Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Research article

Modelling and analysis of a stochastic nonautonomous predator-prey model with impulsive effects and nonlinear functional response

  • Received: 23 November 2020 Accepted: 18 January 2021 Published: 28 January 2021
  • In this paper, a new stochastic predator-prey model with impulsive perturbation and Crowley-Martin functional response is proposed. The dynamical properties of the model are systematically investigated. The existence and stochastically ultimate boundedness of a global positive solution are derived using the theory of impulsive stochastic differential equations. Some sufficient criteria are obtained to guarantee the extinction and a series of persistence in the mean of the system. Moreover, we provide conditions for the stochastic permanence and global attractivity of the model. Numerical simulations are performed to support our qualitative results.

    Citation: Yan Zhang, Shujing Gao, Shihua Chen. Modelling and analysis of a stochastic nonautonomous predator-prey model with impulsive effects and nonlinear functional response[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 1485-1512. doi: 10.3934/mbe.2021077

    Related Papers:

    [1] Thomas C. Chiang . Stock returns and inflation expectations: Evidence from 20 major countries. Quantitative Finance and Economics, 2023, 7(4): 538-568. doi: 10.3934/QFE.2023027
    [2] Cunyi Yang, Li Chen, Bin Mo . The spillover effect of international monetary policy on China's financial market. Quantitative Finance and Economics, 2023, 7(4): 508-537. doi: 10.3934/QFE.2023026
    [3] Ikram Ben Romdhane, Mohamed Amin Chakroun, Sami Mensi . Inflation Targeting, Economic Growth and Financial Stability: Evidence from Emerging Countries. Quantitative Finance and Economics, 2023, 7(4): 697-723. doi: 10.3934/QFE.2023033
    [4] Francisco Jareño, María de la O González, José M. Almansa . Interest rate sensitivity of traditional, green, and stable cryptocurrencies: A comparative study across market conditions. Quantitative Finance and Economics, 2025, 9(1): 100-130. doi: 10.3934/QFE.2025004
    [5] Zekai Tu, Runze Yang, Cunyi Yang . Dynamics between FinTech and financial market: Supply-driven or Demand-guided?. Quantitative Finance and Economics, 2024, 8(4): 658-677. doi: 10.3934/QFE.2024025
    [6] Tinghui Li, Xue Li, Khaldoon Albitar . Threshold effects of financialization on enterprise R & D innovation: a comparison research on heterogeneity. Quantitative Finance and Economics, 2021, 5(3): 496-515. doi: 10.3934/QFE.2021022
    [7] Ngo Thai Hung . Equity market integration of China and Southeast Asian countries: further evidence from MGARCH-ADCC and wavelet coherence analysis. Quantitative Finance and Economics, 2019, 3(2): 201-220. doi: 10.3934/QFE.2019.2.201
    [8] Dimitra Loukia Kolia, Simeon Papadopoulos . The levels of bank capital, risk and efficiency in the Eurozone and the U.S. in the aftermath of the financial crisis. Quantitative Finance and Economics, 2020, 4(1): 66-90. doi: 10.3934/QFE.2020004
    [9] Mitchell Ratner, Chih-Chieh (Jason) Chiu . Portfolio Effects of VIX Futures Index. Quantitative Finance and Economics, 2017, 1(3): 288-299. doi: 10.3934/QFE.2017.3.288
    [10] Tram Thi Xuan Huong, Tran Thi Thanh Nga, Tran Thi Kim Oanh . Liquidity risk and bank performance in Southeast Asian countries: a dynamic panel approach. Quantitative Finance and Economics, 2021, 5(1): 111-133. doi: 10.3934/QFE.2021006
  • In this paper, a new stochastic predator-prey model with impulsive perturbation and Crowley-Martin functional response is proposed. The dynamical properties of the model are systematically investigated. The existence and stochastically ultimate boundedness of a global positive solution are derived using the theory of impulsive stochastic differential equations. Some sufficient criteria are obtained to guarantee the extinction and a series of persistence in the mean of the system. Moreover, we provide conditions for the stochastic permanence and global attractivity of the model. Numerical simulations are performed to support our qualitative results.



    Pertussis, commonly recognized as whooping cough, is an extremely contagious respiratory infection caused by Bordetella pertussis bacteria [1]. The infectious disease is primarily spread through direct contact, such as respiratory droplets. It primarily affects the respiratory system and is characterized by severe coughing. Pertussis predominantly affects infants and young children but can also impact adolescents and adults, often leading to severe complications, particularly in vulnerable populations. The early signs of pertussis resemble common cold symptoms and are easily misdiagnosed. Therefore, it is difficult to quickly identify pertussis in the early stages. The treatment of pertussis mainly relies on antibiotics and symptomatic treatment. Currently, there is no specific drug for pertussis, resulting in no effective elimination of the pathogen. According to data from the Chinese Center for Disease Control and Prevention, there were nearly 500,000 cases of pertussis infections in China in 2024.

    It is worth noting that over the past six decades, injectable vaccines have become an effective strategy to prevent diseases. Before the pertussis vaccine was widely available, pertussis caused a significant number of childhood deaths around the world every year. As the pertussis vaccine has been promoted globally, the mortality rate has decreased dramatically. However, in recent decades, there has been a resurgence in pertussis cases [2,3,4,5,6,7,8]. In 2014, 24.1 million cases of pertussis were reported worldwide, resulting in 160,700 deaths among children under 5 years old, particularly in developing countries [9]. This trend can be attributed to two main factors. On the one hand, vaccination rates in developing countries are generally low, resulting in insufficient vaccine coverage to form effective herd immunity. Herd immunity is the idea that when enough of the population is vaccinated, the entire community becomes more resistant to the disease, thereby protecting individuals who cannot be vaccinated, such as newborns or those with immune deficiencies. However, if vaccine coverage is insufficient, the virus can still spread among people, leading to outbreaks [10]. On the other hand, the immunity provided by the vaccine is not permanent, and the effectiveness of the vaccine diminishes over time, especially for adult and adolescent populations, where the protective effect is relatively weak. This means that even if children are fully vaccinated, they may lose their immunity to pertussis over time, increasing the risk of reinfection. It is also important to note that individuals who recover from an infection may gain immunity, but that does not offer complete protection [11]. The impact of immunity on disease transmission has gained great attention, while there are relatively few works related to immune waning. Based on the above background, this paper focuses on a pertussis model with long-term immune waning and natural immune boosting.

    Mathematical models are essential for characterizing transmission dynamics of infectious diseases. Over the past few decades, mathematical models of pertussis have provided important insights into the occurrence of new pertussis cases. Tian and Wang [12] proposed a pertussis model incorporating recessive infection, thereby laying a solid foundation for understanding the impact of latent infection on pertussis recurrence. Given the multifaceted nature of pertussis infection, a model accounting for multiple infection pathways was given by [13]. Research on the effects of vaccination on pertussis dynamics has also garnered significant attention. Rozhnova and Nunes [2] focused on the long-term trends of pertussis prior to vaccination, aiming to minimize the number of free parameters. Safan et al.[14] established a pertussis model based on data from newborns, which concluded that symptomatic infections can be completely eradicated through vaccination. Conversely, Águas proposed that the resurgence of pertussis may result from reduced transmission, independent of vaccination [15]. Most existing studies [1,12,13,14,15] have concentrated on deterministic models, often neglecting the influence of environmental noise and its role in pertussis dynamics. Meanwhile, the dynamic behavior of most epidemics (such as pertussis) is greatly influenced by random factors [16,17]. Due to stochastic models having advantages in adapting to complex future conditions [18,19,20,21,22,23,24,25], we apply nonlinear perturbations [21] to a deterministic pertussis model. During the modeling process, we mainly considered the influence of environmental factors such as temperature and humidity changes on the transmission of pertussis. The transmission of pertussis has seasonal variations [26,27], mainly reflected in terms of temperature and humidity. In order to more accurately capture the seasonal transmission characteristics of pertussis, i.e., peak of infection in summer and winter, while infections in spring and autumn are relatively rare, we introduced a Markov switching process [25] in the model, aiming to simulate the influence of seasonal fluctuations of environmental factors (such as temperature and humidity) on the transmission of pertussis.

    As far as we are aware, up to now, a pertussis model taking both immune and random factors into consideration has not received any attention. In order to fill this gap, this paper proposes a stochastic pertussis model with Markov switching. We apply Lyapunov functions and the Has'minskii theorem to analyze the pertussis model. The primary contributions and innovations of this paper are described below:

    ● The transmission rate is more sensitive to the external environment. A stochastic pertussis model with Markov switching of transmission rate is discussed in this paper. This model is an extension of Lavine et al. [10].

    ● In response to the recurrence and state-switching phenomena of pertussis, it is essential to implement appropriate measures. To this end, sufficient conditions are presented to ensure the extinction of a stochastic pertussis model with Markov switching. Additionally, considering persistence of the pertussis is equally important. We derive persistence conditions for pertussis by proving ergodicity.

    The remainder of this paper is structured as follows: Section 2 introduces the mathematical model and necessary lemmas. In Section 3, we establish sufficient conditions for disease extinction. The existence of a unique ergodic stationary distribution (ESD) is demonstrates in Section 4. Section 5 shows numerical simulations to validate our theoretical results and explore the effects of random perturbations and natural immune boosting on disease transmission. Section 6 offers a discussion of our conclusions.

    Lavine et al.[10] proposed a deterministic model that is outlined as follows:

    {dS(t)dt=μ(1ν)(μ+βI(t))S(t)+ηW(t),dI(t)dt=βS(t)I(t)(μ+γ)I(t),dW(t)dt=ηR(t)(μ+η+κβI(t))W(t),dR(t)dt=κβI(t)W(t)+γI(t)+μν(μ+η)R(t), (2.1)

    where S(t), I(t), W(t), and R(t) are the susceptible compartment, the infectious compartment, the waning compartment, and the recovered compartment at time t, respectively. It is worth noting that R(t) consists of individuals who have recently recovered or been boosted, possessing a strong immune response. W(t) includes individuals who maintain immunity against infection but can further strengthen their immune response upon re-exposure κβI(t)W(t). If individuals in W(t) are not re-exposed, they will eventually lose their immunity entirely and revert to the susceptible group ηW(t). Besides that, μ represents the death rate, ν denotes the vaccination probabilities specific to different age groups, β characterizes the transmission rate, η represents the rate at which immunity wanes when there is no immune boosting, γ represents the rate of recovery, and κ represents the coefficient for boosting. Denoting N(t)=S(t)+I(t)+W(t)+R(t) as the total polulation, and on the basis of (2.1), we can obtain dN(t)=(μμN(t))dt. By integrating, we can get

    N(t)=1+(N(0)1)eμt, (2.2)

    it will come out N(t)1, while N(0)1.

    Denote the possible region of the determinist system (2.1)

    Γ=(S(t),I(t),W(t),R(t)R4+|0<S(t)+I(t)+W(t)+R(t)1). (2.3)

    The system (2.1) possesses a disease-free equilibrium point E0=(S0,I0,W0,R0)=(μ(1ν)+ηW0μ,0,ημν(μ+η)2,μνμ+η). Combining the theories of Ma et al.[18] and Sahu et al.[19], the basic reproduction number R0 of the system (2.1) is obtained as follows:

    R0=βS0μ+γ=β(μ+γ)((1ν)+η2ν(μ+η)2).

    By applying the global stability theory of equilibrium, system (2.1) has the following threshold dynamics:

    E0 is globally asymptotically stable [10], which implies the number of infectious will decrease to zero.

    ● If R0>1, the endemic equilibrium E=(S,I,W,R) is globally asymptotically stable and satisfies the following equation:

    {S=μ+γβ,W=βμ(ν1)+(μ+βI)(μ+ν)ηβ,R=(μ+η+κβI)Wη,κβIW+γI+μν(μ+η)R=0.

    The proof of asymptotic stablility of E is similar to that in Theorem 3.2 of [20], so we omit it here.

    Environmental noise is ubiquitous and can significantly impact the transmission of pertussis. The deterministic model (2.1) has inherent limitations in accurately predicting future dynamics. Linear perturbation, a simplifying assumption commonly employed, is commonly used to describe disease spread [29,30,31]. Based on [21,23,25,32], we use nonlinear perturbation for the system (2.1). This study investigates the natural mortality rate of the system (2.1) under nonlinear perturbations, such as μS(t)μ+(σii+σijS(t))S(t)dBi(t), which is given by

    {dS(t)=[μ(1ν)(μ+βI(t))S(t)+ηW(t)]dt+(σ11S(t)+σ12)S(t)dB1(t),dI(t)=[βS(t)I(t)(μ+γ)I(t)]dt+(σ21I(t)+σ22)I(t)dB2(t),dW(t)=[ηR(t)(μ+η+κβI(t))W(t)]dt+(σ31W(t)+σ32)W(t)dB3(t),dR(t)=[κβI(t)W(t)+γI(t)+μν(μ+η)R(t)]dt+(σ41R(t)+σ42)R(t)dB4(t), (2.4)

    where Bi(t)(i=1,2,,4) refers to four standard Brownian motions, each independent. σ2i1>0, σ2i2>0 describe the intensities of nonlinear and linear perturbations on Bi(t), respectively, i=1,2,,4. According to Mao [18], the processes Bi(t)(i=1,2,,4) are defined on a complete probability space {Ω,F, {Ft}t>0, P}, where the filtration {Ft}t0 is right continuous and increasing, provided that F0 contains all Pnull sets.

    In the actual pertussis transmission model, changes in the external environment, especially alterations in temperature and humidity, can lead to variations in parameters. In the modeling process, fixing parameters cannot represent such state changes. Similarly, introducing random noise σ cannot accurately depict such changes. The mortality rate μ, the immunity wanes η, and vaccination probabilities ν are less affected by environmental changes, while the contact rate β is more sensitive to environmental changes [33]. In this paper, we introduce Markov switching to describe the state transitions caused by environmental changes and simplify the model by only considering the influence of the state change on β, described in detail as follows:

    {dS(t)=[μ(1ν)(μ+β(r(t))I(t))S(t)+ηW(t)]dt+(σ11(r(t))S(t)+σ12(r(t)))S(t)dB1(t),dI(t)=[β(r(t))S(t)I(t)(μ+γ)I(t)]dt+(σ21(r(t))I(t)+σ22(r(t)))I(t)dB2(t),dW(t)=[ηR(t)(μ+η+κβ(r(t))I(t))W(t)]dt+(σ31(r(t))W(t)+σ32(r(t)))W(t)dB3(t),dR(t)=[κβ(r(t))I(t)W(t)+γI(t)+μν(μ+η)R(t)]dt+(σ41(r(t))R(t)+σ42(r(t)))R(t)dB4(t), (2.5)

    where (r(t))t0 is a right-continuous Markov chain taking values in a finite space N={1,2,,N}. The following is transition probability:

    P{r(t+Δ)=j|r(t)=i}={qijΔ+o(Δ),if ij,1+qiiΔ+o(Δ),if i=j,

    where the time increment Δ>0, and qij>0 is the transition coefficient from i to j if ij. For any iN, if j=i, qii=ijqij. o(Δ) signifies limΔ0o(Δ)/Δ=0. In addition, (r(t))t0 is irreducible and has a unique stationary distribution π={π1,π2,,πN}R1×n, which is determined by πΓ=0 subject to Nk=1πk=1, πk>0.

    We need to give several mathematical notations that will be used in this paper. Let an N-dimensional vector A=(A(1),A(2),,A(N))T, assuming that ˇA=maxkS{A(k)}, ˆA=minkS{A(k)}.

    To investigate the dynamical behavior of the stochastic epidemic model (2.5), it is essential to establish the existence of a global positive solution. Since S(t), I(t), W(t), and R(t) represent numbers of different kinds of individuals, these values should remain non-negative. And based on the background of pertussis transmission, we assume μ0,ν0,β0,γ0,κ0,η0. In this section, we will show that system (2.5) possesses a unique global positive solution.

    Theorem 2.1. For any initial condition (S(0),I(0),W(0),R(0),r(0))R4+×N, system (2.5) admits a unique solution (S(t),I(t),W(t),R(t),r(t)) on t0, and the solution will remain in R4+×N with probability one, a.s..

    Proof. We omit the proof, which is similar to Zu et al. [24] and Zhou et al. [25].

    Remark 2.1. The existence and uniqueness of the global positive solution are essential for ensuring the reliability of predictions in the stochastic pertussis model. Without establishing these fundamental properties, the model's predictive power would be compromised, as multiple or non-positive solutions could arise, leading to ambiguous or incorrect interpretations of the disease dynamics.

    The extinction of diseases is an important topic discussed in the field of biomathematics. In this section, we seek to establish the sufficient conditions for the extinction of random systems (2.5). To this end, a value ˜R0 associated with R0 is defined below

    ˜R0=Ni=1πiβ(i)μ+γ+Ni=1πiσ22(i)2.

    Theorem 3.1. For any initial value (S(0),I(0),W(0),R(0))R4+×N, let (S(t),I(t),W(t),R(t)) be the solution of stochastic system (2.5). If ˜R0<1 holds, then the disease of the stochastic system (2.5) will go extinct.

    Proof. Utilizing the Itˆo's formula yields

    d(lnI(t))=1I(t)[β(r(t))S(t)I(t)(μ+γ)I(t)]dt(σ21(r(t))I(t)2+σ22(r(t)I(t))22I(t)2dt+1I(t)(σ21(r(t))I(t)2+σ22(r(t))I(t))dB2(t)=[β(r(t))S(t)(μ+γ+(σ21(r(t))I(t)+σ22(r(t))22)]dt+(σ21(r(t))I(t)+σ22(r(t)))dB2(t). (3.1)

    Integrate both sides of Eq (3.1) from 0 to t, we can obtain

    lnI(t)tlnI(0)t+1tt0[β(r(u))S(u)(μ+γ+(σ21(r(u))I(t)+σ22(r(u))22)]du+Φ(t)tlnI(0)t+1tt0[β(r(u))N(u)(μ+γ+σ22(r(u))22)]du+Φ(t)ta.s.lnI(0)t+1tt0[β(r(u))(μ+γ+σ22(r(u))22)]du+Φ(t)ta.s. (3.2)

    where Φ(t)=t0(σ21(r(u))I+σ22(r(u)))dB2(u) is a continuous real-valued local martingale and its quadratic variation is

    Φ,Φt=t0(σ21(r(u))I+σ22(r(u)))2du.

    Applying the exponential martingale inequality of [18, Theorem 7.4], one gets

    P{sup0tT[Φ(t)ϵ2t0(σ21(r(u))I+σ22(r(u)))2du]>2ϵlnk}1k2,

    wherein 0<ϵ<1, k is a random positive number. Utilizing the Borel-Cantelli's lemma [18, Lemma 2.4] for every ωΩ, there exists a integer k0 such that all kk0,

    Φ(t)ϵ2t0(σ21(r(u))I+σ22(r(u)))2du+2ϵlnk. (3.3)

    Combining (3.2) and (3.3) for all t(k1,k], and letting ϵ0, one has

    lnI(t)tlnI(0)t+1tt0[β(r(u))(μ+γ+σ22(r(u))22)]du+ϵ2tt0(σ21(r(u))I+σ22(r(u)))2du+2lnkϵtlnI(0)t+1tt0[β(r(u))(μ+γ+1tt0σ22(r(u))22)]du+2lnkϵ(k1).

    If k+, then t+, one obtains that lnI(0)t0, lnkk10. By combining the dominated convergence theorem and the ergodic properties of Markov chains, one can gain

    lim supt1tt0σ22(r(u))22du=Ni=1πiσ22(i)2,lim supt1tβ(r(u))du=Ni=1πiβ(i). (3.4)

    Combining (3.4) and ˜R0<1, we have

    lim suptlnI(t)tlim supt1tt0[β(μ+γ+σ22(r(u))22)]du=Ni=1πiβ(i)(μ+γ+Ni=1πiσ22(i)2)=(μ+γ+Ni=1πiσ22(i)2)[Ni=1πiβ(i)(μ+γ+Ni=1πiσ22(i)2)1]=(μ+γ+Ni=1πiσ22(i)2)(˜R01)<0, (3.5)

    which shows limtI(t)=0.

    Remark 3.1. In Theorem 3.1, we utilize the property of S(t)N(t) almost surely during stochastic perturbations. When the external environment remains stable and the transmission coefficient does not undergo sudden changes N=1, R0 will be a threshold result common to deterministic system (2.1) and stochastic system (2.5). Based on ˜R0, the measures of isolating close contacts and wearing masks can effectively reduce transmission rate and curb the spread of pertussis.

    Whether a disease will persist is a hot topic of current research [23,24,25,36,37,38]. Based on the Has'minskii theorem [22], an endemic equilibrium does not exist in the stochastic epidemic model, but an ESD can still exist. The ESD reflects the persistence of disease transmission within the community [16,39].

    Denote ¯μ1=μ+Nk=1πkσ212(k)2+2μNk=1πkσ11(k)σ12(k)+23μ2Nk=1πkσ211(k), μ2=μ+γ+Nk=1πkσ222(k)2, ¯μ3=μ+η+Nk=1πkσ232(k)2, μ4=μ+η+Nk=1πkσ242(k)2, Re0=ˆβSeμ2.

    Theorem 4.1. Suppose that Re0>1. Then the solution (S(t),I(t),W(t),R(t),r(t)) of system (2.5) has a distinct invariant distribution regardless of the initial state (S(0),I(0),W(0),R(0),r(0))R4+×N.

    Proof. The diffusion matrix related to system (2.5) is illustrated by

    A=((σ11(k)S2+σ12(k)S)20000(σ21(k)E2+σ22(k)E)20000(σ31(k)I2+σ32(k)I)20000(σ41(k)R2+σ42(k)R)2).

    Opt for ˜M=min(S,I,W,R)˜DϵR4+{(σ11(k)S2+σ12(k)S)2,(σ21(k)E2+σ22(k)E)2,(σ31(k)I2+σ32(k)I)2,(σ41(k)A2+σ42(k)A)2}>0, ensuring

    4i,j=1aij(S,I,W,R)ζiζj=(σ11(k)S2+σ12(k)S)2ζ21+(σ21(k)I2+σ22(k)I)2ζ22+(σ31(k)W2+σ32(k)W)2ζ23+(σ41(k)R2+σ42(k)R)2ζ24˜Mζ2,

    wherein ζ:=(ζ1,ζ2,ζ3,ζ4). Inspired by [25], we will employ the generalized θ-stochastic criterion method. To verify condition (ⅱ), we have the following four steps.

    Step 1. For all τ(0,1), here are some continuous τ-stochastic Lyapunov functions to consider:

    μ1=μ+Nk=1πkσ212(k)2+2μNk=1πkσ11(k)σ12(k)1τ+23μ2Nk=1πkσ211(k)(1τ)2,μ3=μ+η+Nk=1πkσ232(k)2+τ2σ231(k)6,Re0(τ)=ˆβSeμ2.

    We observe that μi (i = 1, , 4) are all functions of the given variable τ(0,1) that increase monotonically. Furthermore, it is found that

    infτ(0,1)μi=limτ0+μi=μi,i=1,3.supτ(0,1)Re0(τ)=limτ0+Re0(τ)=Re0.

    It should be pointed out that limτ0+Se=¯Se.

    Step 2. To counteract the effects of nonlinear perturbations and Markov switching, we propose the following Lyapunov functions:

    V1=lnS+2j=1ζj(S+ξj)ττ+ω1(k),V2=lnI+ω2(k),V3=lnW+ζ3(W+τ)ττ+ω3(k),V4=lnR+ω4(k),kN,

    where ζ1,ζ2,ζ3, and ξ1,ξ2 are determined by (4.2), (4.10), and (4.5). ωi(k),i=1,2,3,4 are determined subsequently.

