The image super-resolution reconstruction method can improve the image quality in the Internet of Things (IoT). It improves the data transmission efficiency, and is of great significance to data transmission encryption. Aiming at the problem of low image quality in image super-resolution using neural networks, a self-attention-based image reconstruction method is proposed for secure data transmission in IoT environment. The network model is improved, and the residual network structure and sub-pixel convolution are used to extract the feature of the image. The self-attention module is used extract detailed information in the image. Using generative confrontation method and image feature perception method to improve the image reconstruction effect. The experimental results on the public data set show that the improved network model improves the quality of the reconstructed image and can effectively restore the details of the image.
Citation: Hongan Li, Qiaoxue Zheng, Wenjing Yan, Ruolin Tao, Xin Qi, Zheng Wen. Image super-resolution reconstruction for secure data transmission in Internet of Things environment[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 6652-6671. doi: 10.3934/mbe.2021330
[1] | Saima Rashid, Rehana Ashraf, Fahd Jarad . Strong interaction of Jafari decomposition method with nonlinear fractional-order partial differential equations arising in plasma via the singular and nonsingular kernels. AIMS Mathematics, 2022, 7(5): 7936-7963. doi: 10.3934/math.2022444 |
[2] | Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad . Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876 |
[3] | Kishor D. Kucche, Sagar T. Sutar, Kottakkaran Sooppy Nisar . Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness. AIMS Mathematics, 2024, 9(10): 27058-27079. doi: 10.3934/math.20241316 |
[4] | Saima Rashid, Fahd Jarad, Fatimah S. Bayones . On new computations of the fractional epidemic childhood disease model pertaining to the generalized fractional derivative with nonsingular kernel. AIMS Mathematics, 2022, 7(3): 4552-4573. doi: 10.3934/math.2022254 |
[5] | Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046 |
[6] | Ahu Ercan . Comparative analysis for fractional nonlinear Sturm-Liouville equations with singular and non-singular kernels. AIMS Mathematics, 2022, 7(7): 13325-13343. doi: 10.3934/math.2022736 |
[7] | Hasib Khan, Jehad Alzabut, J.F. Gómez-Aguilar, Praveen Agarwal . Piecewise mABC fractional derivative with an application. AIMS Mathematics, 2023, 8(10): 24345-24366. doi: 10.3934/math.20231241 |
[8] | Kottakkaran Sooppy Nisar, Aqeel Ahmad, Mustafa Inc, Muhammad Farman, Hadi Rezazadeh, Lanre Akinyemi, Muhammad Mannan Akram . Analysis of dengue transmission using fractional order scheme. AIMS Mathematics, 2022, 7(5): 8408-8429. doi: 10.3934/math.2022469 |
[9] | Veliappan Vijayaraj, Chokkalingam Ravichandran, Thongchai Botmart, Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani . Existence and data dependence results for neutral fractional order integro-differential equations. AIMS Mathematics, 2023, 8(1): 1055-1071. doi: 10.3934/math.2023052 |
[10] | Eman A. A. Ziada, Salwa El-Morsy, Osama Moaaz, Sameh S. Askar, Ahmad M. Alshamrani, Monica Botros . Solution of the SIR epidemic model of arbitrary orders containing Caputo-Fabrizio, Atangana-Baleanu and Caputo derivatives. AIMS Mathematics, 2024, 9(7): 18324-18355. doi: 10.3934/math.2024894 |
The image super-resolution reconstruction method can improve the image quality in the Internet of Things (IoT). It improves the data transmission efficiency, and is of great significance to data transmission encryption. Aiming at the problem of low image quality in image super-resolution using neural networks, a self-attention-based image reconstruction method is proposed for secure data transmission in IoT environment. The network model is improved, and the residual network structure and sub-pixel convolution are used to extract the feature of the image. The self-attention module is used extract detailed information in the image. Using generative confrontation method and image feature perception method to improve the image reconstruction effect. The experimental results on the public data set show that the improved network model improves the quality of the reconstructed image and can effectively restore the details of the image.
The Hermite-Hadamard inequality, which is one of the basic inequalities of inequality theory, has many applications in statistics and optimization theory, as well as providing estimates about the mean value of convex functions.
Assume that f:I⊆R→R is a convex mapping defined on the interval I of R where a<b. The following statement;
f(a+b2)≤1b−ab∫af(x)dx≤f(a)+f(b)2 |
holds and known as Hermite-Hadamard inequality. Both inequalities hold in the reversed direction if f is concave.
The concept of convex function, which is used in many classical and analytical inequalities, especially the Hermite-Hadamard inequality, has attracted the attention of many researchers see [4,7,8,9], and has expanded its application area with the construction of new convex function classes. The introduction of this useful class of functions for functions of two variables gave a new direction to convex analysis. In this sense, in [6], Dragomir mentioned about an expansion of the concept of convex function, which is used in many inequalities in theory and has applications in different fields of applied sciences and convex programming.
Definition 1.1. Let us consider the bidimensional interval Δ=[a,b]×[c,d] in R2 with a<b,c<d. A function f:Δ→R will be called convex on the co-ordinates if the partial mappings fy:[a,b]→R,fy(u)=f(u,y) and fx:[c,d]→R,fx(v)=f(x,v) are convex where defined for all y∈[c,d] and x∈[a,b]. Recall that the mapping f:Δ→R is convex on Δ if the following inequality holds,
f(λx+(1−λ)z,λy+(1−λ)w)≤λf(x,y)+(1−λ)f(z,w) |
for all (x,y),(z,w)∈Δ and λ∈[0,1].
Transferring the concept of convex function to coordinates inspired the presentation of Hermite-Hadamard inequality in coordinates and Dragomir proved this inequality as follows.
Theorem 1.1. (See [6]) Suppose that f:Δ=[a,b]×[c,d]→R is convex on the co-ordinates on Δ. Then one has the inequalities;
f(a+b2,c+d2)≤12[1b−a∫baf(x,c+d2)dx+1d−c∫dcf(a+b2,y)dy]≤1(b−a)(d−c)∫ba∫dcf(x,y)dxdy≤14[1(b−a)∫baf(x,c)dx+1(b−a)∫baf(x,d)dx+1(d−c)∫dcf(a,y)dy+1(d−c)∫dcf(b,y)dy]≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4. | (1.1) |
The above inequalities are sharp.
To provide further information about convexity and inequalities that have been established on the coordinates, see the papers [1,2,5,10,11,12,13,14,15]).
One of the trending problems of recent times is to present different types of convex functions and to derive new inequalities for these function classes. Now we will continue by remembering the concept of n-polynomial convex function.
Definition 1.2. (See [16]) Let n∈N. A non-negative function f:I⊂R→R is called n-polynomial convex function if for every x,y∈I and t∈[0,1],
f(tx+(1−t)y)≤1nn∑s=1(1−(1−t)s)f(x)+1nn∑s=1(1−ts)f(y). |
We will denote by POLC(I) the class of all n-polynomial convex functions on interval I.
In the same paper, the authors have proved some new Hadamard type inequalities, we will mention the following one:
Theorem 1.2. (See [16]) Let f:[a,b]→R be an n-polynomial convex function. If a<b and f∈L[a,b], then the following Hermite-Hadaamrd type inequalities hold:
12(nn+2−n−1)f(a+b2)≤1b−ab∫af(x)dx≤f(a)+f(b)nn∑s=1ss+1. | (1.2) |
Since some of the convex function classes can be described on the basis of means, averages have an important place in convex function theory. In [3], Awan et al. gave the harmonic version on the n-polynomial convexity described on the basis of the arithmetic mean as follows. They have also proved several new integral inequalities of Hadamard type.
Definition 1.3. (See [3]) Let n∈N and H⊆(0,∞) be an interval. Then a nonnegative real-valued function f:H→[0,∞) is said to be an n-polynomial harmonically convex function if
f(xytx+(1−t)y)≤1nn∑s=1(1−(1−t)s)f(y)+1nn∑s=1(1−ts)f(x) |
for all x,y∈H and t∈[0,1].
Theorem 1.3. (See [3]) Let f:[a,b]⊆(0,∞)→[0,∞) be an n-polynomial harmonically convex function. Then one has
12(nn+2−n−1)f(2aba+b)≤abb−ab∫af(x)x2dx≤f(a)+f(b)nn∑s=1ss+1 | (1.3) |
if f∈L[a,b].
The main motivation in this study is to give a new modification of (m,n)-harmonically polynomial convex functions on the coordinates and to obtain Hadamard type inequalities via double integrals and by using Hö lder inequality along with a few properties of this new class of functions.
In this section, we will give a new classes of convexity that will be called (m,n)-polynomial convex function as following.
Definition 2.1. Let m,n∈N and Δ=[a,b]×[c,d] be a bidimensional interval. Then a non-negative real-valued function f:Δ→R is said to be (m,n)-harmonically polynomial convex function on Δ on the co-ordinates if the following inequality holds:
f(xztz+(1−t)x,ywsw+(1−s)y)≤1nn∑i=1(1−(1−t)i)1mm∑j=1(1−(1−s)j)f(x,y)+1nn∑i=1(1−(1−t)i)1mm∑j=1(1−sj)f(x,w)+1nn∑i=1(1−ti)1mm∑j=1(1−(1−s)j)f(z,y)+1nn∑i=1(1−ti)1mm∑j=1(1−sj)f(z,w) |
where (x,y),(x,w),(z,y),(z,w)∈Δ and t,s∈[0,1].
Remark 2.1. If one choose m=n=1, it is easy to see that the definition of (m,n)-harmonically polynomial convex functions reduces to the class of the harmonically convex functions.
Remark 2.2. The (2,2)-harmonically polynomial convex functions satisfy the following inequality;
f(xztx+(1−t)z,ywsz+(1−s)w)≤3t−t223s−s22f(x,y)+3t−t222−s−s22f(x,w)+2−t−t223s−s22f(z,y)+2−t−t222−s−s22f(z,w) |
where (x,y),(x,w),(z,y),(z,w)∈Δ and t,s∈[0,1].
Theorem 2.1. Assume that b>a>0,d>c>0,fα:[a,b]×[c,d]→[0,∞) be a family of the (m,n)-harmonically polynomial convex functions on Δ and f(u,v)=supfα(u,v). Then, f is (m,n)- harmonically polynomial convex function on the coordinates if K={x,y∈[a,b]×[c,d]:f(x,y)<∞} is an interval.
Proof. For t,s∈[0,1] and (x,y),(x,w),(z,y),(z,w)∈Δ, we can write
f(xztz+(1−t)x,ywsw+(1−s)y)=supfα(xztz+(1−t)x,ywsw+(1−s)y)≤1nn∑i=1(1−(1−t)i)1mm∑j=1(1−(1−s)j)supfα(x,y)+1nn∑i=1(1−(1−t)i)1mm∑j=1(1−sj)supfα(x,w)+1nn∑i=1(1−ti)1mm∑j=1(1−(1−s)j)supfα(z,y)+1nn∑i=1(1−ti)1mm∑j=1(1−sj)supfα(z,w)=1nn∑i=1(1−(1−t)i)1mm∑j=1(1−(1−s)j)f(x,y)+1nn∑i=1(1−(1−t)i)1mm∑j=1(1−sj)f(x,w)+1nn∑i=1(1−ti)1mm∑j=1(1−(1−s)j)f(z,y)+1nn∑i=1(1−ti)1mm∑j=1(1−sj)f(z,w) |
which completes the proof.
Lemma 2.1. Every (m,n)-harmonically polynomial convex function on Δ is (m,n)-harmonically polynomial convex function on the co-ordinates.
Proof. Consider the function f:Δ→R is (m,n)-harmonically polynomial convex function on Δ. Then, the partial mapping fx:[c,d]→R,fx(v)=f(x,v) is valid. We can write
fx(vwtw+(1−t)v)=f(x,vwtw+(1−t)v)=f(x2tx+(1−t)x,vwtw+(1−t)v)≤1nn∑i=1(1−(1−t)i)f(x,v)+1nn∑i=1(1−ti)f(x,w)=1nn∑i=1(1−(1−t)i)fx(v)+1nn∑i=1(1−ti)fx(w) |
for all t∈[0,1] and v,w∈[c,d]. This shows the (m,n)-harmonically polynomial convexity of fx. By a similar argument, one can see the (m,n)-harmonically polynomial convexity of fy.
Remark 2.3. Every (m,n)-harmonically polynomial convex function on the co-ordinates may not be (m,n)-harmonically polynomial convex function on Δ.
A simple verification of the remark can be seen in the following example.
Example 2.1. Let us consider f:[1,3]×[2,3]→[0,∞), given by f(x,y)=(x−1)(y−2). It is clear that f is harmonically polynomial convex on the coordinates but is not harmonically polynomial convex on [1,3]×[2,3], because if we choose (1,3),(2,3)∈[1,3]×[2,3] and t∈[0,1], we have
RHSf(22t+(1−t),93t+3(1−t))=f(21−t,3)=1+t1−tLHS1nn∑i=1(1−(1−t)i)f(1,3)+1nn∑i=1(1−ti)f(2,3)=0. |
Then, it is easy to see that
f(22t+(1−t),93t+3(1−t))>1nn∑i=1(1−(1−t)i)f(1,3)+1nn∑i=1(1−ti)f(2,3). |
This shows that f is not harmonically polynomial convex on [1,3]×[2,3].
Now, we will establish associated Hadamard inequality for (m,n)-harmonically polynomial convex functions on the co-ordinates.
Theorem 2.2. Suppose that f:Δ→R is (m,n)-harmonically polynomial convex on the coordinates on Δ. Then, the following inequalities hold:
14(mm+2−m−1)(nn+2−n−1)f(2aba+b,2cdc+d)≤14[(mm+2−m−1)abb−a∫baf(x,2cdc+d)x2dx+(nn+2−n−1)cdd−c∫dcf(2aba+b,y)y2dy]≤abcd(b−a)(d−c)∫ba∫dcf(x,y)x2y2dxdy≤12[1n(cd(d−c)∫dcf(a,y)y2dy+cd(d−c)∫dcf(b,y)y2dy)n∑s=1ss+1+1m(ab(b−a)∫baf(x,c)x2dx+ab(b−a)∫baf(x,d)x2dx)m∑t=1tt+1]≤(f(a,c)+f(a,d)+f(b,c)+f(b,d)nm)(n∑s=1ss+1m∑t=1tt+1). | (2.1) |
Proof. Since f is (m,n)-harmonically polynomial convex function on the co-ordinates, it follows that the mapping hx and hy are (m,n)-harmonically polynomial convex functions. Therefore, by using the inequality (1.3) for the partial mappings, we can write
12(mm+2−m−1)hx(2cdc+d)≤cdd−cd∫chx(y)y2dy≤hx(c)+hx(d)mm∑s=1ss+1 | (2.2) |
namely
12(mm+2−m−1)f(x,2cdc+d)≤cdd−cd∫cf(x,y)y2dy≤f(x,c)+f(x,d)mn∑s=1ss+1. | (2.3) |
Dividing both sides of (2.2) by (b−a)ab and by integrating the resulting inequality over [a,b], we have
ab2(b−a)(mm+2−m−1)b∫af(x,2cdc+d)dx≤abcd(b−a)(d−c)b∫ad∫cf(x,y)x2y2dydx≤abb∫af(x,c)x2dx+abb∫af(x,d)x2dxm(b−a)m∑s=1ss+1. | (2.4) |
By a similar argument for (2.3), but now for dividing both sides by (d−c)cd and integrating over [c,d] and by using the mapping hy is (m,n)-harmonically polynomial convex function, we get
cd2(d−c)(nn+2−n−1)d∫cf(2aba+b,y)y2dy≤abcd(b−a)(d−c)b∫ad∫cf(x,y)x2y2dydx≤cdd∫cf(a,y)y2dy+cdd∫cf(b,y)y2dyn(d−c)n∑t=1tt+1. | (2.5) |
By summing the inequalities (2.4) and (2.5) side by side, we obtain the second and third inequalities of (2.1). By the inequality (1.3), we also have:
12(mm+2−m−1)f(2aba+b,2cdc+d)≤cdd−cd∫cf(2aba+b,y)y2dy |
and
12(nn+2−n−1)f(2aba+b,2cdc+d)≤abb−ab∫af(x,2cdc+d)x2dx |
which give by addition the first inequality of (2.1). Finally, by using the inequality (1.3), we obtain
cdd−cd∫cf(a,y)y2dy≤f(a,c)+f(a,d)mn∑s=1ss+1, |
cdd−cd∫cf(b,y)y2dy≤f(b,c)+f(b,d)mn∑s=1ss+1, |
abb−ab∫af(x,c)x2dx≤f(a,c)+f(b,c)nn∑t=1tt+1, |
and
abb−ab∫af(x,d)x2dx≤f(a,d)+f(b,d)nn∑t=1tt+1 |
which give by addition the last inequality of (2.1).
In order to prove our main findings, we need the following identity.
Lemma 2.2. Assume that f:Δ=[a,b]×[c,d]⊂(0,∞)×(0,∞)→R be a partial differentiable mapping on Δ and ∂2f∂t∂s∈L(Δ). Then, one has the following equality:
Φ(f)=f(a,c)+f(b,c)+f(a,d)+f(b,d)4+abcd(b−a)(d−c)∫ba∫dcf(x,y)x2y2dxdy−12[cdd−c∫dcf(a,y)y2dy+cdd−c∫dcf(b,y)y2dy+abb−a∫baf(x,c)x2dx+abb−a∫baf(x,d)x2dx]=abcd(b−a)(d−c)4×∫10∫10(1−2t)(1−2s)(AtBs)2∂2f∂t∂s(abAt,cdBs)dsdt |
where At=tb+(1−t)a,Bs=sd+(1−s)c.
Theorem 2.3. Let f:Δ=[a,b]×[c,d]⊂(0,∞)×(0,∞)→R be a partial differentiable mapping on Δ and ∂2f∂t∂s∈L(Δ). If |∂2f∂t∂s|q is (m,n)-harmonically polynomial convex function on Δ, then one has the following inequality:
|Φ(f)|≤bd(b−a)(d−c)4ac(p+1)2p×[c1|∂2f∂t∂s(a,c)|q+c2|∂2f∂t∂s(a,d)|q+c3|∂2f∂t∂s(b,c)|q+c4|∂2f∂t∂s(b,d)|q]1q | (2.6) |
where
c1=1nn∑i=1[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,1;j+2;1−cd)], |
c2=1nn∑i=1[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,j+1;j+2;1−cd)], |
c3=1nn∑i=1[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,i+1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,1;j+2;1−cd)], |
c4=1nn∑i=1[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,i+1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,j+1;j+2;1−cd)], |
and At=tb+(1−t)a,Bs=sd+(1−s)c for fixed t,s∈[0,1],p,q>1 and p−1+q−1=1.
Proof. By using the identity that is given in Lemma 2.2, we can write
|Φ(f)|=abcd(b−a)(d−c)4∫10∫10|(1−2t)||(1−2s)|(AtBs)2|∂2f∂t∂s(abAt,cdBs)|dsdt |
By using the well known Hölder inequality for double integrals and by taking into account the definition of (m,n)-harmonically polynomial convex functions, we get
|Φ(f)|≤abcd(b−a)(d−c)4(∫10∫10|1−2t|p|1−2s|pdtds)1p×(∫10∫10(AtBs)−2q|∂2f∂t∂s(abAt,cdBs)|qdtds)1q≤abcd(b−a)(d−c)4(∫10∫10(AtBs)−2q×(1nn∑i=1(1−(1−t)i)1mm∑j=1(1−(1−s)j)|∂2f∂t∂s(a,c)|q+1nn∑i=1(1−(1−t)i)1mm∑j=1(1−sj)|∂2f∂t∂s(a,d)|q+1nn∑i=1(1−ti)1mm∑j=1(1−(1−s)j)|∂2f∂t∂s(b,c)|q+1nn∑i=1(1−ti)1mm∑j=1(1−sj)|∂2f∂t∂s(b,d)|q)dtds)1q |
By computing the above integrals, we can easily see the followings
∫10∫10(AtBs)−2q(1−(1−t)i)(1−(1−s)j)dtds=(ab)2q[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,1;j+2;1−cd)], |
∫10∫10(AtBs)−2q(1−(1−t)i)(1−sj)dtds=(ab)2q[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,j+1;j+2;1−cd)], |
∫10∫10(AtBs)−2q(1−ti)(1−(1−s)j)dtds=(ab)2q[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,i+1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,1;j+2;1−cd)], |
and
∫10∫10(AtBs)−2q(1−ti)(1−sj)dtds=(ab)2q[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,i+1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,j+1;j+2;1−cd)] |
where 2F1 is Hypergeometric function defined by
2F1(2q,1;2;1−ba)=1B(b,c−b)1∫0tb−1(1−t)c−b−1(1−zt)−adt, |
for c>b>0,|z|<1 and Beta function is defind as B(x,y)=1∫0tx−1(1−t)y−1dt,x,y>0. This completes the proof.
Corollary 2.1. If we set m=n=1 in (2.6), we have the following new inequality.
|Φ(f)|≤bd(b−a)(d−c)4ac(p+1)2p×[c11|∂2f∂t∂s(a,c)|q+c22|∂2f∂t∂s(a,d)|q+c33|∂2f∂t∂s(b,c)|q+c44|∂2f∂t∂s(b,d)|q]1q |
where
c11=[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,1;i+2;1−ab)]×[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,1;j+2;1−cd)], |
c22=[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,1;i+2;1−ab)]×[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,j+1;j+2;1−cd)], |
c33=[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,i+1;i+2;1−ab)]×[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,1;j+2;1−cd)], |
c44=[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,i+1;i+2;1−ab)]×[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,j+1;j+2;1−cd)], |
Corollary 2.2. Suppose that all the conditions of Theorem 2.3 hold. If we set |∂2f(t,s)∂t∂s|q is bounded, i.e.,
‖∂2f(t,s)∂t∂s‖∞=sup(t,s)∈(a,b)×(c,d)|∂2f(t,s)∂t∂s|q<∞, |
we get
|Φ(f)|≤bd(b−a)(d−c)4ac(p+1)2p‖∂2f(t,s)∂t∂s‖∞×[c1+c2+c3+c4]1q |
where c1,c2,c3,c4 as in Theorem 2.3.
c1=1nn∑i=1[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,1;j+2;1−cd)], |
c2=1nn∑i=1[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,j+1;j+2;1−cd)], |
c3=1nn∑i=1[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,i+1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,1;j+2;1−cd)], |
c4=1nn∑i=1[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,i+1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,j+1;j+2;1−cd)], |
N. Mlaiki and T. Abdeljawad would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.
S. Butt would like to thank H. E. C. Pakistan (project 7906) for their support.
The authors declare that no conflicts of interest in this paper.
[1] |
J. Zhang, K. Yu, Z. Wen, X. Qi, A. K. Paul, 3D Reconstruction for Motion Blurred Images Using Deep Learning-Based Intelligent Systems, CMC Comput. Mater. Continua, 66 (2021), 2087-2104. doi: 10.32604/cmc.2020.014220
![]() |
[2] | W. Wang, H. Xu, M. Alazab, T. R. Gadekallu, Z. Han, C. Su, Blockchain-Based Reliable and Efficient Certificateless Signature for IIoT Devices, IEEE Trans. Ind. Inf., 2021. Available from: https://ieeexplore.ieee.org/document/9444140. |
[3] |
L. Tan, H. Xiao, K. Yu, M. Aloqaily, Y. Jararweh, A blockchain-empowered crowdsourcing system for 5g-enabled smart cities, Comput. Stand. Interfaces, 76 (2021), 103517. doi: 10.1016/j.csi.2021.103517
![]() |
[4] |
L. Zhen, Y. Zhang, K. Yu, N. Kumar, A. Barnawi, Y. Xie, Early Collision Detection for Massive Random Access in Satellite-Based Internet of Things, IEEE Trans. Veh. Technol., 70 (2021), 5184-5189. doi: 10.1109/TVT.2021.3076015
![]() |
[5] |
B. C. Chifor, I. Bica, V. V. Patriciu, F. Pop, A security authorization scheme for smart home Internet of Things devices, Future Gener. Comput. Syst., 86 (2018), 740-749. doi: 10.1016/j.future.2017.05.048
![]() |
[6] | L. Zhang, Z. Zhang, W. Wang, Z. Jin, Y. Su, H. Chen, Research on a covert communication model realized by using smart contracts in blockchain environment, IEEE Syst. J., 2021 (2021), 1-12. |
[7] |
B. B. Zarpelão, R. S. Miani, S. Rodrigo, C. T. Kawakani, Miani, S. C. de Alvarenga, A survey of intrusion detection in Internet of Things, J. Network Comput. Appl., 84 (2017), 25-37. doi: 10.1016/j.jnca.2017.02.009
![]() |
[8] | L. Zhen, A. K. Bashir, K. Yu, Y. D. Al-Otaibi, C. H. Foh, P. Xiao, Energy-efficient random access for LEO satellite-assisted 6G Internet of remote things, IEEE Internet Things J., 8 (2020), 5114-5128. |
[9] |
C. Feng, K. Yu, A. K. Bashir, Y. D. Al-Otaibi, Y. Lu, S. Chen, D. Zhang, Efficient and secure data sharing for 5G flying drones: a blockchain-enabled approach, IEEE Network, 35 (2021), 130-137. doi: 10.1109/MNET.011.2000223
![]() |
[10] | C. Feng, K. Yu, M. Aloqaily, M. Alazab, Z. Lv, S. Mumtaz, Attribute-based encryption with parallel outsourced decryption for edge intelligent IoV, IEEE Trans. Veh. Technol., 69 (2020), 213784-13795. |
[11] | H. Li, K. Yu, B. Liu, C. Feng, Z. Qin and G. Srivastava, An Efficient ciphertext-policy weighted attribute-based encryption for the internet of health things, IEEE J. Biomed. Health Inf., 2021. Available from: https://ieeexplore.ieee.org/document/9416735. |
[12] | D. Qiu, L. Zheng, S. Zhang, Y. Liu, An Image Super-resolution Reconstruction Method by Using of Deep Learning, in 2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC), (2019), 213-217. |
[13] | Y. Yang, H. Cai, Z. Wei, H. Lu, K. K. R. Choo, Towards lightweight anonymous entity authentication for IoT applications, in Australasian conference on information security and privacy, Springer, Cham, (2016), 265-280. |
[14] |
C. Sun, J. Lv, J. Li, R. Qiu, A rapid and accurate infrared image super-resolution method based on zoom mechanism, Infrared Phys. Technol., 88 (2018), 228-238. doi: 10.1016/j.infrared.2017.11.033
![]() |
[15] |
X. Feng, J. Li, Z. Hua, Guided filter-based multi-scale super-resolution reconstruction, CAAI Trans. Intell. Technol., 5 (2020), 128-140. doi: 10.1049/trit.2019.0065
![]() |
[16] |
Z. Huang, C. Jing, Super-resolution reconstruction method of remote sensing image based on multi-feature fusion, IEEE Access, 8 (2020), 18764-18771. doi: 10.1109/ACCESS.2020.2967804
![]() |
[17] | N. Shi, L. Tan, W. Li, X. Qi, K. Yu, A Blockchain-Empowered AAA Scheme in the Large-Scale HetNet, Digital Commun. Networks, 2021. Available from: https://doi.org/10.1016/j.dcan.2020.10.002. |
[18] | Z. Guo, A. K. Bashir, K. Yu, J. C. Lin, Y. Shen, Graph Embedding-based Intelligent Industrial Decision for Complex Sewage Treatment Processes, Int. J. Intell. Syst., 2020. Available from: https://doi.org/10.1002/int.22540. |
[19] |
G. T. Reddy, M. P. K. Reddy, K. Lakshmanna, R. Kaluri, D. S. Rajput, G. Srivastava, T. Baker, SAnalysis of dimensionality reduction techniques on big data, IEEE Access, 8 (2020), 54776-54788. doi: 10.1109/ACCESS.2020.2980942
![]() |
[20] |
L. Zhang, Y. Zou, W. Wang, Z. Jin, Y. Su, H. Chen, Resource allocation and trust computing for blockchain-enabled edge computing system, Comput. Secur., 105 (2021), 102249. doi: 10.1016/j.cose.2021.102249
![]() |
[21] |
X. Yao, Q. Wu, P. Zhang, F. X. Bao, Adaptive rational fractal interpolation function for image super-resolution via local fractal analysis, Image Vision Comput., 82 (2019), 39-49. doi: 10.1016/j.imavis.2019.02.002
![]() |
[22] | J. Song, Q. Zhong, W. Wang, C. Su, Z. Tan, Y. Liu, FPDP: Flexible privacy-preserving data publishing scheme for smart agriculture, IEEE Sens. J., 2020. Available from: https://ieeexplore.ieee.org/document/9170612. |
[23] | W. Wang, H. Huang, L. Zhang, C. Su, Secure and efficient mutual authentication protocol for smart grid under blockchain, Peer Peer Networking Appl., 2020 (2020), 1-13. |
[24] | L. Wang, S. Yang, J. Jia, A super-resolution reconstruction algorithm based on feature fusion, 2020 39th Chinese Control Conference (CCC), (2020), 3060-30605. |
[25] |
R. R. Schultz, R. L. Stevenson, A Bayesian approach to image expansion for improved definition, IEEE Trans. Image Process., 3 (1994), 233-242. doi: 10.1109/83.287017
![]() |
[26] | M. Yu, H. Wang, M. Liu, P. Li, Overview of Research on Image Super-Resolution Reconstruction, 2021 IEEE International Conference on Information Communication and Software Engineering (ICICSE), (2011), 131-135. |
[27] | K. T. Gribbon, D. G. Bailey, A novel approach to real-time bilinear interpolation, in Proceedings. DELTA 2004. Second IEEE International Workshop on Electronic Design, Test and Applications, (2004), 126-131. |
[28] |
R. Keys, Cubic convolution interpolation for digital image processing, IEEE Trans. Acoust. Speech Signal Process., 29 (1981), 1153-1160. doi: 10.1109/TASSP.1981.1163711
![]() |
[29] | R. Tsai, Multiframe image restoration and registration, Adv. Comput. Visual Image Process., 1 (1984), 317-339. |
[30] |
Y. Abe, Y. J. Iiguni, Image restoration from a downsampled image by using the DCT, Signal Process., 87 (2007), 2370-2380. doi: 10.1016/j.sigpro.2007.03.010
![]() |
[31] | P. Liu, H. Zhang, K. Zhang, L. Lin, W. Zuo, Multi-level wavelet-CNN for image restoration, Proceedings of the IEEE conference on computer vision and pattern recognition workshops, (2018), 773-782. |
[32] |
S. W. Jung, T. H. Kim, S. J. Ko, A novel multiple image deblurring technique using fuzzy projection onto convex sets, IEEE Signal Process. Lett., 16 (2009), 192-195. doi: 10.1109/LSP.2008.2012227
![]() |
[33] | C. Dong, C. C. G. Loy, K. M. He, X. O. Tang, Learning a deep convolutional network for image super-resolution, European conference on computer vision, (2014), 184-199. |
[34] |
D. Sun, Q. Gao, Y. Lu, Z. Huang, T. Li, A novel image denoising algorithm using linear Bayesian MAP estimation based on sparse representation, Signal Process., 100 (2014), 132-145. doi: 10.1016/j.sigpro.2014.01.022
![]() |
[35] | H. Li, Q. Zheng, J. Zhang, Z. Du, Z. Li, B. Kang, Pix2Pix-Based Grayscale Image Coloring Method, J. Comput.-Aided Comput. Graphics, 33 (2021), 929-938. |
[36] | J. Kim, J. K. Lee, K. M. Lee, Accurate image super-resolution using very deep convolutional networks, Proceedings of the IEEE conference on computer vision and pattern recognition, (2016), 1646-1654. |
[37] | K. Yu, L. Lin, M. Alazab, L. Tan, B. Gu, Deep learning-based traffic safety solution for a mixture of autonomous and manual vehicles in a 5G-enabled intelligent transportation system, IEEE Trans. Intell. Transp. Syst., 22 (2020), 4337-4347. |
[38] |
K. Yu, L. Tan, M. Aloqaily, H. Yang, Y. Jararweh, Blockchain-enhanced data sharing with traceable and direct revocation in IIoT, IEEE Trans. Ind. Inf., 17 (2021), 7669-7678. doi: 10.1109/TII.2021.3049141
![]() |
[39] | C. Y. Ma, J. W. Zhu, Y. J. Li, J. R. Li, Y. Jiang, X. Li, Single image super resolution via wavelet transform fusion and SRFeat network, J. Ambient Intell. Hum. Comput., (2020), 1-9. |
[40] |
K. Yu, M. Arifuzzaman, Z. Wen, D. Zhang, T. Sato, A Key Management Scheme for Secure Communications of Information Centric Advanced Metering Infrastructure in Smart Grid, IEEE Trans. Instrum. Meas., 64 (2015), 2072-2085. doi: 10.1109/TIM.2015.2444238
![]() |
[41] | L. Tan, K. Yu, A. K. Bashir, X. Cheng, F. Ming, L. Zhao, et al., Towards Real-time and Efficient Cardiovascular Monitoring for COVID-19 Patients by 5G-Enabled Wearable Medical Devices: A Deep Learning Approach, Neural Compu. Appl., 2021. Available from: https://doi.org/10.1007/s00521-021-06219-9. |
[42] | M. A. Talab, S. Awang, S. A. M. Najim, Super-low resolution face recognition using integrated efficient sub-pixel convolutional neural network (ESPCN) and convolutional neural network (CNN), 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), (2019), 331-335. |
[43] | C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, et al., Photo-realistic single image super-resolution using a generative adversarial network, Proceedings of the IEEE conference on computer vision and pattern recognition, (2017), 4681-4690. |
[44] |
A. Wang, Z. Fang, Y. Gao, X. Jiang, S. Ma, Depth estimation of video sequences with perceptual losses, IEEE Access, 6 (2018), 30536-30546. doi: 10.1109/ACCESS.2018.2846546
![]() |
[45] | B. Lim, S. Son, H. Kim, S. Nah, K. Mu Lee, Enhanced deep residual networks for single image super-resolution, Proceedings of the IEEE conference on computer vision and pattern recognition workshops, (2017), 136-144. |
[46] | L. Tan, N. Shi, K. Yu, M. Aloqaily, Y. Jararweh, A Blockchain-Empowered Access Control Framework for Smart Devices in Green Internet of Things, ACM Trans. Internet Technol., 21 (2021), 1-20. |
[47] | Z. Guo, K. Yu, A. Jolfaei, A. K. Bashir, A. O. Almagrabi, N. Kumar, A Fuzzy Detection System for Rumors through Explainable Adaptive Learning, IEEE Trans. Fuzzy Syst., 2021. Available from: https://doi.org/10.1109/TFUZZ.2021.3052109. |
[48] |
L. Guo, M. Woźniak, An image super-resolution reconstruction method with single frame character based on wavelet neural network in internet of things, Mobile Networks Appl., 26 (2021), 390-403. doi: 10.1007/s11036-020-01681-6
![]() |
[49] | W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, et al., Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, Proceedings of the IEEE conference on computer vision and pattern recognition, (2016), 1874-1883. |
[50] |
A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, V. Sengupta, A. A. Bharath, Generative adversarial networks: An overview, IEEE Signal Process. Mag., 35 (2018), 53-65. doi: 10.1109/MSP.2017.2765202
![]() |
[51] | M. Yu, H. Wang, M. Liu, P. Li, Overview of Research on Image Super-Resolution Reconstruction, 2021 IEEE International Conference on Information Communication and Software Engineering (ICICSE), (2021), 131-135. |
[52] | S. Lei, X. Liao, Z. Tao, Content-aware Upsampling for Single Image Super-resolution, 2020 Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), (2020), 213-217. |
[53] | S. E. El-Khamy, M. M. Hadboud, M. I. Dessouky, B. M. Salam, F. E. A. El-Samie, A new super-resolution image reconstruction algorithm based on wavelet fusion, Proceedings of the Twenty-Second National Radio Science Conference, 2005. NRSC 2005., (2005), 195-204. |
[54] |
D. Mualfah, Y. Fatma, R. Ramadhan, Anti-forensics: The image asymmetry key and single layer perceptron for digital data security, Journal of Physics: Conference Series, 1517 (2020), 012106. doi: 10.1088/1742-6596/1517/1/012106
![]() |
[55] | J. Johnson, A. Alahi, L. Fei-Fei, Perceptual losses for real-time style transfer and super-resolution, European conference on computer vision, (2016), 694-711. |
[56] |
K. Fu, J Peng, H. Zhang, X. Wang, J. Frank, Image super-resolution based on generative adversarial networks: a brief review, Comput. Mater. Continua, 64 (2020), 1977-1997. doi: 10.32604/cmc.2020.09882
![]() |
[57] | M. Heon, J. H. Kim, J. H. Choi, J. S. Lee, Generative adversarial network-based image super-resolution using perceptual content losses, Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 2018. |
[58] |
Z. Guo, L. Tang, T. Guo, K. Yu, M. Alazab, A. Shalaginov, Deep graph neural network-based spammer detection under the perspective of heterogeneous cyberspace, Future Gener. Comput. Syst., 117 (2021), 205-218. doi: 10.1016/j.future.2020.11.028
![]() |
[59] | K. Yu, L. Tan, X. Shang, J. Huang, G. Srivastav, P. Chatterjee, Efficient and Privacy-Preserving Medical Research Support Platform Against COVID-19: A Blockchain-Based Approach, IEEE Consum. Electron. Mag., 10 (2021), 111-120. |
[60] |
D. Lee, S. Lee, H. Lee, K. Lee, H. J. Lee, Resolution-preserving generative adversarial networks for image enhancement, IEEE Access, 7 (2019), 110344-110357. doi: 10.1109/ACCESS.2019.2934320
![]() |
[61] | C. F. Song, Y. Huang, W. L. Ouyang, L. Wang, Mask-guided contrastive attention model for person re-identification, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2018), 1179-1188. |
[62] | A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al., Attention is all you need, in Advances in neural information processing systems, (2017), 5998-6008. |
[63] | A. N. Moldovan, I. Ghergulescu, C. H. Muntean, A novel methodology for mapping objective video quality metrics to the subjective MOS scale, 2014 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, (2014), 1-7. |
[64] |
Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612. doi: 10.1109/TIP.2003.819861
![]() |
[65] |
K. Yu, L. Tan, L. Lin, X. Cheng, Z. Yi, T. Sato, Deep Learning Empowered Breast Cancer Auxiliary Diagnosis for 5GB Remote E-Health, IEEE Wireless Commun., 28 (2021), 54-61. doi: 10.1109/MWC.001.2000374
![]() |
[66] | L. Tan, K. Yu, F. Ming, X. Cheng, G. Srivastava, Secure and Resilient Artificial Intelligence of Things: a HoneyNet Approach for Threat Detection and Situational Awareness, IEEE Consum. Electron. Mag., 2021. Available from: https://doi.org/10.1109/MCE.2021.3081874. |
[67] | Z. Guo, K. Yu, Y. Li, G. Srivastava, J. C. W. Lin, Deep Learning-Embedded Social Internet of Things for Ambiguity-Aware Social Recommendations, IEEE Trans. Network Sci. Eng., 2021. Available from: https://doi.org/10.1109/TNSE.2021.3049262. |
[68] | K. Yu, Z. Guo, Y. Shen, W. Wang, J. C. Lin, T. Sato, Secure Artificial Intelligence of Things for Implicit Group Recommendations, IEEE Internet Things J., 2021. Available from: http://dx.doi.org/10.1109/JIOT.2021.3079574. |
1. | Hua Mei, Aying Wan, Bai-Ni Guo, Basil Papadopoulos, Coordinated MT- s 1 , s 2 -Convex Functions and Their Integral Inequalities of Hermite–Hadamard Type, 2021, 2021, 2314-4785, 1, 10.1155/2021/5586377 | |
2. | Ahmet Ocak Akdemir, Saad Ihsan Butt, Muhammad Nadeem, Maria Alessandra Ragusa, Some new integral inequalities for a general variant of polynomial convex functions, 2022, 7, 2473-6988, 20461, 10.3934/math.20221121 | |
3. | Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Saowaluck Chasreechai, Quantum Hermite-Hadamard type integral inequalities for convex stochastic processes, 2021, 6, 2473-6988, 11989, 10.3934/math.2021695 | |
4. | Suphawat Asawasamrit, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Jessada Tariboon, Quantum Hermite-Hadamard and quantum Ostrowski type inequalities for s-convex functions in the second sense with applications, 2021, 6, 2473-6988, 13327, 10.3934/math.2021771 | |
5. | Artion Kashuri, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Tariq, Ahmed A. Hamoud, Homan Emadifar, Faraidun K. Hamasalh, Nedal M. Mohammed, Masoumeh Khademi, Guotao Wang, Integral Inequalities of Integer and Fractional Orders for n –Polynomial Harmonically t g s –Convex Functions and Their Applications, 2022, 2022, 2314-4785, 1, 10.1155/2022/2493944 | |
6. | Farhat Safdar, Muhammad Attique, Some new generalizations for exponentially (s, m)-preinvex functions considering generalized fractional integral operators, 2021, 1016-2526, 861, 10.52280/pujm.2021.531203 | |
7. | Ying-Qing Song, Saad Ihsan Butt, Artion Kashuri, Jamshed Nasir, Muhammad Nadeem, New fractional integral inequalities pertaining 2D–approximately coordinate (r1,ℏ1)-(r2,ℏ2)–convex functions, 2022, 61, 11100168, 563, 10.1016/j.aej.2021.06.044 | |
8. | Waqar Afzal, Sayed M. Eldin, Waqas Nazeer, Ahmed M. Galal, Some integral inequalities for harmonical cr-h-Godunova-Levin stochastic processes, 2023, 8, 2473-6988, 13473, 10.3934/math.2023683 | |
9. | Serap Özcan, Hermite-Hadamard type inequalities for exponential type multiplicatively convex functions, 2023, 37, 0354-5180, 9777, 10.2298/FIL2328777O | |
10. | Serap Özcan, Hermite-Hadamard type inequalities for multiplicatively p-convex functions, 2023, 2023, 1029-242X, 10.1186/s13660-023-03032-x | |
11. | Serap Özcan, Saad Ihsan Butt, Hermite–Hadamard type inequalities for multiplicatively harmonic convex functions, 2023, 2023, 1029-242X, 10.1186/s13660-023-03020-1 | |
12. | Serap Özcan, Simpson, midpoint, and trapezoid-type inequalities for multiplicatively s-convex functions, 2025, 58, 2391-4661, 10.1515/dema-2024-0060 | |
13. | Serap Özcan, Ayça Uruş, Saad Ihsan Butt, Hermite–Hadamard-Type Inequalities for Multiplicative Harmonic s-Convex Functions, 2025, 76, 0041-5995, 1537, 10.1007/s11253-025-02404-4 |