0994
![]() |
[2] | MIT, MIT emergency ventilator project, 2021. Available from: https://emergency-vent.mit.edu. |
[3] |
T. Dillon, C. Ozturk, K. Mendez, L. Rosalia, S. D. Gollob, K. Kempf, et al., Computational modeling of a low-cost fluidic oscillator for use in an educational respiratory simulator, Adv. NanoBiomed Res., 2021 (2021), 2000112. doi: 10.1002/anbr.202000112. doi: 10.1002/anbr.202000112
![]() |
[4] |
S. M. Mirvakili, D. Sim, R. Langer, Inverse pneumatic artificial muscles for application in low-cost ventilators, Adv. Intell. Syst., 3 (2021), 1–11. doi: 10.1002/aisy.202000200. doi: 10.1002/aisy.202000200
![]() |
[5] | M. Borrello, Modeling and control of systems for critical care ventilation, in IEEE Proceedings of the 2005, American Control Conference, 3 (2005), 2166–2180. doi: 10.1109/ACC.2005.1470291. |
[6] |
M. Walter, S. Leonhardt, Control applications in artificial ventilation, IEEE Mediterr. Conf. Control Automation, 2007 (2007), 1–6. doi: 10.1109/MED.2007.4433762. doi: 10.1109/MED.2007.4433762
![]() |
[7] |
K. B. Ohlson, D. R. Westenskow, W. S. Jordan, A microprocessor based feedback controller for mechanical ventilation, Ann. Biomed. Eng., 10 (1982), 35–48. doi: 10.1007/BF02584213. doi: 10.1007/BF02584213
![]() |
[8] | M. Borrello, Adaptive control of a proportional flow valve for critical care ventilators, in ACC Annual American Control Conference, (2018), 104–109. doi: 10.23919/ACC.2018.8431425. |
[9] | Y. Xu, L. Li, J. Yan, Y. Luo, An optimized controller for bi-level positive airway pressure ventilator, in International Conference on Future Computer and Communication Engineering, 149 (2014), 149–152. doi: 10.2991/icfcce-14.2014.37. |
[10] |
D. Acharya, D. K. Das, Swarm optimization approach to design PID controller for artificially ventilated human respiratory system, Comput. Methods Programs Biomed., 198 (2021), 105776. doi: 10.1016/j.cmpb.2020.105776. doi: 10.1016/j.cmpb.2020.105776
![]() |
[11] |
E. Martinoni, C. A. Pfister, K. Stadler, P. Schumacher, D. Leibundgut, T. Bouillon, et al., Model-based control of mechanical ventilation: design and clinical validation, Br. J. Anaesth., 92 (2004), 800–807. doi: 10.1093/bja/aeh145. doi: 10.1093/bja/aeh145
![]() |
[12] |
M. Scheel, T. Schauer, A. Berndt, O. Simanski, Model-based control approach for a cpap-device considering patient's breathing effort, IFAC Papers OnLine, 50 (2017), 9948–9953. doi: 10.1016/j.ifacol.2017.08.1572. doi: 10.1016/j.ifacol.2017.08.1572
![]() |
[13] | S. Korrapati, J. S. Yang, Adaptive inverse dynamics control for a two compartment respiratory system, in IEEE International Conference on Consumer Electronics-Taiwan, (2016), 1–2. doi: 10.1109/ICCE-TW.2016.7521037. |
[14] |
H. Li, W. M. Haddad, Model predictive control for a multi compartment respiratory system, IEEE Trans. Control Syst. Technol., 21 (2012), 1988–1995. doi: 10.1109/TCST.2012.2210956. doi: 10.1109/TCST.2012.2210956
![]() |
[15] |
B. Hunnekens, S. Kamps, N. Van De Wouw, Variable-gain control for respiratory systems, IEEE Trans. Control Syst. Technol., 28 (2020), 163–171. doi: 10.1109/TCST.2018.2871002. doi: 10.1109/TCST.2018.2871002
![]() |
[16] | J. Reinders, R. Verkade, B. Hunnekens, N. van de Wouw, T. Oomen, Improving mechanical ventilation for patient care through repetitive control, in 21st IFAC World Congress, (2020), 1441–1446. doi: 10.1016/j.ifacol.2020.12.1906. |
[17] |
H. Zhang, L. Cui, X. Zhang, Y. Luo, Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method, IEEE Trans. Neural Netw., 22 (2011), 2226–2236. doi: 10.1109/TNN.2011.2168538. doi: 10.1109/TNN.2011.2168538
![]() |
[18] |
Y. Pan, J. Wang, Model predictive control of unknown nonlinear dynamical systems based on recurrent neural networks, IEEE Trans. Ind. Electron., 59 (2011), 3089–3101. doi: 10.1109/TIE.2011.2169636. doi: 10.1109/TIE.2011.2169636
![]() |
[19] | J. J. E. Slotine, W. Li, Applied nonlinear control, Englewood Cliffs, 1991. |
[20] | H. K. Khalil, J. W. Grizzle, Nonlinear systems, Pearson Education Prentice hall, 2002. |
[21] |
A. Abrishamifar, A. Ahmad, M. Mohamadian, Fixed switching frequency sliding mode control for single-phase uni-polar inverters, IEEE Trans. Power Electron., 27 (2011), 2507–2514. doi: 10.1109/TPEL.2011.2175249. doi: 10.1109/TPEL.2011.2175249
![]() |
[22] |
J. Zivcak, M. Kelemen, I. Virgala, P. Marcinko, P. Tuleja, M. Sukop, et al., An adaptive neuro-fuzzy control of pneumatic mechanical ventilator. Actuators, 10 (2021), 1–23. doi: 10.3390/act10030051. doi: 10.3390/act10030051
![]() |
[23] | Y. C. Hsu, H. A. Malki, Fuzzy variable structure control for MIMO systems, in IEEE International Conference on Fuzzy Systems Proceedings, IEEE World Congress on Computational Intelligence., 1 (1998), 280–285. doi: 10.1109/FUZZY.1998.687498. |
[24] |
J. Schäublin, M. Derighetti, P. Feigenwinter, S. P. Felix, A. M. Zbinden, Fuzzy logic control of mechanical ventilation during anaesthesia, Br. J. Anaesth., 77 (1996), 636–641. doi: 10.1093/bja/77.5.636. doi: 10.1093/bja/77.5.636
![]() |
[25] | H. Guler, F. Ata, Design of a fuzzy lab view-based mechanical ventilator, Comput. syst. Sci. Eng., 29 (2014), 219–229. |
[26] | D. Pelusi, Optimization of a fuzzy logic controller using genetic algorithms, in IEEE 3rd International Conference on Intelligent HumanMachine Systems and Cybernetics, 2 (2011), 143–146. doi: 10.1109/IHMSC.2011.105. |
[27] |
S. Kundu, D. R. Parhi, Reactive navigation of underwater mobile robot using ANFIS approach in a manifold manner, Int. J. of Autom. Comput., 14 (2017), 307–320. doi: 10.1007/s11633-016-0983-5. doi: 10.1007/s11633-016-0983-5
![]() |
[28] |
L. X. Wang, Design and analysis of fuzzy identifiers of nonlinear dynamic systems, IEEE Trans. Automat. Contr., 40 (1995), 11–23. doi: 10.1109/9.362903. doi: 10.1109/9.362903
![]() |
[29] |
M. Roopaei, M. Zolghadri, S. Meshksar, Enhanced adaptive fuzzy sliding mode control for uncertain nonlinear systems, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 3670–3681. doi: 10.1016/j.cnsns.2009.01.029. doi: 10.1016/j.cnsns.2009.01.029
![]() |
[30] |
A. Saghafinia, H. W. Ping, M. N. Uddin, K. S. Gaeid, Adaptive fuzzy sliding-mode control into chattering-free IM drive, IEEE Trans. Ind. Appl., 51 (2014), 692–701. doi: 10.1109/TIA.2014.2328711. doi: 10.1109/TIA.2014.2328711
![]() |
[31] |
Y. Li, H. Wang, B. Zhao, K. Liu, Adaptive fuzzy sliding mode control for the probe soft landing on the asteroids with weak gravitational field, Math. Probl. Eng., 2015 (2015), 1–8. doi: 10.1155/2015/582948. doi: 10.1155/2015/582948
![]() |
[32] |
A. Ishigame, T. Furukawa, S. Kawamoto, T. Taniguchi, Sliding mode controller design based on fuzzy inference for nonlinear systems (power systems), IEEE Trans. Ind. Electron., 40 (1993), 64–70. doi: 10.1109/41.184822. doi: 10.1109/41.184822
![]() |
[33] |
M. Roopaei, M. Z. Jahromi, Chattering-free fuzzy sliding mode control in mimo uncertain systems, Nonlinear Anal. Theory Methods Appl., 71 (2009), 4430–4437. doi: 10.1016/j.na.2009.02.132. doi: 10.1016/j.na.2009.02.132
![]() |
[34] |
H. S. Haghighi, A. H. Markazi, Chaos prediction and control in mems resonators, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 3091–3099. doi: 10.1016/j.cnsns.2009.10.002. doi: 10.1016/j.cnsns.2009.10.002
![]() |
[35] |
O. Cerman, P. Hušek, Adaptive fuzzy sliding mode control for electro-hydraulic servo mechanism, Expert Syst. Appl., 39 (2012), 10269–10277. doi: 10.1016/j.eswa.2012.02.172. doi: 10.1016/j.eswa.2012.02.172
![]() |
[36] |
F. J. Lin, S. L. Chiu, Adaptive fuzzy sliding-mode control for PM synchronous servo motor drives, IEE Proc. Control Theory Appl., 145 (1998), 63–72. doi: 10.1016/S0165-0114(03)00199-4. doi: 10.1016/S0165-0114(03)00199-4
![]() |
[37] | S. Liu, L. Ding, Application of adaptive fuzzy sliding mode controller in PMSM servo system, in IEEE International Conference on Computing, 2 (2010), 95–98. doi: 10.1109/CCIE.2010.142. |
[38] |
N. Ullah, S. Wang, M. I. Khattak, M. Shafi, Fractional order adaptive fuzzy sliding mode controller for a position servo system subjected to aerodynamic loading and non-linearities, Aerosp. Sci. Technol., 43 (2015), 381–387. doi: 10.1016/j.ast.2015.03.020. doi: 10.1016/j.ast.2015.03.020
![]() |
[39] |
N. Ullah, M. Asghar Ali, A. Ibeas, J. Herrera, Adaptive fractional order terminal sliding mode control of a doubly fed induction generator-based wind energy system, IEEE Access, 5 (2017), 21368–21381. doi: 10.1109/ACCESS.2017.2759579. doi: 10.1109/ACCESS.2017.2759579
![]() |
[40] |
N. Ullah, A. Ibeas, M. Shafi, M. Ishfaq, M. Ali, Vaccination controllers for SEIR epidemic models based on fractional order dynamics, Biomed. Signal Process. Control, 38 (2017), 136–142. doi: 10.1016/j.bspc.2017.05.013. doi: 10.1016/j.bspc.2017.05.013
![]() |
[41] |
N. Ullah, A. Ullah, A. Ibeas, J. Herrera, Improving the hardware complexity by exploiting the reduced dynamics-Based fractional order systems, IEEE Access, 5 (2017), 7714–7723. doi: 10.1109/ACCESS.2017.2700439. doi: 10.1109/ACCESS.2017.2700439
![]() |
1. | Peng E, Tingting Xu, Linhua Deng, Yulin Shan, Miao Wan, Weihong Zhou, Solutions of a class of higher order variable coefficient homogeneous differential equations, 2025, 20, 1556-1801, 213, 10.3934/nhm.2025011 |