    Utilizing the Itˆos formula to V1, combining

    \begin{equation*} \label{a17.1} a^3\geqslant(a-\frac{1}{2})(a^{2}+1) \; and \; a^4\geqslant\frac{1}{4}(3a^2-1)(a^2+1). \end{equation*}

    and (a+b)^2\leq 2(a^2+b^2) , we get

    \begin{equation} \begin{aligned} \mathcal LV_{1} = &-\frac{1}{S}[\mu(1-\nu)-(\mu+\beta(k) I)S+\eta W]+\sum\limits_{j = 1}^{2}\zeta_{j}(S+\xi_{j})^{\tau-1}[\mu(1-\nu)-(\mu+\beta I)S+\eta W]\\ &+\frac{1}{2}(\sigma_{11}(k)S+\sigma_{12}(k))^2-\sum\limits_{j = 1}^2\frac{\zeta_{j}(1-\tau)}{2(S+\xi_{j})^{2-\tau}}(\sigma_{11}(k)S^2+\sigma_{12}(k)S)^2+\sum\limits_{l\in \mathcal N}q_{kl}\omega_{1}(l)\\ \leq& -\frac{\mu}{S}+\frac{\mu \nu}{S}+\mu+\check\beta I-\frac{\eta W}{S}+\frac{\sigma_{12}^2(k)}{2}+\sigma_{11}(k)\sigma_{12}(k)S+\frac{\sigma_{11}^2(k)}{2}S^2+\sum\limits_{j = 1}^2\frac{\mu\zeta_{j}}{\xi_{j}^{1-\tau}}\\ &-\sum\limits_{j = 1}^2\frac{\zeta_{j}\xi_{j}^{\tau-2}(1-\tau)}{2(1+\frac{S}{\xi_{j}})^{2-\tau}}(\sigma_{11}(k)S^2+\sigma_{12}(k)S)^2+\sum\limits_{l\in \mathcal N}q_{kl}\omega_{1}(l)\\ \leq&-\frac{\mu}{S}+\frac{\mu \nu}{S}+\mu+\check\beta I-\frac{\eta W}{S}+\frac{\sigma_{12}^2(k)}{2}+\sigma_{11}(k)\sigma_{12}(k)S+\frac{\sigma_{11}^2(k)}{2}S^2+\sum\limits_{j = 1}^2\frac{\mu\zeta_{j}}{\xi_{j}^{1-\tau}}\\ &-\frac{\zeta_{1}\xi_{1}^{\tau-2}(1-\tau)\sigma_{11}(k)\sigma_{12}(k)S^3}{(1+\frac{S}{\xi_{1}})^{2}}-\frac{\zeta_{2}\xi_{2}^{\tau-2}(1-\tau)\sigma_{11}^2(k)S^4}{2(1+\frac{S}{\xi_{2}})^{2}}+\sum\limits_{l\in \mathcal N}q_{kl}\omega_{1}(l)\\ \leq&-\frac{\mu}{S}+\frac{\mu \nu}{S}+\mu+\check\beta I-\frac{\eta W}{S}+\frac{\sigma_{12}^2(k)}{2}+\sigma_{11}(k)\sigma_{12}(k)S+\frac{\sigma_{11}^2(k)}{2}S^2+\sum\limits_{j = 1}^2\frac{\mu\zeta_{j}}{\xi_{j}^{1-\tau}}\\ &-\frac{\zeta_{1}\xi_{1}^{\tau+1}(1-\tau)\sigma_{11}(k)\sigma_{12}(k)(\frac{S}{\xi_{1}})^3}{2[1+(\frac{S}{\xi_{1}})^2]}-\frac{\zeta_{2}\xi_{2}^{\tau+2}(1-\tau)\sigma_{11}^2(k)(\frac{S}{\xi_{2}})^4}{4[1+(\frac{S}{\xi_{2}})^{2}]}+\sum\limits_{l\in \mathcal N}q_{kl}\omega_{1}(l)\\ \leq&-\frac{\mu}{S}+\frac{\mu \nu}{S}+\mu+\check\beta I-\frac{\eta W}{S}+\frac{\sigma_{12}^2(k)}{2}+\sigma_{11}(k)\sigma_{12}(k)S+\frac{\sigma_{11}^2(k)}{2}S^2+\sum\limits_{j = 1}^2\frac{\mu\zeta_{j}}{\xi_{j}^{1-\tau}}\\ &-\frac{\zeta_{1}\xi_{1}^{\tau+1}(1-\tau)\sigma_{11}(k)\sigma_{12}(k)(\frac{S}{\xi_{1}}-\frac{1}{2})}{2}-\frac{\zeta_{2}\xi_{2}^{\tau+2}(1-\tau)\sigma_{11}^2(k)[3(\frac{S}{\xi_{2}})^2-1]}{16}+\sum\limits_{l\in \mathcal N}q_{kl}\omega_{1}(l)\\ \end{aligned} \end{equation} (4.1)

    Choosing

    \begin{equation} \zeta_{1} = \frac{2}{(1-\tau)\xi_{1}^\tau}, \; \; \zeta_{2} = \frac{8}{3(1-\tau)\xi_{2}^\tau}, \end{equation} (4.2)

    we gain

    \begin{equation} \begin{aligned} \mathcal LV_{1}\leq&-\frac{\mu}{S}+\frac{\mu \nu}{S}+\mu+\check\beta I-\frac{\eta W}{S}+\frac{\sigma_{12}^2(k)}{2}+\frac{2\mu}{(1-\tau)\xi_{1}}+\frac{\xi_{1}\sigma_{11}(k)\sigma_{12}(k)}{2}\\ &+\frac{8\mu}{3(1-\tau)\xi_{2}}+\frac{\xi_{2}^2\sigma_{11}^2(k)}{6}+\sum\limits_{l\in \mathcal N}q_{kl}\omega_{1}(l). \end{aligned} \end{equation} (4.3)

    Let Z_{1}(k): = \frac{\sigma_{12}^2(k)}{2}+\frac{2\mu}{(1-\tau)\xi_{1}}+\frac{\xi_{1}\sigma_{11}(k)\sigma_{12}(k)}{2}+\frac{8\mu}{3(1-\tau)\xi_{2}}+\frac{\xi_{2}^2\sigma_{11}^2(k)}{6} . Motivated by [38], due to \Gamma being irreducible, for \overrightarrow Z_{1} = (Z_{1}(1), Z_{1}(2), \ldots, Z_{1}(N))^{\tau} , we can get a vector \overrightarrow \omega_{1} = (\omega_{1}(1), \omega_{1}(2), \ldots, \omega_{1}(N))^{\tau} so that the following Poisson system \Gamma\overrightarrow \omega_{1} = \sum_{l = 1}^N\pi_{l}Z_{1}(l)-\overrightarrow Z_{1} is true, which indicates

    \begin{equation} Z_{1}(k)+\sum\limits_{l\in\mathcal M}q_{kl}\omega_{1}(l) = \sum\limits_{k = 1}^{N}\pi_{k}Z_{1}(k), \; \; \forall k\in \mathcal N. \end{equation} (4.4)

    Combining (4.3) and (4.4), it is clear that

    \begin{equation*} \begin{aligned} \mathcal LV_{1}\leq& -\frac{\mu}{S}+\frac{\mu \nu}{S}+\mu+\check\beta I-\frac{\eta W}{S}+\sum\limits_{k = 1}^{N}\frac{\pi_{k}\sigma_{12}^2(k)}{2}+\frac{2\mu}{(1-\tau)\xi_{1}}+\frac{\xi_{1}\sum\nolimits_{k = 1}^{N}\pi_{k}\sigma_{11}(k)\sigma_{12}(k)}{2}\\ &+\frac{8\mu}{3(1-\tau)\xi_{2}}+\frac{\xi_{2}^2\sum\nolimits_{k = 1}^{N}\pi_{k}\sigma_{11}^2(k)}{6}. \end{aligned} \end{equation*}

    In order to ensure \frac{2\mu}{(1-\tau)\xi_{1}}+\frac{\xi_{1}\sum_{k = 1}^{N}\pi_{k}\sigma_{11}(k)\sigma_{12}(k)}{2}+\frac{8\mu}{3(1-\tau)\xi_{2}}+\frac{\xi_{2}^2\sum_{k = 1}^{N}\pi_{k}\sigma_{11}^2(k)}{6} reaches a minimum value, we opt for

    \begin{equation} \xi_{1} = 2\sqrt{\frac{\mu}{(1-\tau)\sum\nolimits_{k = 1}^{N}\pi_{k}\sigma_{11}(k)\sigma_{12}(k)}}, \; \; \xi_{2} = 2\sqrt[3]{\frac{\mu}{(1-\tau)\sum\nolimits_{k = 1}^{N}\pi_{k}\sigma_{11}^2(k)}}. \end{equation} (4.5)

    We obtain

    \begin{equation} \mathcal LV_{1}\leq -\frac{\mu}{S}+\frac{\mu \nu}{S}+\check\beta I-\frac{\eta W}{S}+\mu_{1}. \end{equation} (4.6)

    Employing the It \hat o 's formula to V_{2} and referring to the similar methods described earlier, we get

    \begin{equation} \begin{aligned} \mathcal LV_{2}& = -[\beta(k) S-(\mu+\gamma)]+\frac{1}{2}(\sigma_{21}(k)I+\sigma_{22}(k))^2+\sum\limits_{l\in\mathcal N}q_{kl}\omega_{2}(l)\\ &\leq-\hat\beta S+\mu+\gamma+\frac{\check\sigma_{21}^2}{2}I^2+\check\sigma_{21}\check\sigma_{22}I+\frac{\sigma_{22}^2(k)}{2}+\sum\limits_{l\in\mathcal N}q_{kl}\omega_{2}(l)\\ &: = -\hat\beta S+\check\sigma_{21}\check\sigma_{22}I+Z_{2}(k)+\frac{\check\sigma_{21}^2}{2}I^2+\sum\limits_{l\in\mathcal N}q_{kl}\omega_{2}(l). \end{aligned} \end{equation} (4.7)

    where Z_{2}(k) = \mu+\gamma+\frac{\sigma_{22}^2(k)}{2} , a vector \overrightarrow\omega_{2} = (\omega_{2}(1), \omega_{2}(2), \ldots, \omega_{2}(N))^{\tau} is chosen to meet the Poisson system \Gamma\overrightarrow\omega_{2} = \sum_{l = 1}^{N}\pi_{l}Z_{2}(l)-\overrightarrow Z_{2} , where \overrightarrow Z_{2} = (\overrightarrow Z_{2}(1), \overrightarrow Z_{2}(2), \ldots, \overrightarrow Z_{2}(N))^{\tau} . Therefore

    \begin{equation} \mathcal LV_{2}\leq-\hat\beta S+\check\sigma_{21}\check\sigma_{22}I+\frac{\check\sigma_{21}^2}{2}I^2+\mu_{2}. \end{equation} (4.8)

    In light of the similar steps mentioned in (4.7), we can derive

    \begin{equation} \begin{aligned} \mathcal LV_{3}\leq&-\frac{\eta R}{W}+\mu+\eta+\kappa\check\beta I+\frac{(\sigma_{31}(k)W+\sigma_{32}(k))^2}{2}+\frac{\zeta_{3}\eta R}{\tau^{1-\tau}}-\frac{\zeta_{3}(1-\tau)\tau^{\tau-2}\sigma_{31}^2(k)W^4}{2(1+(\frac{W}{\tau}))^{2-\tau}}+\sum\limits_{l\in\mathcal N}q_{kl}\omega_{3}(l)\\ \leq&-\frac{\eta R}{W}+\mu+\eta+\kappa\check\beta I+\check\sigma_{31}\check\sigma_{32}W+\frac{\sigma_{32}^2(k)}{2}+\frac{\sigma_{31}^2(k)}{2}W^2+\frac{\zeta_{3}\eta R}{\tau^{1-\tau}}\\ &-\frac{\zeta_{3}(1-\tau)\tau^{\tau+2}\sigma_{31}^2(k)(\frac{W}{\tau})^4}{4(1+(\frac{W}{\tau})^2)}+\sum\limits_{l\in\mathcal N}q_{kl}\omega_{3}(l). \end{aligned} \end{equation} (4.9)

    We select

    \begin{equation} \zeta_{3} = \frac{8}{3(1-\tau)\tau^\tau}, \end{equation} (4.10)

    and then derive

    \begin{equation} \begin{aligned} \mathcal LV_{3}\leq&-\frac{\eta R}{W}+\mu+\eta+\kappa\check\beta I+\check\sigma_{31}\check\sigma_{32}W+\frac{\sigma_{32}^2(k)}{2}+\frac{\sigma_{31}^2(k)}{2}W^2+\frac{8\eta R}{3\tau(1-\tau)}\\ &-\frac{\tau^{2}\sigma_{31}^2(k)[3(\frac{W}{\tau})^2-1]}{6}+\sum\limits_{l\in\mathcal N}q_{kl}\omega_{3}(l)\\ \leq&-\frac{\eta R}{W}+\kappa\check\beta I+\check\sigma_{31}\check\sigma_{32}W+\frac{8\eta R}{3\tau(1-\tau)}+\mu+\eta+\frac{\sigma_{32}^2(k)}{2}+\frac{\tau^2\sigma_{31}^2(k)}{6}+\sum\limits_{l\in\mathcal N}q_{kl}\omega_{3}(l). \end{aligned} \end{equation} (4.11)

    Let Z_{3}: = \mu+\eta+\frac{\sigma_{32}^2(k)}{2}+\frac{\tau^2\sigma_{31}^2(k)}{6} , a vector \overrightarrow\omega_{3} = (\omega_{3}(1), \omega_{3}(2), \cdots, \omega_{3}(N))^\tau can be found that satisfies the Poisson system \Gamma\overrightarrow\omega_{3} = \sum_{l = 1}^{N}\pi_{l}Z_{3}(l)-\overrightarrow Z_{3} , wherein \overrightarrow Z_{3} = (Z_{3}(1), Z_{3}(2), \cdots, Z_{3}(N))^{\tau} . Hence

    \begin{equation} \begin{aligned} \mathcal LV_{3}&\leq-\frac{\eta R}{W}+\kappa\check\beta I+\check\sigma_{31}\check\sigma_{32}W+\frac{8\eta R}{3\tau(1-\tau)}+\mu+\eta+\sum\limits_{k = 1}^{N}\frac{\pi_{k}\sigma_{32}^2(k)}{2}+\frac{\tau^2\sigma_{31}^2(k)}{6}\\ & = -\frac{\eta R}{W}+\kappa\check\beta I+\check\sigma_{31}\check\sigma_{32}W+\frac{8\eta R}{3\tau(1-\tau)}+\mu_{3}. \end{aligned} \end{equation} (4.12)

    Applying the It \hat o 's formula to V_{4} , we can get

    \begin{equation} \begin{aligned} \mathcal LV_{4}&\leq-\frac{\kappa\hat\beta IW}{R}-\frac{\gamma I}{R}-\frac{\mu\nu}{R}+\mu+\eta+\frac{(\sigma_{41}(k)R+\sigma_{42}(k))^2}{2}+\frac{}{}+\sum\limits_{l\in \mathcal N}q_{kl}\omega_{4}(l)\\ &\leq-\frac{\kappa\hat\beta IW}{R}-\frac{\gamma I}{R}-\frac{\mu\nu}{R}+\mu+\eta+\check\sigma_{41}\check\sigma_{42}R+\frac{\sigma_{42}^2(k)}{2}+\frac{\check\sigma_{41}^2}{2}R^2+\sum\limits_{l\in \mathcal N}q_{kl}\omega_{4}(l). \end{aligned} \end{equation} (4.13)

    Define Z_{4} = \mu+\eta+\frac{\sigma_{42}^2(k)}{2} . Using the same method mentioned in (4.4), one can obtain

    \begin{equation} \begin{aligned} \mathcal LV_{4}&\leq-\frac{\kappa\hat\beta IW}{R}-\frac{\gamma I}{R}-\frac{\mu\nu}{R}+\check\sigma_{41}\check\sigma_{42}R+\frac{\check\sigma_{41}^2}{2}R^2+\mu+\eta+\sum\limits_{k = 1}^{N}\frac{\pi_{k}\sigma_{42}^2(k)}{2}\\ & = -\frac{\kappa\hat\beta IW}{R}-\frac{\gamma I}{R}-\frac{\mu\nu}{R}+\check\sigma_{41}\check\sigma_{42}R+\frac{\check\sigma_{41}^2}{2}R^2+\mu_{4}. \end{aligned} \end{equation} (4.14)

    Step 3. Define two Lyapunov functions Y_{1}, Y_{2}:\mathcal R_{+}^5\times \mathcal N \rightarrow \mathbb R that play important roles

    \begin{equation} Y_{1} = \alpha_{1}S^{e}V_{1}+\frac{1}{S^e}V_{2}+\alpha_{2}W^eV_{3}+\alpha_{3}R^eV_{4}, \; \; Y_{2} = Y_{1}+\phi W+\phi R, \end{equation} (4.15)

    wherein the constants (\alpha_{1}, \alpha_{2}, \alpha_{3}) and \phi , which are positive, are derived from (4.25) and (4.28), respectively. Suppose S^e, I^e, W^e, R^e satisfy the following equations:

    \begin{equation} \begin{cases} \begin{aligned} &-\eta R^e+\mu_{3}W^e = 0, \\ &-\kappa\hat\beta I^eW^e-\gamma I^e-\mu\nu+\mu_{4}R^e = 0, \\ &-\mu+\mu\nu-\eta W^e+\mu_{1}S^e+\check\beta I^eS^e = 0. \end{aligned} \end{cases} \end{equation} (4.16)

    Let I^e = 1 , meanwhile, we can get

    \begin{equation*} S^e = \frac{\mu+\eta W^e-\mu\nu}{\mu_{1}+\check\beta} > 0, \; \; \; W^e = \frac{\eta(\mu\nu+\gamma)}{\mu_{3}\mu_{4}-\eta\kappa\hat\beta} > 0, \; \; \; R^e = \frac{\mu_{3}(\mu\nu+\gamma)}{\mu_{3}\mu_{4}-\eta\kappa\hat\beta} > 0. \end{equation*}

    Take a standard transformation of variables (S, I, W, R)

    \begin{equation} \hat{S}: = \frac{S}{S^e}, \; \; \; \hat{I}: = \frac{I}{I^e}, \; \; \; \hat{W}: = \frac{W}{W^e}, \; \; \; \hat{R}: = \frac{R}{R^e}. \end{equation} (4.17)

    Considering that

    \begin{equation} -\hat\beta+\frac{\mu_{2}}{S^e} = -\frac{\mu_{2}}{S^e}(\frac{\hat\beta S^e}{\mu_{2}}-1) = -\frac{\mu_{2}}{S^e}(\mathcal R_{0}^e-1). \end{equation} (4.18)

    From the inequality \ln a\leq a-1\; \; (\forall a > 0) , using the formulas (4.6), (4.16), and (4.17), we get

    \begin{equation} \begin{aligned} \mathcal L(S^eV_{1})&\leq S^e(-\frac{\mu}{S}+\frac{\mu \nu}{S}+\check\beta I-\frac{\eta W}{S}+\mu_{1})\\ &\leq S^e(-\frac{\mu}{S^e\hat S}+\frac{\mu \nu}{S^e\hat S}+\check\beta (1+\ln I)-\frac{\eta W^e\hat W}{S^e\hat S}+\mu_{1})\\ &\leq S^e[-\frac{\mu}{S^e}(1+\ln\frac{1}{\hat S})+\frac{\mu\nu}{S^e}(1+\ln\frac{1}{\hat S})+\check\beta +\check\beta\ln I-\frac{\eta W^e}{S^e}(1+\ln \frac{\hat W}{\hat S})+\mu_{1}]\\ & = -\mu+\mu\ln\hat S+\mu\nu-\mu\nu\ln\hat S+\check\beta S^e+\check\beta S^e\ln I-\eta W^e-\eta W^e\ln\hat W+\eta W^e\ln\hat S+\mu_{1}S^e\\ & = \mu\ln\hat S+\check\beta S^e\ln I+\eta W^e\ln\hat S-\mu\nu\ln\hat S-\eta W^e\ln\hat W. \end{aligned} \end{equation} (4.19)

    Using the same method as above, together with formula (4.8) and (4.18), we can obtain

    \begin{equation} \begin{aligned} \mathcal L(\frac{1}{S^e}V_{2})&\leq\frac{1}{S^e}[-\hat\beta S+\check\sigma_{21}\check\sigma_{22}I+\frac{\check\sigma_{21}^2}{2}I^2+\mu_{2}]\\ &\leq\frac{1}{S^e}[-\hat\beta S^e(1+\ln \hat S)+\check\sigma_{21}\check\sigma_{22}I+\frac{\check\sigma_{21}^2}{2}I^2+\mu_{2}]\\ & = -\hat\beta-\hat\beta\ln\hat S+\frac{\check\sigma_{21}\check\sigma_{22}I}{S^e}+\frac{\check\sigma_{21}^2}{2S^e}I^2+\frac{\mu_{2}}{S^e}\\ & = -\frac{\mu_{2}}{S^e}(\mathcal {R}_0^e-1)-\hat\beta\ln \hat S+\frac{\check\sigma_{21}\check\sigma_{22}I}{S^e}+\frac{\check\sigma_{21}^2}{2S^e}I^2. \end{aligned} \end{equation} (4.20)

    Based on (4.12) and (4.16), we derive

    \begin{equation} \begin{aligned} \mathcal L(W^eV_{3})&\leq W^e[-\frac{\eta R}{W}+\kappa\check\beta I+\check\sigma_{31}\check\sigma_{32}W+\frac{8\eta R}{3\tau(1-\tau)}+\mu_{3}]\\ &\leq W^e[-\frac{\eta R^e}{W^e}(1+\ln \frac{\hat R}{\hat W})+\kappa\check\beta I+\check\sigma_{31}\check\sigma_{32}W+\frac{8\eta R}{3\tau(1-\tau)}+\mu_{3}]\\ & = -\eta R^e-\eta R^e\ln \hat R+\eta R^e\ln \hat W+\check\sigma_{31}\check\sigma_{32}WW^e+\kappa\check\beta IW^e+\frac{8\eta RW^e}{3\tau(1-\tau)}+\mu_{3}W^e\\ & = -\eta R^e\ln \hat R+\eta R^e\ln \hat W+\check\sigma_{31}\check\sigma_{32}WW^e+\kappa\check\beta IW^e+\frac{8\eta RW^e}{3\tau(1-\tau)}. \end{aligned} \end{equation} (4.21)

    According to (4.14) and (4.16), we have

    \begin{equation} \begin{aligned} \mathcal L(R^e V_{4})\leq& R^e(-\frac{\kappa\hat\beta IW}{R}-\frac{\gamma I}{R}-\frac{\mu\nu}{R}+\check\sigma_{41}\check\sigma_{42}R+\frac{\check\sigma_{41}^2}{2}R^2+\mu_{4})\\ \leq& R^e[-\frac{\kappa\hat\beta W^e}{R^e}(1+\ln\frac{I\hat W}{ \hat R})-\frac{\gamma }{ R^e}(1+\ln\frac{I}{\hat R})-\frac{\mu\nu}{R^e}(1+\ln\frac{1}{\hat R})+\check\sigma_{41}\check\sigma_{42}R+\frac{\check\sigma_{41}^2}{2}R^2+\mu_{4}]\\ = &-\kappa\hat\beta W^e-\kappa\hat\beta W^e\ln\hat W-\kappa\hat\beta W^e\ln I+\kappa\hat\beta W^e\ln\hat R-\gamma -\gamma \ln I+\gamma \ln\hat R-\mu\nu+\mu\nu\ln\hat R\\ &+\check\sigma_{41}\check\sigma_{42}RR^e+\frac{\check\sigma_{41}^2}{2}R^2R^e+\mu_{4}R^e\\ = &-\kappa\hat\beta W^e\ln\hat W-\kappa\hat\beta W^e\ln I+\kappa\hat\beta W^e\ln\hat R-\gamma \ln I\\ &+\gamma \ln\hat R+\mu\nu\ln\hat R+\check\sigma_{41}\check\sigma_{42}RR^e+\frac{\check\sigma_{41}^2}{2}R^2R^e. \end{aligned} \end{equation} (4.22)

    Substituting (4.19)–(4.22) into Y_{1} , we obtain

    \begin{equation} \begin{aligned} \mathcal LY_{1}\leq&-\frac{\mu_{2}}{S^e}(\mathcal {R}_0^e-1)-\beta\ln \hat S+\frac{\check\sigma_{21}\check\sigma_{22}I}{S^e}+\frac{\check\sigma_{21}^2}{2S^e}I^2\\ &+\alpha_{1}(\mu\ln\hat S+\check\beta S^e\ln I+\eta W^e\ln\hat S-\mu\nu\ln\hat S-\eta W^e\ln\hat W)+\alpha_{2}[-\eta R^e\ln \hat R+\eta R^e\ln \hat W\\ &+\check\sigma_{31}\check\sigma_{32}WW^e+\kappa\check\beta IW^e+\frac{8\eta RW^e}{3\tau(1-\tau)}]+\alpha_{3}(-\kappa\hat\beta W^e\ln\hat W-\kappa\hat\beta W^e\ln I+\kappa\hat\beta W^e\ln\hat R\\ &-\gamma \ln I+\gamma \ln\hat R+\mu\nu\ln\hat R+\check\sigma_{41}\check\sigma_{42}RR^e+\frac{\check\sigma_{41}^2}{2}R^2R^e)\\ = &-\frac{\mu_{2}}{S^e}(\mathcal {R}_0^e-1)+[\alpha_{1}(\mu+\eta W^e-\mu\nu)-\beta]\ln\hat S\\ &+[\alpha_{1}\check\beta S^e-\alpha_{3}(\gamma+\kappa\hat\beta W^e)]\ln I+[\alpha_{2}\eta R^e-\alpha_{1}\eta W^e-\alpha_{3}\kappa\hat\beta W^e]\ln\hat W\\ &+[\alpha_{3}(\kappa\hat\beta W^e+\mu\nu+\gamma)-\alpha_{2}\eta R^e]\ln \hat R+[\frac{\check\sigma_{21}\check\sigma_{22}}{S^e}+\alpha_{1}\check\beta S^e+\alpha_{2}\kappa\check\beta W^e]I\\ &+\alpha_{2}\check\sigma_{31}\check\sigma_{32}W^eW+[\alpha_{3}\check\sigma_{41}\check\sigma_{42}R^e+\alpha_{2}\frac{8\eta W^e}{3\tau(1-\tau)}]R+\frac{\check\sigma_{41}^2}{2}R^eR^2+\frac{\check\sigma_{21}^2}{2S^e}I^2. \end{aligned} \end{equation} (4.23)

    Let

    \begin{equation} \begin{aligned} \begin{cases} \alpha_{1}(\mu+\eta W^e-\mu\nu)-\beta = 0, \\ \alpha_{1}\check\beta S^e-\alpha_{3}(\gamma+\kappa\hat\beta W^e) = 0, \\ \alpha_{2}\eta R^e-\alpha_{1}\eta W^e-\alpha_{3}\kappa\hat\beta W^e = 0, \\ \alpha_{3}(\kappa\hat\beta W^e+\mu\nu+\gamma)-\alpha_{2}\eta R^e = 0. \end{cases} \end{aligned} \end{equation} (4.24)

    We derive through calculation

    \begin{equation} \alpha_{1} = \frac{\beta}{\mu+\eta W^e-\mu\nu} > 0, \; \; \; \alpha_{3} = \frac{\alpha_{1}\check\beta S^e}{\gamma+\kappa\hat\beta W^e} > 0, \; \; \; \alpha_{2} = \frac{\alpha_{3}(\kappa\hat\beta W^e+\mu\nu+\gamma)}{\eta R^e} > 0. \end{equation} (4.25)

    For the sake of convenience, we define \chi_{1} = \frac{\check\sigma_{21}\check\sigma_{22}}{S^e}+\alpha_{1}\check\beta S^e+\alpha_{2}\kappa\check\beta W^e, \; \chi_{2} = \alpha_{2}\check\sigma_{31}\check\sigma_{32}W^e, \; \chi_{3} = \alpha_{3}\check\sigma_{41}\check\sigma_{42}R^e+\alpha_{2}\frac{8\eta W^e}{3\tau(1-\tau)} . Combining (4.23) and (4.24), we get

    \begin{equation} \begin{aligned} \mathcal LY_{1}\leq&-\frac{\mu_{2}}{S^e}(\mathcal {R}_0^e-1)+\chi_{1}I+\chi_{2}W+\chi_{3}R+\frac{\check\sigma^2_{41}}{2}R^eR^2+\frac{\check\sigma^2_{21}}{2S^e}I^2. \end{aligned} \end{equation} (4.26)

    By (4.15) and (4.26), we have

    \begin{equation} \begin{aligned} \mathcal LY_{2}\leq&-\frac{\mu_{2}}{S^e}(\mathcal {R}_0^e-1)+\chi_{1}I+\chi_{2}W+\chi_{3}R+\phi[\eta R-(\mu+\eta +\kappa\beta I)W]\\ &+\phi[\kappa\beta IW+\gamma I+\mu \nu-(\mu+\eta )R]+\frac{\check\sigma^2_{41}}{2}R^eR^2+\frac{\check\sigma^2_{21}}{2S^e}I^2\\ = &-\frac{\mu_{2}}{S^e}(\mathcal {R}_0^e-1)+(\chi_{1}+\phi\gamma)I+[\chi_{2}-\phi(\mu+\eta )]W\\ &+(\chi_{3}-\phi\mu)R+\phi\mu\nu+\frac{\check\sigma^2_{41}}{2}R^eR^2+\frac{\check\sigma^2_{21}}{2S^e}I^2, \end{aligned} \end{equation} (4.27)

    wherein \phi fulfills the following two equations:

    \begin{equation} \begin{cases} \chi_{2}-\phi(\mu+\eta ) = 0\\ \chi_{3}-\phi\mu = 0. \end{cases} \end{equation} (4.28)

    Substituting (4.27) into (4.28), we obtain

    \begin{equation} \mathcal LY_{2}\leq-\frac{\mu_{2}}{S^e}(\mathcal {R}_0^e-1)+(\chi_{1}+\phi\gamma)I+\phi\mu\nu+\frac{\check\sigma^2_{41}}{2}R^eR^2+\frac{\check\sigma^2_{21}}{2S^e}I^2. \end{equation} (4.29)

    Step 4. Define the following two functions Y_{3} , Y_{4} :

    \begin{equation*} Y_{3} = \frac{(\hat\sigma_{11}S+\hat\sigma_{12})^{\tau}}{\tau}+\frac{(\hat\sigma_{21}I+\hat\sigma_{22})^{\tau}}{\tau}+\frac{(\hat\sigma_{31}W+\hat\sigma_{32})^{\tau}}{\tau}+\frac{(\hat\sigma_{41}R+\hat\sigma_{42})^{\tau}}{\tau}, \; \; Y_{4} = -\ln S-\ln W-\ln R. \end{equation*}
    \begin{equation} \begin{aligned} \mathcal L(Y_{3}+Y_{4})\leq&\hat \sigma_{11}\hat \sigma_{12}^{\tau-1}\mu+\hat \sigma_{41}\hat \sigma_{42}^{\tau-1}\mu\nu+3\mu+2\eta +\check \sigma_{11}\check \sigma_{12}S+(\hat\sigma_{41}\hat\sigma_{42}^{\tau-1}\gamma+\beta+\kappa\check\beta)I\\ &+(\hat \sigma_{11}\hat \sigma_{12}^{\tau-1}\eta +\check \sigma_{31}\check \sigma_{32})W+(\hat \sigma_{31}\hat \sigma_{32}^{\tau-1}\eta +\check \sigma_{41}\check \sigma_{42})R+\hat\sigma_{21}\hat\sigma_{22}^{\tau-1}\beta SI\\ &+\hat\sigma_{41}\hat\sigma_{42}^{\tau-1}\kappa\check\beta IW+\frac {\check \sigma_{12}^2}{2}+\frac {\check \sigma_{32}^2}{2}+\frac {\check \sigma_{42}^2}{2}+\frac{\check \sigma_{11}^2}{2}S^2+\frac{\check \sigma_{31}^2}{2}W^2+\frac{\check\sigma_{41}^2}{2}R^2-\frac{\mu}{S}-\frac{\eta R}{W}-\frac{\gamma I}{R}\\ &-\frac{(1-\tau)\hat \sigma_{11}^{2+\tau}S^{2+\tau}}{2}-\frac{(1-\tau)\hat \sigma_{21}^{2+\tau}I^{2+\tau}}{2} -\frac{(1-\tau)\hat \sigma_{31}^{2+\tau}W^{2+\tau}}{2}-\frac{(1-\tau)\hat \sigma_{41}^{2+\tau}R^{2+\tau}}{2}\\ \leq&\hat \sigma_{11}\hat \sigma_{12}^{\tau-1}\mu+\hat \sigma_{41}\hat \sigma_{42}^{\tau-1}\mu\nu+3\mu+2\eta +Q_{1}+\frac {\check \sigma_{12}^2}{2}+\frac {\check \sigma_{32}^2}{2}+\frac {\check \sigma_{42}^2}{2}-\frac{\mu}{S}-\frac{\eta R}{W}-\frac{\gamma I}{R}\\ &-\frac{(1-\tau)\hat \sigma_{11}^{2+\tau}S^{2+\tau}}{4}-\frac{(1-\tau)\hat \sigma_{21}^{2+\tau}I^{2+\tau}}{4} -\frac{(1-\tau)\hat \sigma_{31}^{2+\tau}W^{2+\tau}}{4}-\frac{(1-\tau)\hat \sigma_{41}^{2+\tau}R^{2+\tau}}{4}, \end{aligned} \end{equation} (4.30)

    where

    \begin{equation*} \begin{aligned} Q_{1} = &\sup\limits_{(S, I, W, R)\in\mathbb R_{+}^4}\{\check \sigma_{11}\check \sigma_{12}S+(\hat\sigma_{41}\hat\sigma_{42}^{\tau-1}\gamma+\beta+\kappa\check\beta)I+(\hat \sigma_{11}\hat \sigma_{12}^{\tau-1}\eta+\check \sigma_{31}\check \sigma_{32})W\\ &+(\hat \sigma_{31}\hat \sigma_{32}^{\tau-1}\eta +\check \sigma_{41}\check \sigma_{42})R+\hat\sigma_{21}\hat\sigma_{22}^{\tau-1}\beta SI+\hat\sigma_{41}\hat\sigma_{42}^{\tau-1}\kappa\check\beta IW+\frac{\check \sigma_{11}^2}{2}S^2+\frac{\check \sigma_{31}^2}{2}W^2+\frac{\check\sigma_{41}^2}{2}R^2\\ &-\frac{(1-\tau)\hat \sigma_{11}^{2+\tau}S^{2+\tau}}{4}-\frac{(1-\tau)\hat \sigma_{21}^{2+\tau}I^{2+\tau}}{4} -\frac{(1-\tau)\hat \sigma_{31}^{2+\tau}W^{2+\tau}}{4}-\frac{(1-\tau)\hat \sigma_{41}^{2+\tau}R^{2+\tau}}{4}\} < +\infty. \end{aligned} \end{equation*}

