Research article Special Issues

A mathematical model for human-to-human transmission of COVID-19: a case study for Turkey's data


  • Received: 12 July 2021 Accepted: 01 September 2021 Published: 05 November 2021
  • In this study, a mathematical model for simulating the human-to-human transmission of the novel coronavirus disease (COVID-19) is presented for Turkey's data. For this purpose, the total population is classified into eight epidemiological compartments, including the super-spreaders. The local stability and sensitivity analysis in terms of the model parameters are discussed, and the basic reproduction number, R0, is derived. The system of nonlinear ordinary differential equations is solved by using the Galerkin finite element method in the FEniCS environment. Furthermore, to guide the interested reader in reproducing the results and/or performing their own simulations, a sample solver is provided. Numerical simulations show that the proposed model is quite convenient for Turkey's data when used with appropriate parameters.

    Citation: Süleyman Cengizci, Aslıhan Dursun Cengizci, Ömür Uğur. A mathematical model for human-to-human transmission of COVID-19: a case study for Turkey's data[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 9787-9805. doi: 10.3934/mbe.2021480

    Related Papers:

    [1] K. E. Starkov, Svetlana Bunimovich-Mendrazitsky . Dynamical properties and tumor clearance conditions for a nine-dimensional model of bladder cancer immunotherapy. Mathematical Biosciences and Engineering, 2016, 13(5): 1059-1075. doi: 10.3934/mbe.2016030
    [2] K. Renee Fister, Jennifer Hughes Donnelly . Immunotherapy: An Optimal Control Theory Approach. Mathematical Biosciences and Engineering, 2005, 2(3): 499-510. doi: 10.3934/mbe.2005.2.499
    [3] OPhir Nave, Shlomo Hareli, Miriam Elbaz, Itzhak Hayim Iluz, Svetlana Bunimovich-Mendrazitsky . BCG and IL − 2 model for bladder cancer treatment with fast and slow dynamics based on SPVF method—stability analysis. Mathematical Biosciences and Engineering, 2019, 16(5): 5346-5379. doi: 10.3934/mbe.2019267
    [4] Amit Kumar Roy, Priti Kumar Roy, Ellina Grigorieva . Mathematical insights on psoriasis regulation: Role of Th1 and Th2 cells. Mathematical Biosciences and Engineering, 2018, 15(3): 717-738. doi: 10.3934/mbe.2018032
    [5] Peter S. Kim, Joseph J. Crivelli, Il-Kyu Choi, Chae-Ok Yun, Joanna R. Wares . Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics. Mathematical Biosciences and Engineering, 2015, 12(4): 841-858. doi: 10.3934/mbe.2015.12.841
    [6] Atefeh Afsar, Filipe Martins, Bruno M. P. M. Oliveira, Alberto A. Pinto . A fit of CD4+ T cell immune response to an infection by lymphocytic choriomeningitis virus. Mathematical Biosciences and Engineering, 2019, 16(6): 7009-7021. doi: 10.3934/mbe.2019352
    [7] Yuedan Wang, Jinke Huang, Jiaqi Zhang, Fengyun Wang, Xudong Tang . Identifying biomarkers associated with the diagnosis of ulcerative colitis via bioinformatics and machine learning. Mathematical Biosciences and Engineering, 2023, 20(6): 10741-10756. doi: 10.3934/mbe.2023476
    [8] Roman Gumzej . Intelligent logistics systems in E-commerce and transportation. Mathematical Biosciences and Engineering, 2023, 20(2): 2348-2363. doi: 10.3934/mbe.2023110
    [9] Bindu Kumari, Chandrashekhar Sakode, Raghavendran Lakshminarayanan, Prasun K. Roy . Computational systems biology approach for permanent tumor elimination and normal tissue protection using negative biasing: Experimental validation in malignant melanoma as case study. Mathematical Biosciences and Engineering, 2023, 20(5): 9572-9606. doi: 10.3934/mbe.2023420
    [10] Alexander P. Krishchenko, Konstantin E. Starkov . The four-dimensional Kirschner-Panetta type cancer model: How to obtain tumor eradication?. Mathematical Biosciences and Engineering, 2018, 15(5): 1243-1254. doi: 10.3934/mbe.2018057
  • In this study, a mathematical model for simulating the human-to-human transmission of the novel coronavirus disease (COVID-19) is presented for Turkey's data. For this purpose, the total population is classified into eight epidemiological compartments, including the super-spreaders. The local stability and sensitivity analysis in terms of the model parameters are discussed, and the basic reproduction number, R0, is derived. The system of nonlinear ordinary differential equations is solved by using the Galerkin finite element method in the FEniCS environment. Furthermore, to guide the interested reader in reproducing the results and/or performing their own simulations, a sample solver is provided. Numerical simulations show that the proposed model is quite convenient for Turkey's data when used with appropriate parameters.





    [1] I. Holmdahl, C. Buckee, Wrong but useful–what Covid-19 epidemiologic models can and cannot tell us, New Engl. J. Med., 383 (2020), 303–305. doi: 10.1056/NEJMp2016822
    [2] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond., 115 (1927), 700–721.
    [3] F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag, New York, 2012.
    [4] H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. doi: 10.1137/S0036144500371907
    [5] J. D. Murray, Mathematical Biology: I. An Introduction, 3rd edition, Springer-Verlag, New York, 2002.
    [6] J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, 3rd edition, Springer-Verlag, New York, 2003.
    [7] E. E. Holmes, M. A. Lewis, J. E. Banks, R. R. Veit, Partial differential equations in ecology: Spatial interactions and population dynamics, Ecology, 75 (1994), 17–29. doi: 10.2307/1939378
    [8] O. Diekmann, H. Heesterbeek, T. Britton, Mathematical Tools for Understanding Infectious Disease Dynamics, Princeton University Press, 2013.
    [9] J. Müller, C. Kuttler, Methods and Models in Mathematical Biology: Deterministic and Stochastic Approaches, Springer-Verlag, Berlin Heidelberg, 2015.
    [10] G. Bocharov, V. Volpert, B. Ludewig, A. Meyerhans, Mathematical Immunology of Virus Infections, Springer International Publishing, 2018.
    [11] M. Y. Li, An Introduction to Mathematical Modeling of Infectious Diseases, Princeton University Press, 2018.
    [12] M. Martcheva, An Introduction to Mathematical Epidemiology, Springer US, 2015.
    [13] K. P. Hadeler, Topics in Mathematical Biology, Springer International Publishing, 2017.
    [14] S. Ahmad, A. Ullah, Q. M. Al-Mdallal, H. Khan, K. Shah, A. Khan, Fractional order mathematical modeling of COVID-19 transmission, Chaos Solitons Fractal., 139 (2020), 110256. doi: 10.1016/j.chaos.2020.110256
    [15] H. S. Badr, H. Du, M. Marshall, E. Dong, M. M. Squire, L. M. Gardner, Association between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study, The Lancet Infect. Dis., 20 (2020), 1247–1254. doi: 10.1016/S1473-3099(20)30553-3
    [16] A. L. Bertozzi, E. Franco, G. Mohler, M. B. Short, D. Sledge, The challenges of modeling and forecasting the spread of COVID-19, Proc. Natl. A. Sci., 117 (2020), 16732–16738. doi: 10.1073/pnas.2006520117
    [17] R. Cherniha, V. Davydovych, A mathematical model for the COVID-19 outbreak and its applications, Symmetry, 12 (2020), 990. doi: 10.3390/sym12060990
    [18] H. Coşkun, N. Yıldırım, S. Gündüz, The spread of COVID-19 virus through population density and wind in Turkey cities, Sci. Total Environ., 751 (2021), 141663. doi: 10.1016/j.scitotenv.2020.141663
    [19] S. Bugalia, V. P. Bajiya, J. P. Tripathi, M. T. Li, G. Q. Sun, Mathematical modeling of COVID-19 transmission: the roles of intervention strategies and lockdown, Math. Biosci. Eng., 17 (2020), 5961–5986. doi: 10.3934/mbe.2020318
    [20] B. Ivorra, M. R. Ferrández, M. Vela-Pérez, A. M. Ramos, Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China, Commun. Nonlinear Sci., 88 (2020), 105303. doi: 10.1016/j.cnsns.2020.105303
    [21] M. Medrek, Z. Pastuszak, Numerical simulation of the novel coronavirus spreading, Expert Syst. Appl., 166 (2021), 114109. doi: 10.1016/j.eswa.2020.114109
    [22] D. Okuonghae, A. Omame, Analysis of a mathematical model for COVID-19 population dynamics in Lagos, Nigeria, Chaos Solitons Fractal., 139 (2020), 110032. doi: 10.1016/j.chaos.2020.110032
    [23] Z. Feng, J. W. Glasser, A. N. Hill, On the benefits of flattening the curve: A perspective, Math. Biosci., 326 (2020), 108389. doi: 10.1016/j.mbs.2020.108389
    [24] T. M. Chen, J. Rui, Q. P. Wang, Z. Y. Zhao, J. A. Cui, L. Yin, A mathematical model for simulating the phase-based transmissibility of a novel coronavirus, Infect. Dis. Poverty, 9 (2020).
    [25] P. Samui, J. Mondal, S. Khajanchi, A mathematical model for COVID-19 transmission dynamics with a case study of India, Chaos Solitons Fractal., 140 (2020), 110173. doi: 10.1016/j.chaos.2020.110173
    [26] N. H. Tuan, H. Mohammadi, S. Rezapour, A mathematical model for COVID-19 transmission by using the Caputo fractional derivative, Chaos Solitons Fractal., 140 (2020), 110107. doi: 10.1016/j.chaos.2020.110107
    [27] S. Çakan, Dynamic analysis of a mathematical model with health care capacity for COVID-19 pandemic, Chaos Solitons Fractal., 139 (2020), 110033. doi: 10.1016/j.chaos.2020.110033
    [28] R. P. Yadav, Renu Verma, A numerical simulation of fractional order mathematical modeling of COVID-19 disease in case of Wuhan China, Chaos Solitons Fractal., 140 (2020), 110124. doi: 10.1016/j.chaos.2020.110124
    [29] A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?, Chaos Solitons Fractal., 136 (2020), 109860. doi: 10.1016/j.chaos.2020.109860
    [30] E. Atangana, A. Atangana, Facemasks simple but powerful weapons to protect against COVID-19 spread: Can they have sides effects?, Results Phys., 19 (2020), 103425. doi: 10.1016/j.rinp.2020.103425
    [31] M. A. Khan, A. Atangana, E. Alzahrani, Fatmawati, The dynamics of COVID-19 with quarantined and isolation, Adv. Differ. Equation, 2020 (2020), 1687–1847.
    [32] A. Viguerie, A. Veneziani, G. Lorenzo, D. Baroli, N. Aretz-Nellesen, A. Patton, et al., Diffusion-reaction compartmental models formulated in a continuum mechanics framework: application to COVID-19, mathematical analysis, and numerical study, Comput. Mech., 66 (2020), 1131–1152. doi: 10.1007/s00466-020-01888-0
    [33] A. Viguerie, G. Lorenzo, F. Auricchio, D. Baroli, T. J. R. Hughes, A. Patton, et al., Simulating the spread of COVID-19 via a spatially-resolved susceptible-exposed-infected-recovered-deceased (SEIRD) model with heterogeneous diffusion, Appl. Math. Lett., 111 (2021), 106617. doi: 10.1016/j.aml.2020.106617
    [34] H. Zhao, Z. Feng, Staggered release policies for COVID-19 control: Costs and benefits of relaxing restrictions by age and risk, Math. Biosci., 326 (2020), 108405. doi: 10.1016/j.mbs.2020.108405
    [35] Y. N. Kyrychko, K. B. Blyuss, I. Brovchenko, Mathematical modelling of the dynamics and containment of COVID-19 in Ukraine, Sci. Rep., 10 (2020), 19662. doi: 10.1038/s41598-020-76710-1
    [36] K. Sarkar, S. Khajanchi, J. J. Nieto, Modeling and forecasting the COVID-19 pandemic in India, Chaos Solitons Fractal., 139 (2020), 110049. doi: 10.1016/j.chaos.2020.110049
    [37] A. S. Shaikh, I. N. Shaikh, K. S. Nisar, A mathematical model of COVID-19 using fractional derivative: outbreak in India with dynamics of transmission and control, Adv. Differ. Equation, 2020 (2020), 373. doi: 10.1186/s13662-020-02834-3
    [38] K. Naeem, M. Riaz, X. Peng, D. Afzal, Pythagorean m-polar fuzzy topology with TOPSIS approach in exploring most effectual method for curing from COVID-19, Inter. J. Biomath., 13 (2020), 2050075. doi: 10.1142/S1793524520500758
    [39] S. Saha, G. P. Samanta, J. J. Nieto, Epidemic model of COVID-19 outbreak by inducing behavioural response in population, Nonlinear Dynam., 102 (2020), 455–487. doi: 10.1007/s11071-020-05896-w
    [40] N. Moradian, H. D. Ochs, C. Sedikies, M. R. Hamblin, C. A. Camargo, J. A. Martinez, et al., The urgent need for integrated science to fight COVID-19 pandemic and beyond, J. Transl. Med., 18 (2020), 205. doi: 10.1186/s12967-020-02364-2
    [41] K. Mohamed, N. Rezaei, COVID-19 pandemic is not the time of trial and error, Am. J. Emerg. Med., 46 (2021), 774–775. doi: 10.1016/j.ajem.2020.09.020
    [42] S. A. Cheema, T. Kifayat, A. R. Rahman, U. Khan, A. Zaib, I. Khan, et al., Is social distancing, and quarantine effective in restricting COVID-19 outbreak? Statistical evidences from Wuhan, China, Comput. Mater. Con., 66 (2021), 1977–1985.
    [43] E. Kuhl, Data-driven modeling of COVID-19–Lessons learned, Extreme Mech. Lett., 40 (2020), 100921. doi: 10.1016/j.eml.2020.100921
    [44] M. M. Sakr, N. S. Elsayed, G. S. El-Housseiny, Latest updates on SARS-CoV-2 genomic characterization, drug, and vaccine development: a comprehensive bioinformatics review, Microb. Pathogenesis, 154 (2021), 104809. doi: 10.1016/j.micpath.2021.104809
    [45] S. Moore, E. M. Hill, M. J. Tildesley, L. Dyson. M. J. Keeling, Vaccination and non-pharmaceutical interventions for COVID-19: a mathematical modelling study, Lancet Infect. Dis., 21 (2021), 793–802. doi: 10.1016/S1473-3099(21)00143-2
    [46] L. Forchette, W. Sebastian, T. Liu, A comprehensive review of COVID-19 virology, vaccines, variants, and therapeutics, Curr. Med. Sci., 9 (2021), 1–15.
    [47] F. Ndaïrou, D. F. M. Torres, Mathematical analysis of a fractional COVID-19 model applied to Wuhan, Spain and Portugal, Axioms, 10 (2021), 135. doi: 10.3390/axioms10030135
    [48] I. A. Baba, A. Yusuf, K. S. Nisar, A. H. Abdel-Aty, T. A. Nofal, Mathematical model to assess the imposition of lockdown during COVID-19 pandemic, Results Phys., 20 (2021), 103716. doi: 10.1016/j.rinp.2020.103716
    [49] J. Danane, K. Allali, Z. Hammouch, K. S. Nisar, Mathematical analysis and simulation of a stochastic COVID-19 Lévy jump model with isolation strategy, Results Phys., 23 (2021), 103994. doi: 10.1016/j.rinp.2021.103994
    [50] T. Khan, G. Zaman, Y. El-Khatib. Modeling the dynamics of novel coronavirus (COVID-19) via stochastic epidemic model, Alex. Eng. J., 24 (2021), 104004.
    [51] S. Khajanchi, K. Sarkar, J. Mondal, K. S. Nisar, S. F. Abdelwahab, Mathematical modeling of the COVID-19 pandemic with intervention strategies, Results Phys., 25 (2021), 104285. doi: 10.1016/j.rinp.2021.104285
    [52] H. Singh, H. M. Srivastava, Z. Hammouch, K. S. Nisar, Numerical simulation and stability analysis for the fractional-order dynamics of COVID-19, Results Phys., 20 (2021), 103722. doi: 10.1016/j.rinp.2020.103722
    [53] F. Ndaïrou, I. Area, J. J. Nieto, D. F. M. Torres, Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan, Chaos Solitons Fractal., 135 (2020), 109846. doi: 10.1016/j.chaos.2020.109846
    [54] F. Ndaïrou, I. Area, G. Bader, J. J. Nieto, D. F. M. Torres, Corrigendum to "mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan", Chaos Solitons Fractal., 141 (2020), 110311. doi: 10.1016/j.chaos.2020.110311
    [55] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. doi: 10.1016/S0025-5564(02)00108-6
    [56] P. van den Driessche, Reproduction numbers of infectious disease models, Infect. Dis. Model., 2 (2017), 288–303.
    [57] M. G. Larson, F. Bengzon, The Finite Element Method: Theory, Implementation, and Applications, Springer-Verlag, Berlin Heidelberg, 2013.
    [58] M. S. Gockenbach, Understanding and Implementing the Finite Element Method, vol. 97, SIAM, Philadelphia, 2006.
    [59] S. Brenner, R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, 2007.
    [60] A. Logg, K. A. Mardal, G. Wells, Automated solution of differential equations by the finite element method: The FEniCS book, Springer Science Business Media, 2012.
    [61] B. E. Abali, Computational Reality: Solving Nonlinear and Coupled Problems in Continuum Mechanics, Springer, 2016.
    [62] H. P. Langtangen, K. A. Mardal, Introduction to Numerical Methods for Variational Problems, Springer International Publishing, 2019.
    [63] Worldometers, COVID-19 Coronavirus Pandemic, (2020). Available from: https://www.worldometers.info/coronavirus/country/turkey/.
    [64] N. Chitnis, J. M. Hyman, J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272–1296. doi: 10.1007/s11538-008-9299-0
    [65] H. S. Rodrigues, M. T. T. Monteiro, D. F. M. Torres, Sensitivity analysis in a dengue epidemiological model, in Conference Papers in Mathematics, 2013 (2013), 1–7.
  • This article has been cited by:

    1. Linkun Hu, Cheng Chen, Jun Zhang, Kerong Wu, Xuefeng Zhang, Haiyan Liu, Jianquan Hou, IL-35 Pretreatment Alleviates Lipopolysaccharide-Induced Acute Kidney Injury in Mice by Inhibiting NF-κB Activation, 2017, 40, 0360-3997, 1393, 10.1007/s10753-017-0582-9
    2. Manouchehr Teymouri, Matteo Pirro, Francesca Fallarino, Marco Gargaro, Amirhosein Sahebkar, IL-35, a hallmark of immune-regulation in cancer progression, chronic infections and inflammatory diseases, 2018, 143, 00207136, 2105, 10.1002/ijc.31382
    3. Xuefen Li, Xia Liu, Weilin Wang, IL-35: A Novel Immunomodulator in Hepatitis B Virus-Related Liver Diseases, 2021, 9, 2296-634X, 10.3389/fcell.2021.614847
    4. Arezoo Bassagh, Mehdi Hayatbakhsh Abasi, Tiziana Larussa, Motahareh Ghazizadeh, Maryam Nemati, Ehsan Mirkamandar, Abdollah Jafarzadeh, Diminished circulating concentration of interleukin-35 in Helicobacter pylori -infected patients with peptic ulcer: Its association with FOXP3 gene polymorphism, bacterial virulence factor CagA, and gender of patients, 2018, 23, 10834389, e12501, 10.1111/hel.12501
    5. Lanlan Yang, Xue Shao, Shengnan Jia, Qian Zhang, Zhenjing Jin, Interleukin-35 Dampens CD8+ T Cells Activity in Patients With Non-viral Hepatitis-Related Hepatocellular Carcinoma, 2019, 10, 1664-3224, 10.3389/fimmu.2019.01032
    6. Jing-Jing Zhu, Ning-Ning Shan, Immunomodulatory cytokine interleukin-35 and immune thrombocytopaenia, 2020, 48, 0300-0605, 030006052097647, 10.1177/0300060520976477
    7. Ming-Xi Liu, Qing-Yu Liu, Ye Liu, Zhi-Ming Cheng, Lei Liu, Lei Zhang, Da-Hui Sun, Interleukin-35 suppresses antitumor activity of circulating CD8+ T cells in osteosarcoma patients, 2019, 60, 0300-8207, 367, 10.1080/03008207.2018.1552267
    8. Siqi Liu, Lanlan Yang, Shengnan Jia, Rui Zhao, Zhenjing Jin, Interleukin-35 suppresses the activity of natural killer-like B cells in patients with hepatocellular carcinoma, 2021, 100, 15675769, 108161, 10.1016/j.intimp.2021.108161
    9. Ashok Patidar, Sathishkumar Selvaraj, Mohona Chakravarti, Ipsita Guha, Avishek Bhuniya, Saurav Bera, Sukanya Dhar, Kamalika Roy, Rathindranath Baral, Debprasad Chattopadhyay, Chiranjib Pal, Bhaskar Saha, TLR induced IL-27 plays host-protective role against B16BL6 melanoma in C57BL/6 mice, 2022, 154, 10434666, 155871, 10.1016/j.cyto.2022.155871
    10. Marta Smycz‑Kubańska, Sebastian Stępień, Joanna Gola, Celina Kruszniewska‑Rajs, Dominika Wendlocha, Patrycja Królewska‑Daszczyńska, Anna Strzelec, Jarosław Strzelczyk, Wojciech Szanecki, Andrzej Witek, Aleksandra Mielczarek‑Palacz, Analysis of CXCL8 and its receptors CXCR1/CXCR2 at the mRNA level in neoplastic tissue, as well as in serum and peritoneal fluid in patients with ovarian cance, 2022, 26, 1791-2997, 10.3892/mmr.2022.12812
    11. Anna K. Rekowska, Karolina Obuchowska, Magdalena Bartosik, Żaneta Kimber-Trojnar, Magdalena Słodzińska, Magdalena Wierzchowska-Opoka, Bożena Leszczyńska-Gorzelak, Biomolecules Involved in Both Metastasis and Placenta Accreta Spectrum—Does the Common Pathophysiological Pathway Exist?, 2023, 15, 2072-6694, 2618, 10.3390/cancers15092618
    12. Lina Ying, Luping Gong, Sicen Meng, Xiudi Wu, Mingcai Li, Yan Li, Circulating interleukin-39 as a potential biomarker for rheumatoid arthritis diagnosis, 2023, 00099120, 110616, 10.1016/j.clinbiochem.2023.110616
    13. Akbar Soleimani Babadi, Arda Kiani, Esmaeil Mortaz, Kimia Taghavi, Adnan Khosravi, Majid Marjani, Sharareh Seifi, Habib Emami, Atefeh Abedini, Serum Interleukin-27 Level in Different Clinical Stages of Lung Cancer, 2019, 7, 1857-9655, 45, 10.3889/oamjms.2019.018
    14. Abeer S. Alnahdi, Muhammad Idrees, Nonlinear dynamics of estrogen receptor-positive breast cancer integrating experimental data: A novel spatial modeling approach, 2023, 20, 1551-0018, 21163, 10.3934/mbe.2023936
    15. Xuan Cai, Ruo‐Yun Gui, Jin Wu, Chen‐Cong Wang, Xiao‐Lu Zhu, Hai‐Xia Fu, Xiao‐Hui Zhang, Decreased Expression of IL‐35 and Its Receptor Contributes to Impaired Megakaryopoiesis in the Pathogenesis of Immune Thrombocytopenia, 2024, 2198-3844, 10.1002/advs.202305798
    16. Nanxi Shi, Xue Xia, Yiming Chen, Yingying Ye, Xin Tang, Zhenhua Li, Bibliometrics analysis of IL-27 as a unique cytokine (2002–2023) and impact on cancer progression, 2024, 2, 2957-8701, 9340033, 10.26599/AGR.2024.9340033
    17. Leila Kiani, Mozhdeh Momtahan, Zahra Shiravani, Abbas Ghaderi, Mohammad Javad Fattahi, Shaghayegh Moradi Alamdarloo, Atefeh Hashemi, Razieh Arman, Seyed Hamdollah Mosavat, Role of serum IL-35 levels in patients with benign and malignant primary ovarian tumors: a case-control study, 2025, 15, 2045-2322, 10.1038/s41598-025-97349-w
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4065) PDF downloads(186) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog