Pulmonary arterial hypertension (PAH) is a life-threatening illness and ferroptosis is an iron-dependent form of regulated cell death, driven by the accumulation of lipid peroxides to levels that are sufficient to trigger cell death. However, only few studies have examined PAH-associated ferroptosis. In the present study, lung samples mRNA expression profiles (derived from 15 patients with PAH and 11 normal controls) were downloaded from a public database, and 514 differentially expressed genes (DEGs) were identified using the Wilcoxon rank-sum test and weighted gene correlation network analyses. These DEGs were screened for ferroptosis-associated genes using the FerrDb database: eight ferroptosis-associated genes were identified. Finally, the construction of gene-microRNA (miRNA) and gene-transcription factor (TF) networks, in conjunction with gene ontology and biological pathway enrichment analysis, were used to inform hypotheses regarding the molecular mechanisms underlying PAH-associated ferroptosis. Ferroptosis-associated genes were largely involved in oxidative stress responses and could be regulated by several identified miRNAs and TFs. This suggests the existence of modulatable pathways that are potentially involved in PAH-associated ferroptosis. Our findings provide novel directions for targeted therapy of PAH in regard to ferroptosis. These findings may ultimately help improve the therapeutic outcomes of PAH.
Citation: Fan Zhang, Hongtao Liu. Identification of ferroptosis-associated genes exhibiting altered expression in pulmonary arterial hypertension[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 7619-7630. doi: 10.3934/mbe.2021377
[1] | Lernik Asserian, Susan E. Luczak, I. G. Rosen . Computation of nonparametric, mixed effects, maximum likelihood, biosensor data based-estimators for the distributions of random parameters in an abstract parabolic model for the transdermal transport of alcohol. Mathematical Biosciences and Engineering, 2023, 20(11): 20345-20377. doi: 10.3934/mbe.2023900 |
[2] | Keenan Hawekotte, Susan E. Luczak, I. G. Rosen . Deconvolving breath alcohol concentration from biosensor measured transdermal alcohol level under uncertainty: a Bayesian approach. Mathematical Biosciences and Engineering, 2021, 18(5): 6739-6770. doi: 10.3934/mbe.2021335 |
[3] | Gigi Thomas, Edward M. Lungu . A two-sex model for the influence of heavy alcohol consumption on the spread of HIV/AIDS. Mathematical Biosciences and Engineering, 2010, 7(4): 871-904. doi: 10.3934/mbe.2010.7.871 |
[4] | Salih Djillali, Soufiane Bentout, Tarik Mohammed Touaoula, Abdessamad Tridane . Global dynamics of alcoholism epidemic model with distributed delays. Mathematical Biosciences and Engineering, 2021, 18(6): 8245-8256. doi: 10.3934/mbe.2021409 |
[5] | Hai-Feng Huo, Shuang-Lin Jing, Xun-Yang Wang, Hong Xiang . Modelling and analysis of an alcoholism model with treatment and effect of Twitter. Mathematical Biosciences and Engineering, 2019, 16(5): 3561-3622. doi: 10.3934/mbe.2019179 |
[6] | Ridouan Bani, Rasheed Hameed, Steve Szymanowski, Priscilla Greenwood, Christopher M. Kribs-Zaleta, Anuj Mubayi . Influence of environmental factors on college alcohol drinking patterns. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1281-1300. doi: 10.3934/mbe.2013.10.1281 |
[7] | Peixian Zhuang, Xinghao Ding, Jinming Duan . Subspace-based non-blind deconvolution. Mathematical Biosciences and Engineering, 2019, 16(4): 2202-2218. doi: 10.3934/mbe.2019108 |
[8] | Biyun Hong, Yang Zhang . Research on the influence of attention and emotion of tea drinkers based on artificial neural network. Mathematical Biosciences and Engineering, 2021, 18(4): 3423-3434. doi: 10.3934/mbe.2021171 |
[9] | Colette Calmelet, John Hotchkiss, Philip Crooke . A mathematical model for antibiotic control of bacteria in peritoneal dialysis associated peritonitis. Mathematical Biosciences and Engineering, 2014, 11(6): 1449-1464. doi: 10.3934/mbe.2014.11.1449 |
[10] | Piotr Klejment . Application of supervised machine learning as a method for identifying DEM contact law parameters. Mathematical Biosciences and Engineering, 2021, 18(6): 7490-7505. doi: 10.3934/mbe.2021370 |
Pulmonary arterial hypertension (PAH) is a life-threatening illness and ferroptosis is an iron-dependent form of regulated cell death, driven by the accumulation of lipid peroxides to levels that are sufficient to trigger cell death. However, only few studies have examined PAH-associated ferroptosis. In the present study, lung samples mRNA expression profiles (derived from 15 patients with PAH and 11 normal controls) were downloaded from a public database, and 514 differentially expressed genes (DEGs) were identified using the Wilcoxon rank-sum test and weighted gene correlation network analyses. These DEGs were screened for ferroptosis-associated genes using the FerrDb database: eight ferroptosis-associated genes were identified. Finally, the construction of gene-microRNA (miRNA) and gene-transcription factor (TF) networks, in conjunction with gene ontology and biological pathway enrichment analysis, were used to inform hypotheses regarding the molecular mechanisms underlying PAH-associated ferroptosis. Ferroptosis-associated genes were largely involved in oxidative stress responses and could be regulated by several identified miRNAs and TFs. This suggests the existence of modulatable pathways that are potentially involved in PAH-associated ferroptosis. Our findings provide novel directions for targeted therapy of PAH in regard to ferroptosis. These findings may ultimately help improve the therapeutic outcomes of PAH.
[1] |
G. Mansueto, M. D. Napoli, C.P. Campobasso, M. Slevin, Pulmonary arterial hypertension (PAH) from autopsy study: T-cells, B-cells and mastocytes detection as morphological evidence of immunologically mediated pathogenesis, Pathol. Res. Pract., 225 (2021), 153552. doi: 10.1016/j.prp.2021.153552
![]() |
[2] |
S. Gräf, M. Haimel, M. Bleda, C. Hadinnapola, L. Southgate, W. Li, et al., Identification of rare sequence variation underlying heritable pulmonary arterial hypertension, Nat. Commun., 9 (2018), 1416. doi: 10.1038/s41467-018-03672-4
![]() |
[3] |
T. Hiraide, M. Kataoka, H. Suzuki, Y. Aimi, T. Chiba, K. Kanekura, et al., SOX17 Mutations in Japanese Patients with Pulmonary Arterial Hypertension, Am. J. Respir. Crit. Care Med., 198 (2018), 1231-1233. doi: 10.1164/rccm.201804-0766LE
![]() |
[4] |
S. J. Dixon, K. M. Lemberg, M. R. Lamprecht, R. Skouta, E. M. Zaitsev, C. E. Gleason, et al., Ferroptosis: an iron-dependent form of nonapoptotic cell death, Cell, 149 (2012), 1060-1072. doi: 10.1016/j.cell.2012.03.042
![]() |
[5] |
Y. C. Li, Y. M. Cao, J. Xiao, J. W. Shang, Q. Tan, F. Ping, et al., Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury, Cell Death Differ., 27 (2020), 2635-2650. doi: 10.1038/s41418-020-0528-x
![]() |
[6] |
X. Li, L. J. Duan, S. J. Yuan, X. B. Zhuang, T. K. Qiao, J. He, Ferroptosis inhibitor alleviates Radiation-induced lung fibrosis (RILF) via down-regulation of TGF-β1, J. Inflamm. (Lond)., 16 (2019), 11. doi: 10.1186/s12950-019-0216-0
![]() |
[7] |
M. Mura, M. J. Cecchini, M. Joseph, J. T. Granton, Osteopontin lung gene expression is a marker of disease severity in pulmonary arterial hypertension, Respirology, 24 (2019), 1104-1110. doi: 10.1111/resp.13557
![]() |
[8] | T. Barrett, S. E. Wilhite, P. Ledoux, C. Evangelista, I. F. Kim, M. Tomashevsky, et al., NCBI GEO: archive for functional genomics data sets--update, Nucleic Acids Res., 41 (2013), D991-D995. |
[9] |
H. Jalal, P. Pechlivanoglou, E. Krijkamp, F. Alarid-Escudero, E. Enns, M. G. M. Hunink, An overview of R in health decision sciences, Med. Decis. Making, 37 (2017), 735-746. doi: 10.1177/0272989X16686559
![]() |
[10] |
M. E. Ritchie, B. Phipson, D. Wu, Y. F. Hu, C. W. Law, W. Shi, et al., Limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res., 43 (2015), e47. doi: 10.1093/nar/gkv007
![]() |
[11] | K. Ito, D. Murphy, Application of ggplot2 to Pharmacometric Graphics, CPT Pharmacometrics Syst. Pharmacol., 2 (2013), 1-16. |
[12] | R. Kolde, Pheatmap: pretty heatmaps, R package version, 1.0.8., 2015. Available from: https://CRAN.R-project.org/package=pheatmap. |
[13] |
P. Langfelder, S. Horvath, WGCNA: an R package for weighted correlation network analysis, BMC Bioinf., 9 (2008), 559. doi: 10.1186/1471-2105-9-559
![]() |
[14] |
H. B. Chen, P.C. Boutros, VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R, BMC Bioinf., 12 (2011), 35. doi: 10.1186/1471-2105-12-35
![]() |
[15] | N. Zhou, J. K. Bao, FerrDb: a manually curated resource for regulators and markers of ferroptosis and ferroptosis-disease associations, Database, 2020 (2020). |
[16] | A. Eklund, Beeswarm: the bee swarm plot, an alternative to stripchart, R package version, 0.2.3., 2016. Available from: https://cran.r-project.org/package=beeswarm. |
[17] | H. A. Kassambara, Ggpubr: "ggplot2" based punlication ready plots, R package version, 1.0.7., 2018. Available from: https://cran.r-project.org/install.packages ("ggpubr"). |
[18] |
G. C. Yu, L. G. Wang, Y. Y. Han, Q. Y. He, clusterProfiler: an R package for comparing biological themes among gene clusters, Omics: J. Integr. Biol., 16 (2012), 284-287. doi: 10.1089/omi.2011.0118
![]() |
[19] | B. Nota, Gogadget: An R package for interpretation and visualization of GO enrichment results, Mol. Inf., 36 (2017), 5-6. |
[20] |
M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, K. Morishima, KEGG: new perspectives on genomes, pathways, diseases and drugs, Nucleic Acids Res., 45 (2017), D353-D361. doi: 10.1093/nar/gkw1092
![]() |
[21] |
S. D. Hsu, F. M. Lin, W. Y. Wu, C. Liang, W. C. Huang, W. L. Chan, et al., miRTarBase: a database curates experimentally validated microRNA-target interactions, Nucleic Acids Res., 39 (2011), D163-D169. doi: 10.1093/nar/gkq1107
![]() |
[22] |
J. R. Ecker, W. A. Bickmore, I. Barroso, J. K. Pritchard, Y. Gilad, E. Segal, Genomics: ENCODE explained, Nature, 489 (2012), 52-55. doi: 10.1038/489052a
![]() |
[23] |
J. Reimand, R. Isserlin, V. Voisin, M. Kucera, C. Tannus-Lopes, A. Rostamianfar, et al., Pathway enrichment analysis and visualization of omics data using g: Profiler, GSEA, Cytoscape and EnrichmentMap, Nat. Protoc., 14 (2019), 482-517. doi: 10.1038/s41596-018-0103-9
![]() |
[24] |
L. Hecker, Mechanisms and consequences of oxidative stress in lung disease: therapeutic implications for an aging populace, Am. J. Physiol. Lung Cell Mol. Physiol., 314 (2018), L642-L653. doi: 10.1152/ajplung.00275.2017
![]() |
[25] |
P. A. Kirkham, P. J. Barnes, Oxidative stress in COPD, Chest, 144 (2013), 266-273. doi: 10.1378/chest.12-2664
![]() |
[26] |
E. A. Zemskov, Q. Lu, W. Ornatowski, C. N. Klinger, A. A. Desai, E. Maltepe, et al., Biomechanical forces and oxidative stress: implications for pulmonary vascular disease, Antioxid. Redox Signaling, 31 (2019), 819-842. doi: 10.1089/ars.2018.7720
![]() |
[27] | S. Aggarwal, C. M. Gross, S. Sharma, J. R. Fineman, S. M. Black, Reactive oxygen species in pulmonary vascular remodeling, Compr. Physiol., 3 (2013), 1011-1034. |
[28] |
W. S. Yang, B. R. Stockwell, Ferroptosis: death by lipid peroxidation, Trends Cell Biol., 26 (2016), 165-176. doi: 10.1016/j.tcb.2015.10.014
![]() |
[29] |
L. B. Frankel, A. H. Lund, MicroRNA regulation of autophagy, Carcinogenesis, 33 (2012), 2018-2025. doi: 10.1093/carcin/bgs266
![]() |
[30] |
D. P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 116 (2004), 281-297. doi: 10.1016/S0092-8674(04)00045-5
![]() |
[31] |
M. Y. Luo, L. F. Wu, K. X. Zhang, H. Wang, T. Zhang, L. Gutierrez, et al., miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma, Cell Death Differ., 25 (2018), 1457-1472. doi: 10.1038/s41418-017-0053-8
![]() |
[32] |
X. L. Lai, A. Stigliani, G. Vachon, C. Carles, C. Smaczniak, C. Zubieta, et al., Building transcription factor binding site models to understand gene regulation in plants, Mol. Plant., 12 (2019), 743-763. doi: 10.1016/j.molp.2018.10.010
![]() |
[33] |
J. M. Vaquerizas, S. K. Kummerfeld, S. A. Teichmann, N. M. Luscombe, A census of human transcription factors: function, expression and evolution, Nat. Rev. Genet., 10 (2009), 252-263. doi: 10.1038/nrg2538
![]() |
![]() |
![]() |
1. | Yan Wang, Daniel J. Fridberg, Robert F. Leeman, Robert L. Cook, Eric C. Porges, Wrist-worn alcohol biosensors: Strengths, limitations, and future directions, 2019, 81, 07418329, 83, 10.1016/j.alcohol.2018.08.013 | |
2. | John D. Roache, Tara E. Karns-Wright, Martin Goros, Nathalie Hill-Kapturczak, Charles W. Mathias, Donald M. Dougherty, Processing transdermal alcohol concentration (TAC) data to detect low-level drinking, 2019, 81, 07418329, 101, 10.1016/j.alcohol.2018.08.014 | |
3. | Melike Sirlanci, I. Gary Rosen, Tamara L. Wall, Susan E. Luczak, Applying a novel population-based model approach to estimating breath alcohol concentration (BrAC) from transdermal alcohol concentration (TAC) biosensor data, 2019, 81, 07418329, 117, 10.1016/j.alcohol.2018.09.005 | |
4. | Jian Li, Susan E. Luczak, I. G. Rosen, Comparing a distributed parameter model-based system identification technique with more conventional methods for inverse problems, 2019, 27, 0928-0219, 703, 10.1515/jiip-2018-0006 | |
5. | Alastair van Heerden, Mark Tomlinson, Sarah Skeen, Charles Parry, Kendal Bryant, Mary Jane Rotheram-Borus, Innovation at the Intersection of Alcohol and HIV Research, 2017, 21, 1090-7165, 274, 10.1007/s10461-017-1926-z | |
6. | Melike Sirlanci, Susan Luczak, I. G. Rosen, 2017, Approximation and convergence in the estimation of random parameters in linear holomorphic semigroups generated by regularly dissipative operators, 978-1-5090-5992-8, 3171, 10.23919/ACC.2017.7963435 | |
7. | Kelly Egmond, Cassandra J. C. Wright, Michael Livingston, Emmanuel Kuntsche, Wearable Transdermal Alcohol Monitors: A Systematic Review of Detection Validity, and Relationship Between Transdermal and Breath Alcohol Concentration and Influencing Factors, 2020, 44, 0145-6008, 1918, 10.1111/acer.14432 | |
8. | Christian S. Hendershot, Christina N. Nona, A Review of Developmental Considerations in Human Laboratory Alcohol Research, 2017, 4, 2196-2952, 364, 10.1007/s40429-017-0173-8 | |
9. | Nancy P. Barnett, Mark A. Celio, Jennifer W. Tidey, James G. Murphy, Suzanne M. Colby, Robert M. Swift, A preliminary randomized controlled trial of contingency management for alcohol use reduction using a transdermal alcohol sensor, 2017, 112, 0965-2140, 1025, 10.1111/add.13767 | |
10. | Melike Sirlanci, I G Rosen, Susan E Luczak, Catharine E Fairbairn, Konrad Bresin, Dahyeon Kang, Deconvolving the input to random abstract parabolic systems: a population model-based approach to estimating blood/breath alcohol concentration from transdermal alcohol biosensor data, 2018, 34, 0266-5611, 125006, 10.1088/1361-6420/aae791 | |
11. | Susan E. Luczak, Ashley L. Hawkins, Zheng Dai, Raphael Wichmann, Chunming Wang, I.Gary Rosen, Obtaining continuous BrAC/BAC estimates in the field: A hybrid system integrating transdermal alcohol biosensor, Intellidrink smartphone app, and BrAC Estimator software tools, 2018, 83, 03064603, 48, 10.1016/j.addbeh.2017.11.038 | |
12. | Melike Sirlanci, Susan E. Luczak, Catharine E. Fairbairn, Dahyeon Kang, Ruoxi Pan, Xin Yu, I. Gary Rosen, Estimating the distribution of random parameters in a diffusion equation forward model for a transdermal alcohol biosensor, 2019, 106, 00051098, 101, 10.1016/j.automatica.2019.04.026 | |
13. | Sina Kianersi, Maya Luetke, Jon Agley, Ruth Gassman, Christina Ludema, Molly Rosenberg, Validation of transdermal alcohol concentration data collected using wearable alcohol monitors: A systematic review and meta-analysis, 2020, 216, 03768716, 108304, 10.1016/j.drugalcdep.2020.108304 | |
14. | Catharine E. Fairbairn, I. Gary Rosen, Susan E. Luczak, Walter J. Venerable, Estimating the quantity and time course of alcohol consumption from transdermal alcohol sensor data: A combined laboratory-ambulatory study, 2019, 81, 07418329, 111, 10.1016/j.alcohol.2018.08.015 | |
15. | John D. Clapp, Danielle R. Madden, Sheila Pakdaman, Drinking with Friends: Measuring the Two-week Ecology of Drinking Behaviors, 2022, 46, 1087-3244, 96, 10.5993/AJHB.46.2.1 | |
16. | Clemens Oszkinat, Susan E. Luczak, I. G. Rosen, 2022, Physics-Informed Learning: Distributed Parameter Systems, Hidden Markov Models, and the Viterbi Algorithm, 978-1-6654-5196-3, 266, 10.23919/ACC53348.2022.9867145 | |
17. | Baichen Li, R. Scott Downen, Quan Dong, Nam Tran, Maxine LeSaux, Andrew C. Meltzer, Zhenyu Li, A Discreet Wearable IoT Sensor for Continuous Transdermal Alcohol Monitoring—Challenges and Opportunities, 2021, 21, 1530-437X, 5322, 10.1109/JSEN.2020.3030254 | |
18. | Clemens Oszkinat, Susan E. Luczak, I. Gary Rosen, An abstract parabolic system-based physics-informed long short-term memory network for estimating breath alcohol concentration from transdermal alcohol biosensor data, 2022, 34, 0941-0643, 18933, 10.1007/s00521-022-07505-w | |
19. | Mengsha Yao, Susan E. Luczak, I. Gary Rosen, Tracking and blind deconvolution of blood alcohol concentration from transdermal alcohol biosensor data: A population model-based LQG approach in Hilbert space, 2023, 147, 00051098, 110699, 10.1016/j.automatica.2022.110699 | |
20. | Keenan Hawekotte, Susan E. Luczak, I. G. Rosen, Deconvolving breath alcohol concentration from biosensor measured transdermal alcohol level under uncertainty: a Bayesian approach, 2021, 18, 1551-0018, 6739, 10.3934/mbe.2021335 | |
21. | Clemens Oszkinat, Tianlan Shao, Chunming Wang, I G Rosen, Allison D Rosen, Emily B Saldich, Susan E Luczak, Blood and breath alcohol concentration from transdermal alcohol biosensor data: estimation and uncertainty quantification via forward and inverse filtering for a covariate-dependent, physics-informed, hidden Markov model* , 2022, 38, 0266-5611, 055002, 10.1088/1361-6420/ac5ac7 | |
22. | Mengsha Yao, Susan E. Luczak, Emily B. Saldich, I. Gary Rosen, A population model‐based linear‐quadratic Gaussian compensator for the control of intravenously infused alcohol studies and withdrawal symptom prophylaxis using transdermal sensing, 2022, 0143-2087, 10.1002/oca.2934 | |
23. | Bob M. Lansdorp, Flux-Type versus Concentration-Type Sensors in Transdermal Measurements, 2023, 13, 2079-6374, 845, 10.3390/bios13090845 | |
24. | Kyla-Rose Walden, Emily B. Saldich, Georgia Wong, Haoxing Liu, Chunming Wang, I. Gary Rosen, Susan E. Luczak, 2023, 79, 9780443193866, 271, 10.1016/bs.plm.2023.06.002 | |
25. | Clemens Oszkinat, Susan E. Luczak, I. G. Rosen, Uncertainty Quantification in Estimating Blood Alcohol Concentration From Transdermal Alcohol Level With Physics-Informed Neural Networks, 2023, 34, 2162-237X, 8094, 10.1109/TNNLS.2022.3140726 | |
26. | Lernik Asserian, Susan E. Luczak, I. G. Rosen, Computation of nonparametric, mixed effects, maximum likelihood, biosensor data based-estimators for the distributions of random parameters in an abstract parabolic model for the transdermal transport of alcohol, 2023, 20, 1551-0018, 20345, 10.3934/mbe.2023900 | |
27. | J.M. Maestre, P. Chanfreut, L. Aarons, Constrained numerical deconvolution using orthogonal polynomials, 2024, 24058440, e24762, 10.1016/j.heliyon.2024.e24762 | |
28. | Mengsha Yao, Maria Allayioti, Emily B. Saldich, Georgia Y. Wong, Chunming Wang, Susan E. Luczak, I. G. Rosen, Real-time recursive estimation of, and uncertainty quantification for, breath alcohol concentration via LQ tracking control-based inverse filtering of transdermal alcohol biosensor signals, 2024, 2, 2994-7669, 38, 10.3934/ammc.2024003 | |
29. | Joseph C. Anderson, A new approach to modeling transdermal ethanol kinetics, 2024, 12, 2051-817X, 10.14814/phy2.70070 | |
30. | Mengsha Yao, Gary Rosen, 2025, 10.5772/intechopen.1010428 |