    Constructing the following form

    \begin{equation*} V(S, I, W, R, k) = (M_{0}Y_{2}+Y_{3}+Y_{4})-\overline Y, \end{equation*}

    wherein M_{0} > 0 is large enough to fulfill the following inequality:

    \begin{equation} -\frac{M_{0}\mu_{2}}{S^e}(\mathcal {R}_0^e-1)+M_{0}\phi\mu\nu+\hat \sigma_{11}\hat \sigma_{12}^{\tau-1}\mu+\hat \sigma_{41}\hat \sigma_{42}^{\tau-1}\mu\nu+3\mu+2\eta +Q_{1}+\frac {\check \sigma_{12}^2}{2}+\frac {\check \sigma_{32}^2}{2}+\frac {\check \sigma_{42}^2}{2}\leq -2{, } \end{equation} (4.31)
    \begin{equation} \begin{aligned} \mathcal L V\leq&M_{0}[-\frac{\mu_{2}}{S^e}(\mathcal {R}_0^e-1)+(\chi_{1}+\phi\gamma)I+\phi\mu\nu+\frac{\check\sigma^2_{41}}{2}R^eR^2+\frac{\check\sigma^2_{21}}{2S^e}I^2]\\ &+\hat \sigma_{11}\hat \sigma_{12}^{\tau-1}\mu+\hat \sigma_{41}\hat \sigma_{42}^{\tau-1}\mu\nu+3\mu+2\eta +Q_{1}+\frac {\check \sigma_{12}^2}{2}+\frac {\check \sigma_{32}^2}{2}+\frac {\check \sigma_{42}^2}{2}-\frac{\mu}{S}-\frac{\eta R}{W}-\frac{\gamma I}{R}\\ &-\frac{(1-\tau)\hat \sigma_{11}^{2+\tau}S^{2+\tau}}{4} -\frac{(1-\tau)\hat \sigma_{21}^{2+\tau}I^{2+\tau}}{4} -\frac{(1-\tau)\hat \sigma_{31}^{2+\tau}W^{2+\tau}}{4}-\frac{(1-\tau)\hat \sigma_{41}^{2+\tau}R^{2+\tau}}{4}\\ \leq&-2+M_{0}[(\chi_{1}+\phi\gamma)I+\frac{\check\sigma^2_{41}}{2}R^eR^2+\frac{\check\sigma^2_{21}}{2S^e}I^2]-\frac{\mu}{S}-\frac{\eta R}{W}-\frac{\gamma I}{R}\\ &-\frac{(1-\tau)\hat \sigma_{11}^{2+\tau}S^{2+\tau}}{4} -\frac{(1-\tau)\hat \sigma_{21}^{2+\tau}I^{2+\tau}}{4} -\frac{(1-\tau)\hat \sigma_{31}^{2+\tau}W^{2+\tau}}{4}-\frac{(1-\tau)\hat \sigma_{41}^{2+\tau}R^{2+\tau}}{4}. \end{aligned} \end{equation} (4.32)

    We define the following compact set:

    \begin{equation*} \mathcal D = \{(S, I, W, R)\in\mathbb R\; |\; \epsilon\leq S\leq \frac{1}{\epsilon}, \; \epsilon\leq I\leq \frac{1}{\epsilon}, \; \epsilon^3\leq W\leq \frac{1}{\epsilon^3}, \; \epsilon^2\leq R\leq \frac{1}{\epsilon^2}\}, \end{equation*}

    where \epsilon < 1 is a small enough positive constant that satisfies the following inequalities:

    \begin{equation} -2-\frac{(1-\tau)min\{\hat\sigma_{11}^{2+\tau}, \hat\sigma_{21}^{2+\tau}\}}{8}(\frac{1}{\epsilon})^{2+\tau}+Q_{2}\leq -1, \end{equation} (4.33)
    \begin{equation} -2-\frac{(1-\tau)\hat\sigma_{31}^{2+\tau}}{4}(\frac{1}{\epsilon})^{6+3\tau}+Q_{2}\leq -1, \end{equation} (4.34)
    \begin{equation} -2-\frac{(1-\tau)\hat\sigma_{41}^{2+\tau}}{4}(\frac{1}{\epsilon})^{4+2\tau}+Q_{2}\leq -1, \end{equation} (4.35)
    \begin{equation} -2-\frac{min\{\mu, \eta, \gamma\}}{\epsilon}+Q_{2}\leq-1, \end{equation} (4.36)
    \begin{equation} -2+M_{0}(\chi_{1}+\phi\gamma+\check\sigma_{41}^2R^e+\frac{\check\sigma_{21}^2}{2S^e})\epsilon\leq-1, \end{equation} (4.37)

    where Q_{2} = \sup_{(I, R)\in\mathbb R_{+}^2}\{M_{0}[(\chi_{1}+\phi\gamma)I+\frac{\check\sigma^2_{41}}{2}R^eR^2+\frac{\check\sigma^2_{21}}{2S^e}I^2]\} . Next, we partition \mathbb R _{+}^4\backslash\mathcal D_{\epsilon} into eight domains.

    \begin{equation*} \begin{aligned} &\mathcal D_{1}^c = \{(S, I, W, R)\in\mathbb R_{+}^5\; |\; S > \frac{1}{\epsilon}\}, \; \; \mathcal D_{2}^c = \{(S, I, W, R)\in\mathbb R_{+}^5\; |\; I > \frac{1}{\epsilon}\}, \\ &\mathcal D_{3}^c = \{(S, I, W, R)\in\mathbb R_{+}^5\; |\; W > \frac{1}{\epsilon^3}\}, \; \; \mathcal D_{4}^c = \{(S, I, W, R)\in\mathbb R_{+}^5\; |\; R > \frac{1}{\epsilon^2}\}, \\ &\mathcal D_{5}^c = \{(S, I, W, R)\in\mathbb R_{+}^5\; |\; S < \epsilon\}, \; \; \mathcal D_{6}^c = \{(S, I, W, R)\in\mathbb R_{+}^5\; |\; I < \epsilon, \; R\geq\epsilon^2\}, \\ &\mathcal D_{7}^c = \{(S, I, W, R)\in\mathbb R_{+}^5\; |\; W < \epsilon^3\, \; R\geq\epsilon^2\}, \; \; \mathcal D_{8}^c = \{(S, I, W, R)\in\mathbb R_{+}^5\; |\; R < \epsilon^2, \; I\geq\epsilon\}. \end{aligned} \end{equation*}

    It is clear that \mathcal D_{\epsilon}^c = \cup_{i = 1}^8\mathcal D_{i}^c . After this, to demonstrate \mathcal LV\leq-1 .

    Case 1. Suppose (S, I, W, R)\in \mathcal D_{1}^c , in consideration of (4.32) and (4.33), we gain

    \begin{equation*} \mathcal LV \leq-2-\frac{(1-\tau)\hat\sigma_{11}^{2+\tau}}{8}S^{2+\tau}+Q_{2} \leq-2-\frac{(1-\tau)min\{\hat\sigma_{11}^{2+\tau}, \hat\sigma_{21}^{2+\tau}\}}{8}(\frac{1}{\epsilon})^{2+\tau}+Q_{2}\leq -1. \end{equation*}

    Case 2. If (S, I, W, R)\in \mathcal D_{2}^c , combining (4.32) and (4.33), we have

    \begin{equation*} \mathcal LV \leq-2-\frac{(1-\tau)\hat\sigma_{21}^{2+\tau}}{8}I^{2+\tau}+Q_{2} \leq-2-\frac{(1-\tau)min\{\hat\sigma_{11}^{2+\tau}, \hat\sigma_{21}^{2+\tau}\}}{8}(\frac{1}{\epsilon})^{2+\tau}+Q_{2}\leq -1. \end{equation*}

    Case 3. If (S, I, W, R)\in \mathcal D_{3}^c , in consideration of (4.32) and (4.34), we obtain

    \begin{equation*} \mathcal LV \leq-2-\frac{(1-\tau)\hat\sigma_{31}^{2+\tau}}{4}W^{2+\tau}+Q_{2} \leq-2-\frac{(1-\tau)\hat\sigma_{31}^{2+\tau}}{4}(\frac{1}{\epsilon})^{6+3\tau}+Q_{2}\leq -1. \end{equation*}

    Case 4. If (S, I, W, R)\in \mathcal D_{4}^c , given (4.32) and (4.35), we get

    \begin{equation*} \mathcal LV \leq-2-\frac{(1-\tau)\hat\sigma_{41}^{2+\tau}}{4}R^{2+\tau}+Q_{2} \leq-2-\frac{(1-\tau)\hat\sigma_{41}^{2+\tau}}{4}(\frac{1}{\epsilon})^{4+2\tau}+Q_{2}\leq -1. \end{equation*}

    Case 5. If (S, I, W, R)\in \mathcal D_{5}^c , by (4.32) and (4.36), we gain

    \begin{equation*} \mathcal LV \leq-2-\frac{\mu}{S}+Q_{2} \leq-2-\frac{\mu}{\epsilon}+Q_{2}\leq -1\leq-2-\frac{min\{\mu, \eta, \gamma\}}{\epsilon}+Q_{2}\leq-1. \end{equation*}

    Case 6. If (S, I, W, R)\in \mathcal D_{6}^c , combining (4.32) and (4.36), one gets

    \begin{equation*} \begin{aligned} \mathcal LV \leq&-2+M_{0}[(\chi_{1}+\phi\gamma)I+\frac{\check\sigma^2_{41}}{2}R^eR^2+\frac{\check\sigma^2_{21}}{2S^e}I^2] \leq -2+M_{0}[(\chi_{1}+\phi\gamma)\epsilon+\frac{\check\sigma^2_{41}}{2}R^e\epsilon^4+\frac{\check\sigma^2_{21}}{2S^e}\epsilon^2]\\ \leq&-2+M_{0}(\chi_{1}+\phi\gamma+\check\sigma_{41}^2R^e+\frac{\check\sigma_{21}^2}{2S^e})\epsilon\leq-1. \end{aligned} \end{equation*}

    Case 7. If (S, I, W, R)\in \mathcal D_{7}^c , in view of (4.32) and (4.36), we acquire

    \begin{equation*} \mathcal LV \leq-2-\frac{\eta R}{W}+Q_{2} \leq-2-\frac{\eta\epsilon^2}{\epsilon^3}+Q_{2}\leq -1\leq-2-\frac{min\{\mu, \eta, \gamma\}}{\epsilon}+Q_{2}\leq-1. \end{equation*}

    Case 8. If (S, I, W, R)\in \mathcal D_{8}^c , based on (4.32) and (4.36), we have

    \begin{equation*} \mathcal LV \leq-2-\frac{\gamma I}{R}+Q_{2} \leq-2-\frac{\gamma\epsilon}{\epsilon^2}+Q_{2}\leq -1\leq-2-\frac{min\{\mu, \eta, \gamma\}}{\epsilon}+Q_{2}\leq-1. \end{equation*}

    To summarize, we establish that \mathcal LV\leq-1 for all (S, I, W, R)\in\mathcal D_{\epsilon}^c . Thus, the second condition of Has'minskii theorem is met. Given that \mathcal R_{0}^e > 1 , the solution of system (2.5) possesses a unique ESD \pi(\cdot) .

    Remark 4.1. We can calculate \mathcal R_{0}^e \leq \mathcal R_{0} . Theorem 4.1 implies that as the noise intensity approaches zero, there is not infection and N = 1 , system (2.5) transforms into system (2.1), and the basic production number \mathcal R_{0} serves as a common threshold. We obtain that when the noise intensity is relatively low, pertussis still prevails. Integrating the aforementioned Theorems 4.1 and 3.1, it is sensible to strengthen external intervention, wear masks, and appropriately control the number of students in the classroom to mitigate the spread of pertussis.

    In this section, numerical simulations are utilized to validate our conclusions. Using Milstein's higher-order method [40], the discretization equation associated with system (2.5) is given by:

    \begin{equation*} \begin{aligned} \begin{cases} S^{j+1} = &S^j+[\mu(1-\nu)-(\mu+\beta(k) I)S^j+\eta W^j]\Delta t+(\sigma_{11}(k)S^j+\sigma_{12}(k))S^j\sqrt{\Delta t}\xi_{j}\\ &+\frac{1}{2}[2\sigma_{11}^2(k)(S^j)^3+3\sigma_{11}(k)\sigma_{12}(k)(S^j)^2+\sigma_{12}^2(k)(S^j)](\xi_{j}^2-1)\Delta t, \\ I^{j+1} = &I^j+[\beta(k) S^jI^j-(\mu+\gamma)I^j]\Delta t+(\sigma_{21}(k)I^j+\sigma_{22}(k))I^j\sqrt{\Delta t}\eta_{j}\\ &+\frac{1}{2}[2\sigma_{21}^2(k)(I^j)^3+3\sigma_{21}(k)\sigma_{22}(k)(I^j)^2+\sigma_{22}^2(k)(I^j)](\eta_{j}^2-1)\Delta t, \\ W^{j+1} = &W^j+[\eta R^j-(\mu+\eta +\kappa\beta(k) I)W^j]\Delta t+(\sigma_{31}(k)W^j+\sigma_{32}(k))W^j\sqrt{\Delta t}\zeta_{j}\\ &+\frac{1}{2}[2\sigma_{31}^2(k)(W^j)^3+3\sigma_{31}(k)\sigma_{32}(k)(W^j)^2+\sigma_{32}^2(k)(W^j)](\zeta_{j}^2-1)\Delta t, \\ R^{j+1} = &R^j+[\kappa\beta(k) I^jW^j+\gamma I^j+\mu \nu-(\mu+\eta )R^j]\Delta t+(\sigma_{41}(k)R^j+\sigma_{42}(k))R^j\sqrt{\Delta t}\vartheta_{j}\\ &+\frac{1}{2}[2\sigma_{41}^2(k)(R^j)^3+3\sigma_{41}(k)\sigma_{42}(k)(R^j)^2+\sigma_{42}^2(k)(W^j)](\vartheta_{j}^2-1)\Delta t, \\ \end{cases} \end{aligned} \end{equation*}

    of which k\in\mathcal N , \Delta t > 0 represents the size of a single iteration step and random variables \xi_{j} , \eta_{j} , \zeta_{j} and \vartheta_{j} are four independent variables that adhere to a Gaussian distribution \mathbb N(0, 1) for j = 1, 2, \ldots, n , respectively. We consider r(t) as a right-continuous Markov chain defined on the state space \mathcal N = \{1, 2\} , with the corresponding generator

    \begin{equation*} \Gamma = \begin{pmatrix} -0.4&0.4\\ 0.5&-0.5\\ \end{pmatrix}. \end{equation*}

    By solving \pi \Gamma = 0 and \pi_1+\pi_2 = 1 , the stationary distribution of \Gamma is obtained as \pi = (\pi_1, \pi_2) = (\frac{5}{9}, \frac{4}{9}) . The initial values are chosen as (S(0), I(0), W(0), R(0)) = (0.45, 0.35, 0.15, 0.05) and the primary parameters in system (2.5) are set as follows:

    Table 1.  Specific values of model parameters with citations.
    Parameters Biological meaning Values Citations
    \mu Death rate 0.02 [2,10]
    \nu Vaccination probabilities 0.8 [10]
    \kappa Coefficient for boosting 0.03 estimation
    \eta Loss of immunity rate 0.16 [2]
    \gamma Recovery rate 0.5 estimation

     | Show Table
    DownLoad: CSV

    It is worth noting that, we estimate the parameters of model (2.1) by using the least squares method, and take the year as the unit of measurement. Based on [2] and [10], \mu = 0.02 , \nu = 0.8 , \eta = 0.16 can be chosen, respectively. Then, by analyzing the data of pertussis infections from 2006 to 2019 (selected from the National Health Commission of the People's Republic of China, see Figure 1), \kappa = 0.03 and \gamma = 0.5 have been selected. In Figure 1, the susceptible initial value is set to 1030 , the infectious initial value is set to 2100 , the waning initial value is set to 3000 , and the recovered initial value is set to 3000 .

    Figure 1.  Data on pertussis infection and simulation of the model.

    By direct calculation, \mathcal R_{0} = 3.2004 > 1 . We focus on three aspects, as follows:

    ● The system (2.5) shows both a stationary distribution and ergodic behavior when \mathcal R_0^e > 1 .

    ● The dynamical characteristics of system (2.5) for \mathcal R_0^e < 1 .

    ● The effect of stochastic perturbations on the disease dynamics within system (2.5).

    Example 5.1. We opt for the transmission rates (\beta_{1}, \beta_{2}) = (1, 2) and the stochastic noises (\sigma_{ij}(1), \sigma_{ij}(2)) = (2 \times 10^{-4}, 6 \times 10^{-4}) for any i = 1, 2, 3, 4; j = 1, 2, respectively. The calculations show that \mathcal R_0^e = 1.6654 > 1 . Moreover, since \mathcal R_0 > 1 , we can obtain the existence of an endemic equilibrium for deterministic system (2.1). Figure 2 illustrates that the stochastic system (2.5) admits a unique global positive solution, which follows a unique ESD \pi(\cdot) , signifying the persistence of the disease in a community. On the other hand, we notice a slight difference between the stochastic solution and the solution without randomness. Meanwhile, Figures 3 and 4 depict the corresponding fitting density function and frequency histogram, as well as the movement of Markov chain, respectively.

    Figure 2.  The simulations of (S(t), I(t), W(t), R(t)) in system (2.5) are conducted under two conditions: without stochastic noise and with stochastic noise (\sigma_{ij}(1), \sigma_{ij}(2)) = (2 \times 10^{-4}, 6 \times 10^{-4}) for each i = 1, 2, 3, 4 ; j = 1, 2 .
    Figure 3.  When the noise intensity is (\sigma_{ij}(1), \sigma_{ij}(2)) = (2 \times 10^{-4}, 6 \times 10^{-4}) for each i = 1, 2, 3, 4 ; j = 1, 2 , the fitted density functions and frequency histograms associated with individuals S, I, W and R , respectively.
    Figure 4.  The movement of the Markov chain r(t) .

    Example 5.2. Let the noises (\sigma_{ij}(1), \sigma_{ij}(2)) = (2 \times 10^{-1}, 6 \times 10^{-1}) for each i = 1, 2, 3, 4; j = 1, 2 . By means of direct derivation, we get \mathcal R_{0}^e = 0.4512 < 1 . Therefore, we cannot determine the existence of an ESD of system (2.5). As shown in Figure 5, we can obtain that disease of system (2.5) will become extinct in the long run. Figure 6 shows the corresponding fitted density functions.

    Figure 5.  The simulations of (S(t), I(t), W(t), R(t)) in system (2.5) are conducted under two conditions: without stochastic noise and with stochastic noise (\sigma_{ij}(1), \sigma_{ij}(2)) = (2 \times 10^{-1}, 6 \times 10^{-1}) for each i = 1, 2, 3, 4 ; j = 1, 2 .
    Figure 6.  When the noise intensity is (\sigma_{ij}(1), \sigma_{ij}(2)) = (2 \times 10^{-1}, 6 \times 10^{-1}) for each i = 1, 2, 3, 4 ; j = 1, 2 , the fitted density functions and frequency histograms associated with individuals S, I, W , and R , respectively.

    Example 5.3. To demonstrate the influence of stochastic perturbations, we have selected three distinct noise levels \sigma_{1} = (\sigma_{ij}(1), \sigma_{ij}(2)) = (0.002, 0.006) , \sigma_{2} = (\sigma_{ij}(1), \sigma_{ij}(2)) = (0.040, 0.080) , \sigma_{3} = (\sigma_{ij}(1), \sigma_{ij}(2)) = (0.300, 0.500) , wherein i = 1, 2, 3, 4, j = 1, 2 . Figure 7 shows the trajectories of S(t), I(t), W(t), R(t) , respectively. It is evident that the values of S(t), I(t) , W(t), R(t) exhibit significant volatility as the noise intensity increases. Moreover, combining Figures 2, 5, and 7, we can observe that larger perturbations will drive the disease to extinction, whereas smaller perturbations may lead to its persistence within the community.

    Figure 7.  The paths of (S(t), I(t), W(t), R(t)) for system (2.5) with stochastic noises (\sigma_{ij}(1), \sigma_{ij}(2)) = (0.002, 0.006) , (\sigma_{ij}(1), \sigma_{ij}(2)) = (0.020, 0.060) , (\sigma_{ij}(1), \sigma_{ij}(2)) = (0.300, 0.500) , respectively.

    Example 5.4. (Sensitivity analysis) Under the conditions of satisfying 3.1 and 4.1, we can find that the basic reproduction number \mathcal R_0 is a crucial value for the eradication and persistence of pertussis disease. Therefore, Figure 8 shows sensitivity analysis on the reproductive number \mathcal R_0 of the disease. It is evident that transmission rates \beta and loss of immunity rate \eta are positively correlated with \mathcal R_0 . Meanwhile, there is a negative correlation between recovery rate \gamma , vaccination probabilities \nu , death rate \mu , and \mathcal R_0 . Physical exercise to enhance immunity and increase vaccination rates are beneficial for controlling the spread of pertussis.

    Figure 8.  Sensitivity analysis for key parameters associated with \mathcal R_0 .

    In this paper, we primarily focus on the dynamics of pertussis in nature. By integrating natural immune enhancement and long-term immune waning, a stochastic pertussis system with Markov switching (2.5) is constructed and analyzed. Following the ideas of papers [24,25], the existence and uniqueness of the global positive solution are proven. Next, the exponential extinction of pertussis is shown in Theorem 3.1. Moreover, inspired by [25], \theta- stochastic Lyapunov functions are used to establish the sufficient condition \mathcal R_{0}^e > 1 , which guarantees the existence and uniqueness of an ESD for system (2.5) in Theorem 4.1. Finally, several examples are provided to confirm our theoretical findings (Figures 27). Based on these examples, we infer that stochastic noise is negatively correlated with the persistence of the disease. Furthermore, some questions deserve further study, for example, considering a stochastic pertussis model with semi-Markovian switching and impulses. The density function of a stochastic delay pertussis model with semi-Markov switching and Ornstein-Uhlenbeck process [41] may also be analyzed.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The research was supported by the National Natural Science Foundation of China (Nos.12161068, 12261069, 12301630).

    The authors declare there is no conflicts of interest.



    [1] H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York, 1980.
    [2] Z. Yao, S. Xie, N. Yu, Dynamics of cooperative predator-prey system with impulsive effects and Beddington-DeAngelis functional response, J. Egypt. Math. Soc., 21 (2013), 213-223. doi: 10.1016/j.joems.2013.04.008
    [3] Z. Shen, J. Wei, Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect, Math. Biosci. Eng., 15 (2018), 693-715. doi: 10.3934/mbe.2018031
    [4] M. Bandyopadhyay, J. Chattopadhyay, Ratio-dependent predator-prey model: Effect of environmental fluctuation and stability, Nonlinearity, 18 (2005), 913-936. doi: 10.1088/0951-7715/18/2/022
    [5] M. Liu, K. Wang, Q. Wu, Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle, B. Math. Biol., 73 (2011), 1969-2012. doi: 10.1007/s11538-010-9569-5
    [6] M. Liu, C. Bai, K. Wang, Asymptotic stability of a two-group stochastic SEIR model with infinite delays, Commun. Nonlinear. Sci. Numer. Simulat., 19 (2014), 3444-3453. doi: 10.1016/j.cnsns.2014.02.025
    [7] X. Mao, G. Marion, E. Renshaw, Environmental Brownian noise suppresses explosions in populations dynamics, Stoch. Proc. Appl., 97 (2002), 95-110. doi: 10.1016/S0304-4149(01)00126-0
    [8] D. Jana, R. Agrawal, R. K. Upadhyay, Dynamics of generalist predator in a stochastic environment: Effect of delayed growth and prey refuge, Appl. Math. Comput., 268 (2015), 1072-1094.
    [9] Y. Lin, D. Jiang, S. Wang, Stationary distribution of a stochastic SIS epidemic model with vaccination, Physica A, 394 (2014), 718-727.
    [10] M. Liu, K. Wang, Persistence and extinction in stochastic non-autonomous logistic systems, J. Math. Anal. Appl., 375 (2011), 443-457. doi: 10.1016/j.jmaa.2010.09.058
    [11] M. Liu, K. Wang, Persistence, extinction and global asymptotical stability of a non-autonomous predator-prey model with random perturbation, Appl. Math. Model., 36 (2012), 5344-5353. doi: 10.1016/j.apm.2011.12.057
    [12] Y. Zhao, S. Yuan, J. Ma, Survival and stationary distribution analysis of a stochastic competitive model of three species in a polluted environment, B. Math. Biol., 77 (2015), 1285-1326. doi: 10.1007/s11538-015-0086-4
    [13] L. Zu, D. Jiang, D. O'Regan, B. Ge, Periodic solution for a non-autonomous Lotka-Volterra predator-prey model with random perturbation, J. Math. Anal. Appl., 430 (2015), 428-437. doi: 10.1016/j.jmaa.2015.04.058
    [14] X. Liu, S. Zhong, B. Tian, F. Zheng, Asymptotic properties of a stochastic predator-prey model with Crowley-Martin functional response, J. Appl. Math. Comput., 43 (2013), 479-490. doi: 10.1007/s12190-013-0674-0
    [15] M. Hassell, G. Varley, New inductive population model for insect parasites and its bearing on biologicalcontrol, Nature, 223 (1969), 1133-1137. doi: 10.1038/2231133a0
    [16] X. Yan, C. Zhang, Stability and turing instability in a diffusive predator-prey system with Beddington-DeAngelis functional response, Nonlinear Anal-Real., 20 (2014), 1-13. doi: 10.1016/j.nonrwa.2014.04.001
    [17] C. Xu, P. Li, 20 Oscillations for a delayed predator-prey model with Hassell-Varley-type functional response, C. R. Biol., 338 (2015), 227-240. doi: 10.1016/j.crvi.2015.01.002
    [18] Y. Zhang, S. Gao, Y. Liu, Analysis of a nonautonomous model for migratory birds with saturation incidence rate, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 1659-1672. doi: 10.1016/j.cnsns.2011.08.040
    [19] R. May, Stability and Complexity in Model Ecosystems, Princeton: Princeton University Press, 1974.
    [20] X. Shi, X. Zhou, X. Song, Analysis of a stage-structured predator-prey model with Crowley-Martin function, J. Appl. Math. Comput., 36 (2011), 459-472. doi: 10.1007/s12190-010-0413-8
    [21] T. Zhang, J. Zhang, X. Meng, Geometric analysis of a pest management model with Holling's type III functional response and nonlinear state feedback control, Nonlinear Dyn., 84 (2016), 1529-1539. doi: 10.1007/s11071-015-2586-z
    [22] S. Chen, J. Wei, J. Yu, Stationary patterns of a diffusive predator-prey model with Crowley-Martin functional response, Nonlinear Anal. Real, 39 (2018), 33-57. doi: 10.1016/j.nonrwa.2017.05.005
    [23] J. Tripathi, S. Tyagi, S. Abbas, Global analysis of a delayed density dependent predator Cprey model with Crowley-Martin functional response, Commun. Nonlinear. Sci. Numer. Simulat., 30 (2016), 45-69. doi: 10.1016/j.cnsns.2015.06.008
    [24] R. Tan, Z. Liu, S. Guo, H. Xiang, On a nonautonomous competitive system subject to stochastic and impulsive perturbations, Appl. Math. Comput., 256 (2015), 702-714.
    [25] S. Zhang, D. Tan, Dynamics of a stochastic predator-prey system in a polluted environment with pulse toxicant input and impulsive perturbations, Appl. Math. Model., 39 (2015), 6319-6331. doi: 10.1016/j.apm.2014.12.020
    [26] R. Wu, X. Zou, K. Wang, Asymptotic behavior of a stochastic non-autonomous predator-prey model with impulsive perturbations, Commun. Nonlinear Sci. Numer. Simulat., 20 (2015), 965-974. doi: 10.1016/j.cnsns.2014.06.023
    [27] Y. Zhang, K. Fan, S. Gao, S. Chen, A remark on stationary distribution of a stochastic SIR epidemic model with double saturated rates, Appl. Math. lett., 76 (2018), 46-52. doi: 10.1016/j.aml.2017.08.002
    [28] X. Li, X. Mao, Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation, Discret Contin. Dyn. Syst., 24 (2009), 523-593. doi: 10.3934/dcds.2009.24.523
    [29] M. Liu and K. Wang, On a stochastic logistic equation with impulsive perturbations, Comput. Math. Appl., 63 (2012), 871-886. doi: 10.1016/j.camwa.2011.11.003
    [30] X. Mao, Stochastic versions of the Lassalle Theorem, T. Differ. Equ., 153 (1999), 175-195. doi: 10.1006/jdeq.1998.3552
    [31] R. Tan, Z. Liu, R.A. Cheke, Periodicity and stability in a single-species model governed by impulsive differential equation, Appl. Math. Comput., 36 (2012), 1085-1094.
    [32] M. Liu, M. Fan, Permanence of stochastic Lotka-Volterra systems, J. Nonlinear Sci., 27 (2017), 425-452. doi: 10.1007/s00332-016-9337-2
    [33] K. Wang, Stochastic Models in Mathematical Biology, Beijing: Science Press, 2010.
    [34] S. Cheng, Stochastic population systems, Stoch. Proc. Appl., 27 (2009), 854-874. doi: 10.1080/07362990902844348
    [35] D. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525-546. doi: 10.1137/S0036144500378302
    [36] M. Liu, C. Bai, Optimal harvesting of a stochastic mutualism model with regime-switching, Appl. Math. Comput., 373 (2020).
    [37] W. Ji, Z. Wang, G. Hu, Stationary distribution of a stochastic hybrid phytoplankton model with allelopathy, Adv. Differ. Equ. NY, 2020.
    [38] Z. Wang, M. Deng, M. Liu, Stationary distribution of a stochastic ratio-dependent predator-prey system with regime-switching, Chaos Soliton Fract., 2020, 110462.
  • This article has been cited by:

    1. Fenghua Wen, Haocen Zhao, Lili Zhao, Hua Yin, What drive carbon price dynamics in China?, 2022, 79, 10575219, 101999, 10.1016/j.irfa.2021.101999
    2. Xite Yang, Jidi Cao, Zihan Liu, Yongzeng Lai, Environmental policy uncertainty and green innovation: A TVP-VAR-SV model approach, 2022, 6, 2573-0134, 604, 10.3934/QFE.2022026
    3. Jinhui Zhu, Mengxin Wang, Changhong Zhang, Impact of high-standard basic farmland construction policies on agricultural eco-efficiency: Case of China, 2022, 4, 2689-3010, 147, 10.3934/NAR.2022009
    4. Tingcheng Mo, Chi Xie, Kelong Li, Yingbo Ouyang, Zhijian Zeng, Transmission effect of extreme risks in China's financial sectors at major emergencies: Empirical study based on the GPD-CAViaR and TVP-SV-VAR approach, 2022, 30, 2688-1594, 4657, 10.3934/era.2022236
    5. Liping Zheng, Jia Liao, Yuan Yu, Bin Mo, Yun Liu, The effect credit term structure of monetary policy on firms' "short-term debt for long-term investment" behavior: empirical evidence from China, 2023, 31, 2688-1594, 1498, 10.3934/era.2023076
    6. Yonglian Wang, Lijun Wang, Changchun Pan, Songzhi Hong, Economic policy uncertainty and price pass-through effect of exchange rate in China, 2022, 75, 0927538X, 101844, 10.1016/j.pacfin.2022.101844
    7. Jianbai Huang, Xuesong Dong, Jinyu Chen, Meirui Zhong, Do oil prices and economic policy uncertainty matter for precious metal returns? New insights from a TVP-VAR framework, 2022, 78, 10590560, 433, 10.1016/j.iref.2021.12.010
    8. Wenhui Li, Qi Zhu, Fenghua Wen, Normaziah Mohd Nor, The evolution of day-of-the-week and the implications in crude oil market, 2022, 106, 01409883, 105817, 10.1016/j.eneco.2022.105817
    9. Yan Zheng, Hua Yin, Min Zhou, Wenhua Liu, Fenghua Wen, Impacts of oil shocks on the EU carbon emissions allowances under different market conditions, 2021, 104, 01409883, 105683, 10.1016/j.eneco.2021.105683
    10. Mei-Jing Zhou, Jian-Bai Huang, Jin-Yu Chen, Time and frequency spillovers between political risk and the stock returns of China's rare earths, 2022, 75, 03014207, 102464, 10.1016/j.resourpol.2021.102464
    11. Nan Lin, Chengyi Liu, Sicen Chen, Jianping Pan, Pengdong Zhang, The monitoring role of venture capital on controllers' tunneling: Evidence from China, 2022, 82, 10575219, 102193, 10.1016/j.irfa.2022.102193
    12. Fenghua Wen, Minzhi Zhang, Jihong Xiao, Wei Yue, The impact of oil price shocks on the risk-return relation in the Chinese stock market, 2022, 47, 15446123, 102788, 10.1016/j.frl.2022.102788
    13. Yanhong Feng, Xiaolei Wang, Shuanglian Chen, Yanqiong Liu, Impact of Oil Financialization on Oil Price Fluctuation: A Perspective of Heterogeneity, 2022, 15, 1996-1073, 4294, 10.3390/en15124294
    14. Min Hong, Xiaolei Wang, Zhenghui Li, Will Oil Price Volatility Cause Market Panic?, 2022, 15, 1996-1073, 4629, 10.3390/en15134629
    15. Hao Nong, Xianghua Wu, Yuanying Jiang, A dual perspective inflation analysis of China with large dimensional data: an application of large VARs model, 2023, 0003-6846, 1, 10.1080/00036846.2022.2140773
    16. Yanhong Feng, Qingqing Hu, Heterogeneity and spillover effects of carbon emission trading on green innovation, 2023, 20, 1551-0018, 6468, 10.3934/mbe.2023279
    17. Fangying Liu, Chi Wei Su, Meng Qin, Muhammad Umar, Bitcoin: a Ponzi scheme or an emerging inflation-fighting asset?, 2024, 0, 2029-4913, 1, 10.3846/tede.2024.19300
    18. Jiahui Li, Hongming Li, Yuanying Jiang, The dynamic impact mechanism of China's financial conditions on real economy and international crude oil market, 2023, 9, 24058440, e21085, 10.1016/j.heliyon.2023.e21085
    19. Luiz Clovis Belarmino, Margarita Navarro Pabsdorf, Antônio Domingos Padula, Impacts of the COVID-19 Pandemic on the Production Costs and Competitiveness of the Brazilian Chicken Meat Chain, 2023, 11, 2227-7099, 238, 10.3390/economies11090238
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2811) PDF downloads(166) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog