Processing math: 100%
Research article Special Issues

Asymptotic flocking for the three-zone model

  • Received: 06 July 2020 Accepted: 15 October 2020 Published: 05 November 2020
  • We prove the asymptotic flocking behavior of a general model of swarming dynamics. The model describing interacting particles encompasses three types of behavior: repulsion, alignment and attraction. We refer to this dynamics as the three-zone model. Our result expands the analysis of the so-called Cucker-Smale model where only alignment rule is taken into account. Whereas in the Cucker-Smale model, the alignment should be strong enough at long distance to ensure flocking behavior, here we only require that the attraction is described by a confinement potential. The key for the proof is to use that the dynamics is dissipative thanks to the alignment term which plays the role of a friction term. Several numerical examples illustrate the result and we also extend the proof for the kinetic equation associated with the three-zone dynamics.

    Citation: Fei Cao, Sebastien Motsch, Alexander Reamy, Ryan Theisen. Asymptotic flocking for the three-zone model[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7692-7707. doi: 10.3934/mbe.2020391

    Related Papers:

    [1] Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334
    [2] Mohammed A. Almalahi, Mohammed S. Abdo, Satish K. Panchal . On the theory of fractional terminal value problem with ψ-Hilfer fractional derivative. AIMS Mathematics, 2020, 5(5): 4889-4908. doi: 10.3934/math.2020312
    [3] Naila Mehreen, Matloob Anwar . Some inequalities via Ψ-Riemann-Liouville fractional integrals. AIMS Mathematics, 2019, 4(5): 1403-1415. doi: 10.3934/math.2019.5.1403
    [4] Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable fractional integral inequalities for GG- and GA-convex functions. AIMS Mathematics, 2020, 5(5): 5012-5030. doi: 10.3934/math.2020322
    [5] Mohammad Esmael Samei, Lotfollah Karimi, Mohammed K. A. Kaabar . To investigate a class of multi-singular pointwise defined fractional q–integro-differential equation with applications. AIMS Mathematics, 2022, 7(5): 7781-7816. doi: 10.3934/math.2022437
    [6] Feng Qi, Siddra Habib, Shahid Mubeen, Muhammad Nawaz Naeem . Generalized k-fractional conformable integrals and related inequalities. AIMS Mathematics, 2019, 4(3): 343-358. doi: 10.3934/math.2019.3.343
    [7] Gou Hu, Hui Lei, Tingsong Du . Some parameterized integral inequalities for p-convex mappings via the right Katugampola fractional integrals. AIMS Mathematics, 2020, 5(2): 1425-1445. doi: 10.3934/math.2020098
    [8] Chunhong Li, Dandan Yang, Chuanzhi Bai . Some Opial type inequalities in (p, q)-calculus. AIMS Mathematics, 2020, 5(6): 5893-5902. doi: 10.3934/math.2020377
    [9] Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407
    [10] M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253
  • We prove the asymptotic flocking behavior of a general model of swarming dynamics. The model describing interacting particles encompasses three types of behavior: repulsion, alignment and attraction. We refer to this dynamics as the three-zone model. Our result expands the analysis of the so-called Cucker-Smale model where only alignment rule is taken into account. Whereas in the Cucker-Smale model, the alignment should be strong enough at long distance to ensure flocking behavior, here we only require that the attraction is described by a confinement potential. The key for the proof is to use that the dynamics is dissipative thanks to the alignment term which plays the role of a friction term. Several numerical examples illustrate the result and we also extend the proof for the kinetic equation associated with the three-zone dynamics.


    P.L Čebyšev in the year 1882 has proved the following interesting inequality:

    |1babaf(x)g(x)dx(1babaf(x)dx)(1babag(x)dx)|112(ba)2fg.

    where f,g are absolutely continuous functions defined on [a,b] and f,gL[a,b]. The left hand side of the above equation is denoted by T(f,g) is called Cebysev Functional if the integral exists. The applications of above type of inequalities can be found in the field of coding theory, statistics and other branches of mathematics.

    In last few decades many researchers have obtained various extensions and generalizations of above inequalities using various techniques see [1,2]. Study of inequalities have attracted the attention of researchers from various fields due to its wide applications in various fields [3,4].

    During last few years the subject of Fractional Calculus has been developed rapidly due to the applications in various fields of science and engineering. Various new definitions of fractional derivatives and integrals have been obtained by various researchers depending on the applications such as Riemann liouville, Caputo, Saigo, Hilfer, Hadmard, Katugampola and others See [5,6,7,8]. Many results on study of mathematical inequalities using various new fractional definitions such as Conformable and generalized fractional integral were obtained in [9,10]. Recently in [11,12,13,14,15] the authors have obtained the results on Cebysev inequalities using various fractional integral and derivatives definitions.

    In [7] authors have given definations of fractional derivative and integrals of a functions with respect to another functions. Recently in [16,17] authors have studied the ψ Caputo and ψ Hilfer fractional derivative of a function with respect to another functions and its applications. The ψ fractional and integral definations are more generalized and it reduces to Riemann Liouville, Hadmard and Erdelyi-Kober fractional definitions for different values of ψ.

    Motivated from the above mentioned literature the aim of this paper is to obtain ψ Caputo fractional Čebyšev inequalities involving functions of two and three variables.

    Now in this section we give some basic definitions and properties which are useful in our subsequent discussions. In [7,8] the authors have defined the fractional integrals and fractional derivative of a function with respect to another function as follows.

    Definition 2.1 [7,16]. Let I=[a,b] be an interval, α>0, f is an integrable function defined on I and ψC1(I) an increasing function such that ψ(x)0 for all xI then fractional derivative and integral of f is given by

    Iα,ψa+f(x)=1Γ(α)xaψ(t)(ψ(x)ψ(t))α1f(t)dt

    and

    Dα,ψa+f(x)=(1ψ(x)ddx)nInα,ψa+f(x)=1Γ(nα)(1ψ(x)ddx)nxaψ(t)(ψ(x)ψ(t))nα1f(t)dt,

    respectively. Similarly right fractional integral and right fractional derivative are given by

    Iα,ψbf(x)=1Γ(α)xaψ(t)(ψ(t)ψ(x))α1f(t)dt

    and

    Dα,ψbf(x)=(1ψ(x)ddx)nInα,ψbf(x)=1Γ(nα)(1ψ(x)ddx)nxaψ(t)(ψ(t)ψ(x))nα1f(t)dt.

    In [16] Almedia has considered a Caputo type fractional derivative with respect to another function.

    Definition 2.2 [16] Let α>0, nN, I is the interval a<b, f,ψCn(I) two functions such that ψ is increasing and ψ(x)0 for all xI. The left ψ-Caputo fractional derivative of f of order α is given by

    CDα,ψa+f(x)=Inα,ψa+(1ψ(x)ddx)nf(x),

    and the right ψ-Caputo fractional derivative of f is given by

    CDα,ψbf(x)=Inα,ψb(1ψ(x)ddx)nf(x).

    For given αN

    CDα,ψa+f(x)=1Γ(nα)xaψ(t)(ψ(x)ψ(t))nα1f[n]ψ(t)dt

    and

    CDα,ψbf(x)=1Γ(nα)xaψ(t)(ψ(t)ψ(x))nα1(1)nf[n]ψ(t)dt.

    In particular when α(0,1) then

    CDα,ψa+f(x)=1Γ(1α)xa(ψ(x)ψ(t))αf(t)dt

    and

    CDα,ψbf(x)=1Γ(1α)xa(ψ(t)ψ(x))αf(t)dt.

    In [18] the author has defined the ψ fractional partial integral with respect to another functions as

    Definition 2.3 Let θ=(a,b) and α=(α1,α2) where 0α1,α21. Also put I=[a,k]×[b,m] where a,b and k,m are positive constants. Also let ψ(.) be an increasing positive monotone function on (a,k]×(b,m] having continuous derivative ψ(.) on (a,k]×(b,m]. Then the fractional partial integral is

    Iα;ψθu(x,y)=1Γ(α1)Γ(α2)xaybψ(s)ψ(t)(ψ(x)ψ(s))α11(ψ(y)ψ(t))α21f(s,t)dtds.

    The Caputo fractional partial derivative is defined as follows

    Definition 2.4 Let θ=(a,b) and α=(α1,α2) where 0α1,α21. Also put I=[a,k]×[b,m] where a,b and a,b are positive constants. Also let ψ(.) be an increasing function on (a,k]×(b,m] and ψ(.)0 on (a,k]×(b,m]. The ψ Caputo fractional partial derivative of functions of two variables of order α is given by

    CDα;ψθu(x,y)=I2α;ψθ(1ψ(s)ψ(t)2αyx)u(x,y).

    We use the following notation:

    CDα;ψθu(x,y)=2αψuψyαψxα(x,y).

    We define the norm for a function of two variables as follows

    CDα;ψθf=sup|CDα;ψθf(x,y)|.

    Similarly as in Definition (2.3) and (2.4) we define the ψ fractional partial integral with respect to another functions and ψ Caputo fractional partial derivative of functions of three variables as follows:

    Definition 2.5 Let Θ=(a,b,c) and α=(α1,α2,α3) where 0α1,α2,α31. Also put I=[a,k]×[b,m]×[c,n] where a,b,c and k,m,n are positive constants. Also let ψ(.) be an increasing positive monotone function on (a,k]×(b,m]×[c,n] having continuous derivative ψ(.) on (a,k]×(b,m]×(c,n].

    Then the fractional partial integral is

    Iα;ψΘu(x,y,z)=1Γ(α1)Γ(α2)xaybzcψ(s)ψ(t)ψ(r)×(ψ(x)ψ(s))α11(ψ(y)ψ(t))α21(ψ(z)ψ(r))α31f(s,t,r)drdtds.

    Definition 2.6 Let θ=(a,b,c) and α=(α1,α2,α3) where 0α1,α2,α31. Also put I=[a,k]×[b,m]×[c,n] where a,b,c and k,m,n are positive constants. Also let ψ(.) be an increasing function on (a,k]×(b,m]×(c,n] and ψ(.)0 on (a,k]×(b,m]×(c,n]. The ψ Caputo fractional partial derivative of functions of three variables of order α is given by

    CDα;ψΘu(x,y,z)=I3α;ψΘ(1ψ(s)ψ(t)ψ(r)3zyx)u(x,y,z).

    We use the following notation:

    CDα;ψΘu(x,y,z)=3αψuψzαψyαxα(x,y,z).

    We define the norm for a function of three variables as follows

    CDα;ψΘf=sup|CDα;ψΘf(x,y,z)|.

    Now we give the ψ Caputo fractional Čebyšev inequality involving functions of two variables as follows:

    Theorem 3.1 Let f,g:[a,l]×[b,m]R be a continuous function on [a,l]×[b,m] and 2αfψyαψxα, 2αgψyαψxα exists continuous and bounded on [a,l]×[b,m] and α=(α1,α2). Then

    |lamb[f(x,y)g(x,y)12[G(f(x,y))g(x,y)+G(g(x,y))f(x,y)]dydx]|18(ψ(l)ψ(a))(ψ(m)ψ(b))lamb[|g(x,y)|Dα;ψθf+g(x,y)Dα;ψθg]dydx, (3.1)

    where

    G(f(x,y))=12[f(a,y)+f(x,m)+f(x,b)+f(l,y)]14[f(a,b)+f(a,m)+f(l,b)+f(l,m)]

    and

    H(2αfψyαψxα(x,y))=1Γ(α1)Γ(α2)××[xaybψ(t)ψ(s)(ψ(x)ψ(t))α11(ψ(y)ψ(s))α212αfψsαψtα(t,s)dsdtxamyψ(t)ψ(s)(ψ(x)ψ(t))α11(ψ(m)ψ(s))α212αfψsαψtα(t,s)dsdtlxybψ(t)ψ(s)(ψ(l)ψ(t))α11(ψ(y)ψ(s))α212αfψsαψtα(t,s)dsdt+lxmyψ(t)ψ(s)(ψ(l)ψ(t))α11(ψ(m)ψ(s))α212αfψsαψtα(t,s)dsdt].

    Proof. From the given hypotheses for (x,y)[a,l]×[b,m] we have

    1Γ(α1)Γ(α2)xaybψ(t)ψ(s)×(ψ(x)ψ(t))α11(ψ(y)ψ(s))α212αfψsαψtα(t,s)dsdt=1Γ(α1)xaψ(s)(ψ(x)ψ(t))α11[αfψsα(s,t)|yc]=1Γ(α1)xaψ(s)(ψ(y)ψ(t))α11[αfψsα(t,y)αfψsα(t,b)]=f(t,y)|xaf(t,b)|xa=f(x,y)f(a,y)f(x,b)+f(a,b). (3.2)

    Similarly we have

    1Γ(α1)Γ(α2)xamyψ(t)ψ(s)×(ψ(x)ψ(t))α11(ψ(m)ψ(s))α212αfψsαψtα(t,s)dsdt=f(x,y)f(a,m)+f(x,m)+f(a,y), (3.3)
    1Γ(α1)Γ(α2)lxybψ(t)ψ(s)×(ψ(l)ψ(t))α11(ψ(y)ψ(s))α212αfψsαψtα(t,s)dsdt=f(x,y)f(l,b)+f(x,b)+f(l,y), (3.4)
    1Γ(α1)Γ(α2)lxmyψ(t)ψ(s)×(ψ(l)ψ(t))α11(ψ(m)ψ(s))α212αfψsαψtα(s,t)dsdt=f(x,y)+f(l,b)f(x,b)f(l,y). (3.5)

    Adding the above identities we have

    4f(x,y)2[f(a,y)+f(x,m)+f(x,b)+f(l,y)]+[f(a,b)+f(a,m)+f(l,b)+f(l,m)]=1Γ(α1)Γ(α2)[xaybψ(t)ψ(s)(ψ(x)ψ(t))α11(ψ(y)ψ(s))α212αfψsαψtα(t,s)dsdtxadyψ(t)ψ(s)(ψ(x)ψ(t))α11(ψ(m)ψ(s))α212αfψsαψtα(t,s)dsdtlxybψ(t)ψ(s)(ψ(l)ψ(t))α11(ψ(y)ψ(s))α212αfψsαψtα(t,s)dsdt+lxmyψ(t)ψ(s)(ψ(l)ψ(t))α11(ψ(m)ψ(s))α212αfψsαψtα(t,s)dsdt]. (3.6)

    From (3.6) we have

    f(x,y)G(f(x,y))=14H(2αfψyαψxα(x,y)), (3.7)

    for (x,y)[a,l]×[b,m]. Similarly we have

    g(x,y)G(g(x,y))=14H(2αgψyαψxα(x,y)), (3.8)

    for (x,y)[a,l]×[b,m].

    Multiplying (3.7) by g(x,y), (3.8) by f(x,y) adding them and Integrating over (x,y)[a,l]×[b,m] we get

    lamb[2f(x,y)g(x,y)g(x,y)G(f(x,y))f(x,y)G(g(x,y))]dydx=18lamb[H(2αfψyαψxα(x,y))g(x,y)+14f(x,y)H(2αgψyαψxα(x,y))]. (3.9)

    From the properties of modulus we have

    |H(2αfψyαψxα(x,y))|1Γ(α1)Γ(α2)lambψ(t)ψ(s)(ψ(l)ψ(t))α11(ψ(m)ψ(s))α21|2αfψsαψtα(t,s)|dsdt(ψ(l)ψ(a))α1(ψ(m)ψ(b))α2cDα;ψθf, (3.10)
    |H(2αgψyαψxα(x,y))|1Γ(α1)Γ(α2)lambψ(t)ψ(s)(ψ(l)ψ(t))α11(ψ(m)ψ(s))α21|2αgψsαψtα(t,s)|dsdt(ψ(l)ψ(a))α1(ψ(m)ψ(b))α2cDα;ψθg. (3.11)

    From (3.9), (3.10) and (3.11) we have

    |lamb[f(x,y)g(x,y)12[G(f(x,y))g(x,y)+G(g(x,y))f(x,y)]]dydx|18lamb[|H(2αfψyαψxα(x,y))||g(x,y)|+|H(2αgψyαψxα(x,y))||f(x,y)|]18lamb{|g(x,y)|[1Γ(α1)Γ(α2)×[lambψ(t)ψ(s)(ψ(l)ψ(t))α11(ψ(m)ψ(s))α21|2αfψsαψtα(t,s)|dsdt]+|f(x,y)|×[lambψ(t)ψ(s)(ψ(l)ψ(t))α11(ψ(m)ψ(s))α21|2αgψsαψtα(t,s)|dsdt]}dydx18(ψ(l)ψ(a))α1(ψ(m)ψ(b))α2×lamb[|g(x,y)|cDα;ψθf+|f(x,y)|cDα;ψθg]dydx, (3.12)

    which is required inequality.

    Theorem 3.2 Let f,g,G(f(x,y)),G(g(f(x,y)),2αfψyαψxα,2αgψyαψxα be as in Theorem 3.1 then

    |lamb{f(x,y)g(x,y)[G(f(x,y))g(x,y)+G(g(x,y))f(x,y)G(f(x,y))G(g(x,y))]}dydx116{(ψ(l)ψ(a))α1(ψ(m)ψ(b))α2}2cDα;ψθfcDα;ψθg, (3.13)

    for (x,y)[a,l]×[b,m].

    Proof. Multiplying left hand side and right hand side of (3.7) and (3.8) we have

    f(x,y)g(x,y)[f(x,y)G(g(x,y))+g(x,y)G(f(x,y))]=116H(2αfψyαψxα(x,y))H(2αgψyαψxα(x,y)). (3.14)

    Integrating (3.14) over [a,l]×[b,m] and from the properties of modulus we get

    |lamb{f(x,y)g(x,y)[G(g(x,y))f(x,y)+G(f(x,y))g(x,y)]G(f(x,y))G(g(x,y))}dydx|116lamb|H(2αfψyαψxα(x,y))||H(2αgψyαψxα(x,y))|dydx. (3.15)

    Now using (3.13),(3.14) in (3.19) we get required inequality (3.13).

    Now in our result we give the ψ Caputo fractional Čebyšev inequality involving functions of three variables. We use some notations as follows:

    A(p(u,v,w))=18[p(a,b,c)+p(k,m,n)]14[p(u,b,c)+p(u,m,n)+p(u,m,c)+p(u,b,n)]14[p(a,v,c)+p(k,v,n)+p(a,v,n)+p(k,v,c)]14[p(a,b,w)+p(k,m,w)+p(k,b,w)+p(a,m,w)]+12[p(a,v,w)+p(k,v,w)]+12[p(u,b,w)+p(u,m,w)]+12[p(u,v,c)+p(u,v,n)] (4.1)

    and

    B(3αpψwαψvαψuα(u,v,w))=1Γ(α1)Γ(α2)Γ(α3)uavbwcψ(r)ψ(s)ψ(t)(ψ(u)ψ(r))α11×(ψ(v)ψ(s))α21(ψ(w)ψ(t))α313αpψtαψsαψrα(r,s,t)dtdsdr1Γ(α1)Γ(α2)Γ(α3)uavbncψ(r)ψ(s)ψ(t)(ψ(u)ψ(r))α11×(ψ(v)ψ(s))α21(ψ(n)ψ(t))α313αpψtαψsαψrα(r,s,t)dtdsdr1Γ(α1)Γ(α2)Γ(α3)uamvwcψ(r)ψ(s)ψ(t)(ψ(u)ψ(r))α11×(ψ(m)ψ(s))α21(ψ(w)ψ(t))α313αpψtαψsαψrα(r,s,t)dtdsdr1Γ(α1)Γ(α2)Γ(α3)kuvbwcψ(r)ψ(s)ψ(t)(ψ(k)ψ(r))α11×(ψ(u)ψ(s))α21(ψ(w)ψ(t))α313αpψtαψsαψrα(r,s,t)dtdsdr+1Γ(α1)Γ(α2)Γ(α3)uamrnwψ(r)ψ(s)ψ(t)(ψ(u)ψ(r))α11×(ψ(m)ψ(s))α21(ψ(n)ψ(t))α313αpψtαψsαψrα(r,s,t)dtdsdr+1Γ(α1)Γ(α2)Γ(α3)kumvwcψ(r)ψ(s)ψ(t)(ψ(k)ψ(r))α11×(ψ(m)ψ(s))α21(ψ(w)ψ(t))α313αpψtαψsαψrα(r,s,t)dtdsdr+1Γ(α1)Γ(α2)Γ(α3)kuvbnwψ(r)ψ(s)ψ(t)(ψ(k)ψ(r))α11×(ψ(v)ψ(s))α21(ψ(n)ψ(t))α313αpψtαψsαψrα(r,s,t)dtdsdr1Γ(α1)Γ(α2)Γ(α3)kumvnwψ(r)ψ(s)ψ(t)(ψ(k)ψ(r))α11×(ψ(m)ψ(s))α21(ψ(n)ψ(t))α313αpψtαψsαψrα(r,s,t)dtdsdr. (4.2)

    Now we give our next result as

    Theorem 4.1 Let f,g:[a,k]×[b,m]×[c,n]R be a continuous function on [a,l]×[b,m] and 3αfψtαψsαψrα, 3αgψtαψsαψrα exists and continuous and bounded on [a,k]×[b,m]×[c,n]. Then

    kambnc[f(u,v,w)g(u,v,w)12[f(u,v,w)A(g(u,v,w))+g(u,v,w)A(f(u,v,w))]]dwdvdu116(ψ(k)ψ(a))α1(ψ(m)ψ(b))α2(ψ(n)ψ(c))α3×kambnc[|g(u,v,w)|cDα;ψΘf+|f(u,v,w)|cDα;ψΘg]dwdvdu, (4.3)

    where A,B are as given in (4.1),(4.2).

    Proof. From the hypotheses we have for u,v,w[a,k]×[b,m]×[c,n]

    1Γ(α1)Γ(α2)Γ(α3)uavbwcψ(r)ψ(s)ψ(t)(ψ(u)ψ(r))α11(ψ(v)ψ(s))α21(ψ(w)ψ(t))α313αfψtαψsαψrα(r,s,t)dtdsdr=1Γ(α1)Γ(α2)uavbψ(r)ψ(s)(ψ(u)ψ(r))α11(ψ(v)ψ(s))α212αfψsαψrα(r,s,t)|wcdsdr=1Γ(α1)Γ(α2)uavbψ(r)ψ(s)(ψ(u)ψ(r))α11(ψ(v)ψ(s))α212αfψsαψrα(r,s,w)dsdr1Γ(α1)Γ(α2)uavbψ(r)ψ(s)(ψ(u)ψ(r))α11(ψ(v)ψ(s))α212αfψsαψrα(r,s,c)dsdr=1Γ(α1)uaψ(r)(ψ(u)ψ(r))α11αfψrα(r,s,w)|vbdr1Γ(α1)uaψ(r)(ψ(u)ψ(r))α11αfψrα(r,s,c)|vbdr=1Γ(α1)uaψ(r)(ψ(u)ψ(r))α11αfψrα(r,v,w)dr1Γ(α1)uaψ(r)(ψ(u)ψ(r))α11αfψrα(r,b,w)dr1Γ(α1)uaψ(r)(ψ(u)ψ(r))α11αfψrα(r,v,c)dr+1Γ(α1)uaψ(r)(ψ(u)ψ(r))α11αfψrα(r,b,c)dr=f(r,v,w)|uaf(r,b,w)|uaf(r,v,c)|ua+f(r,b,c)|ua=f(u,v,w)f(a,v,w)f(u,b,w)+f(a,b,w)f(u,v,c)+f(a,v,c)+f(u,b,c)+f(a,b,c).

    Thus we have

    f(u,v,w)=f(a,v,w)+f(u,b,w)f(a,b,w)+f(u,v,c)f(a,v,c)f(u,b,c)f(a,b,c)1Γ(α1)Γ(α2)Γ(α3)uavbwcψ(r)ψ(s)ψ(t)(ψ(u)ψ(r))α11(ψ(v)ψ(s))α21(ψ(w)ψ(t))α313αfψtαψsαψrα(r,s,t)dtdsdr, (4.4)

    Similarly we have

    f(u,v,w)=f(u,v,n)+f(a,v,w)+f(u,b,w)+f(a,b,n)f(a,b,w)f(a,v,n)f(v,b,n)1Γ(α1)Γ(α2)Γ(α3)uavbnwψ(r)ψ(s)ψ(t)(ψ(u)ψ(r))α11(ψ(v)ψ(s))α21(ψ(n)ψ(t))α313αfψtαψsαψrα(r,s,t)dtdsdr, (4.5)
    f(u,v,w)=f(u,m,w)+f(u,v,c)+f(a,m,c)+f(a,v,w)f(u,m,c)f(a,m,w)f(a,v,c)1Γ(α1)Γ(α2)Γ(α3)uamvwcψ(r)ψ(s)ψ(t)(ψ(u)ψ(r))α11(ψ(m)ψ(s))α21(ψ(w)ψ(t))α313αfψtαψsαψrα(r,s,t)dtdsdr, (4.6)
    f(u,v,w)=f(k,s,t)+f(k,b,c)+f(u,v,c)+f(u,b,w)f(k,v,c)f(k,b,w)f(u,b,c)1Γ(α1)Γ(α2)Γ(α3)kuvbwcψ(r)ψ(s)ψ(t)(ψ(k)ψ(r))α11(ψ(v)ψ(s))α21(ψ(w)ψ(t))α313αfψtαψsαψrα(r,s,t)dtdsdr, (4.7)
    f(u,v,w)=f(u,m,w)+f(u,v,n)+f(a,m,n)+f(a,v,w)f(u,m,n)f(a,m,w)f(a,v,n)+1Γ(α1)Γ(α2)Γ(α3)uamvnwψ(r)ψ(s)ψ(t)(ψ(u)ψ(r))α11(ψ(m)ψ(s))α21(ψ(n)ψ(t))α313αfψtαψsαψrα(r,s,t)dtdsdr, (4.8)
    f(u,v,w)=f(r,m,t)+f(u,v,c)+f(k,s,t)+f(k,m,c)f(k,m,w)f(k,v,c)f(u,m,c)+1Γ(α1)Γ(α2)Γ(α3)kumvwcψ(r)ψ(s)ψ(t)(ψ(k)ψ(r))α11(ψ(m)ψ(s))α21(ψ(w)ψ(t))α313αfψtαψsαψrα(r,s,t)dtdsdr, (4.9)
    f(u,v,w)=f(k,v,w)+f(k,b,n)+f(u,v,n)+f(u,b,t)f(k,v,n)f(k,b,w)f(u,b,n)+1Γ(α1)Γ(α2)Γ(α3)kuvbnwψ(r)ψ(s)ψ(t)(ψ(k)ψ(r))α11(ψ(v)ψ(s))α21(ψ(n)ψ(t))α313αfψtαψsαψrα(r,s,t)dtdsdr (4.10)

    and

    f(u,v,w)=f(k,m,n)+f(k,v,w)+f(u,m,w)+f(u,v,n)f(k,m,w)f(k,v,n)f(u,m,n)+1Γ(α1)Γ(α2)Γ(α3)kumvnwψ(r)ψ(s)ψ(t)(ψ(k)ψ(r))α11(ψ(m)ψ(s))α21(ψ(n)ψ(t))α313αfψtαψsαψrα(r,s,t)dtdsdr. (4.11)

    Adding the above identities we have

    f(u,v,w)A(f(u,v,w))=18B(3αfψwαψvαψuα(u,v,w)), (4.12)

    for (u,v,w)[a,k]×[b,m]×[c,n].

    Similarly we have

    g(u,v,w)A(g(u,v,w))=18B(3αgψwαψvαψuα(u,v,w)), (4.13)

    for (u,v,w)[a,k]×[b,m]×[c,n].

    Now multiplying (4.12) and (4.13) by g(u,v,w) and f(u,v,w) respectively, adding them and Integrating over [a,k]×[b,m]×[c,n] we have

    kambnc[f(u,v,w)g(u,v,w)12[g(u,v,w)A(f(u,v,w))g(u,v,w)A(f(u,v,w))]]dwdvdu=116kambnc[g(u,v,w)B(3αfψwαψvαψuα(u,v,w))+f(u,v,w)B(3αgψwαψvαψuα(u,v,w))]. (4.14)

    From the properties of modulus we have

    |B(3αfψwαψvαψuα(u,v,w))|kambncψ(r)ψ(s)ψ(t)(ψ(k)ψ(r))α11(ψ(m)ψ(s))α21×(ψ(n)ψ(t))α313αfψtαψsαψrα(r,s,t)dtdsdr(ψ(k)ψ(a))α1(ψ(m)ψ(b))α2(ψ(n)ψ(c))α3CDα;ψΘf, (4.15)
    |B(3αgψwαψvαψuα(u,v,w))|kambncψ(r)ψ(s)ψ(t)(ψ(k)ψ(r))α11(ψ(m)ψ(s))α21×(ψ(n)ψ(t))α313αgψtαψsαψrα(r,s,t)dtdsdr(ψ(k)ψ(a))α1(ψ(m)ψ(b))α2(ψ(n)ψ(c))α3CDα;ψΘg. (4.16)

    Now by substituting the values from equation (4.15) and (4.16) in (4.14) we get the required inequality (4.3).

    Theorem 4.2 Let f,g, 3αfψtαψsαψrα and 3αgψtαψsαψrα be as in Theorem 4.1. Then

    |kambnc[f(u,v,w)g(u,v,w)[A(f(u,v,w))g(u,v,w)A(g(u,v,w))f(u,v,w)A(f(u,v,w))A(g(u,v,w))|dwdvdu164{(ψ(k)ψ(a))α1(ψ(m)ψ(b))α2(ψ(n)ψ(c))α3}2CDα;ψΘfCDα;ψΘg, (4.17)

    for (r,s,t)[a,k]×[b,m]×[c,n] and A,B are as given in (4.1),(4.2).

    Proof. Multiplying left hand and right hand side of equation (4.12) and (4.13) we have

    f(u,v,w)g(u,v,w)[f(u,v,w)A(g(u,v,w))+g(u,v,w)A(f(u,v,w))A(f(u,v,w))A(g(u,v,w))]=164B(3αfψwαψvαψuα(u,v,w))B(3αgψwαψvαψuα(u,v,w)). (4.18)

    Integrating over [a,k]×[b,m]×[c,n] and from the properties of modulus we have

    |kambnc[f(u,v,w)g(u,v,w)[f(u,v,w)A(g(u,v,w))+g(u,v,w)A(f(u,v,w))A(f(u,v,w))A(g(u,v,w))]]|dwdvdu164kambnc|B(3αfψwαψvαψuα(u,v,w))B(3αfψwαψvαψuα(u,v,w))|dwdvdu. (4.19)

    Using (4.15) and (4.16) in (4.19) we get the required inequality (4.17).

    Remark: If we put different values for ψ(x) as x,lnx,xσthen it reduces to various types of fractional Čebyšev inequalities such as Riemann Liouville fractional, Hadmard Fractional and Erdelyi-Kober fractional inequalities respectively.

    In this paper, we studied Čebyšev like inequalities. We proved some new ψ Caputo fractional Čebyšev type inequalities involving functions of two and three variables.

    All authors declare no conflict of interest in this paper.



    [1] I. Aoki, A Simulation Study on the Schooling Mechanism in Fish, Bulletin of the Japanese Society of Scientific Fisheries (Japan), 1982.
    [2] I. D. Couzin, J. Krause, R. James, G. D Ruxton, N. R. Franks, Collective memory and spatial sorting in animal groups, J. Theor. Biol., 218 (2002), 1-11. doi: 10.1006/jtbi.2002.3065
    [3] A. Huth, C. Wissel, The simulation of the movement of fish schools, J. Theor. Biol., 156 (1992), 365-385. doi: 10.1016/S0022-5193(05)80681-2
    [4] Y. X. Li, R. Lukeman, L. Edelstein-Keshet, Minimal mechanisms for school formation in self-propelled particles, Phys. D: Nonlinear Phenomena, 237 (2008), 699-720.
    [5] C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model, in ACM SIGGRAPH Computer Graphics, (1987), 25-34.
    [6] F. Cucker, S. Smale, Emergent behavior in flocks, IEEE Trans. Automatic Control, 52 (2007), 852.
    [7] F. Cucker, S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227. doi: 10.1007/s11537-007-0647-x
    [8] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229. doi: 10.1103/PhysRevLett.75.1226
    [9] M. Agueh, R. Illner, A. Richardson, Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type, Kinetic Related Models, 4 (2011), 1-16. doi: 10.3934/krm.2011.4.1
    [10] S. Motsch, E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947. doi: 10.1007/s10955-011-0285-9
    [11] S. Motsch, E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Rev., 56 (2014), 577-621. doi: 10.1137/120901866
    [12] J. A. Carrillo, M. Fornasier, J. Rosado, G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236. doi: 10.1137/090757290
    [13] S. Y. Ha, J. G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325. doi: 10.4310/CMS.2009.v7.n2.a2
    [14] S. Y. Ha, E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic Related Models, 1 (2008), 415-435. doi: 10.3934/krm.2008.1.415
    [15] J. A. Carrillo, Y. P. Choi, S. Pérez, A review on attractive-repulsive hydrodynamics for consensus in collective behavior, preprint, arXiv: 1605.00232.
    [16] J. A. Carrillo, Y. Huang, S. Martin, Explicit flock solutions for Quasi-Morse potentials, Eur. J. Appl. Math., (2014), 1-26.
    [17] J. Von Brecht, D. Uminsky, T. Kolokolnikov, A. Bertozzi, Predicting pattern formation in particle interactions, Math. Models Methods Appl. Sci., 22 (2012).
    [18] D. Bakry, P. Cattiaux, A. Guillin, Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré, J. Funct. Anal., 254 (2008), 727-759. doi: 10.1016/j.jfa.2007.11.002
    [19] C. Villani, Hypocoercivity, Memoirs of the American Mathematical Society, 2009.
    [20] P. E. Jabin, S. Motsch, Clustering and asymptotic behavior in opinion formation, J. Differ. Equations, 257 (2014), 4165-4187. doi: 10.1016/j.jde.2014.08.005
    [21] T. Karper, A. Mellet, K. Trivisa, On strong local alignment in the kinetic Cucker-Smale model, in Hyperbolic Conservation Laws and Related Analysis with Applications, Springer, (2014), 227-242.
    [22] J. Haskovec, Flocking dynamics and mean-field limit in the Cucker-Smale-type model with topological interactions, Phys. D: Nonlinear Phenomena, 261 (2013), 42-51. doi: 10.1016/j.physd.2013.06.006
    [23] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, et al., Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proceed. Natl. Acad. Sci., 105 (2008), 1232.
    [24] A. Blanchet, P. Degond, Topological interactions in a Boltzmann-type framework, J. Stat. Phys., 163 (2016), 41-60. doi: 10.1007/s10955-016-1471-6
    [25] J. A. Carrillo, Y. Huang, Explicit Equilibrium solutions for the aggregation equation with power-law potentials, preprint, arXiv: 1602.06615.
    [26] R. Fetecau, Y. Huang, T. Kolokolnikov, Swarm dynamics and equilibria for a nonlocal aggregation model, Nonlinearity, 24 (2011), 2681. doi: 10.1088/0951-7715/24/10/002
    [27] T. Kolokolnikov, H. Sun, D. Uminsky, A. Bertozzi, Stability of ring patterns arising from two-dimensional particle interactions, Phys. Rev. E, 84 (2011), 015203. doi: 10.1103/PhysRevE.84.015203
    [28] Y. Chuang, M. R. D'Orsogna, D. Marthaler, A. L. Bertozzi, L. S. Chayes, State transitions and the continuum limit for a 2d interacting, self-propelled particle system, Phys. D: Nonlinear Phenomena, 232 (2007), 33-47.
    [29] M. R. D'Orsogna, Y. L. Chuang, A. L. Bertozzi, L. S. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Phys. Rev. Lett., 96 (2006), 104302.
    [30] D. Ruelle, Statistical Mechanics: Rigorous Results. World Scientific, 1969.
    [31] D. Balagué, J. A. Carrillo, T. Laurent, G. Raoul, Dimensionality of local minimizers of the Interaction energy, Arch. Rational Mech. Anal., 209 (2013), 1055-1088. doi: 10.1007/s00205-013-0644-6
    [32] L. Desvillettes, C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation, Inventiones Math., 159 (2005), 245-316. doi: 10.1007/s00222-004-0389-9
    [33] F. Filbet, On deterministic approximation of the Boltzmann equation in a bounded domain, Multiscale Modell. Simul., 10 (2012), 792-817. doi: 10.1137/11082419X
    [34] F. Bolley, J. A. Canizo, J. A. Carrillo, Stochastic mean-field limit: non-Lipschitz forces and swarming, Math. Models Methods. Appl. Sci., 21 (2011), 2179-2210. doi: 10.1142/S0218202511005702
    [35] J. Carrillo, Y. P. Choi, M. Hauray, The derivation of swarming models: mean-field limit and Wasserstein distances, in Collective Dynamics from Bacteria to Crowds, Springer, (2014), 1-46.
    [36] P. Degond, G. Dimarco, T. B. N. Mac, N. Wang, Macroscopic models of collective motion with repulsion, Commun. Math. Sci., 13 (2015), 1615-1638. doi: 10.4310/CMS.2015.v13.n6.a12
    [37] P. Degond, J. G. Liu, S. Motsch, V. Panferov, Hydrodynamic models of self-organized dynamics: derivation and existence theory, Methods Appl. Anal., 20 (2013), 89-114.
    [38] P. Degond, S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), 1193-1215. doi: 10.1142/S0218202508003005
    [39] P. E. Jabin, A review of the mean field limits for Vlasov equations, Kinetic Related Models, 7 (2014), 661-711. doi: 10.3934/krm.2014.7.661
    [40] H. Spohn, Large Scale Dynamics of Interacting Particles, Springer, 1991.
  • This article has been cited by:

    1. Tamer Nabil, Ulam stabilities of nonlinear coupled system of fractional differential equations including generalized Caputo fractional derivative, 2021, 6, 2473-6988, 5088, 10.3934/math.2021301
    2. MAYSAA AL-QURASHI, SAIMA RASHID, YELIZ KARACA, ZAKIA HAMMOUCH, DUMITRU BALEANU, YU-MING CHU, ACHIEVING MORE PRECISE BOUNDS BASED ON DOUBLE AND TRIPLE INTEGRAL AS PROPOSED BY GENERALIZED PROPORTIONAL FRACTIONAL OPERATORS IN THE HILFER SENSE, 2021, 29, 0218-348X, 2140027, 10.1142/S0218348X21400272
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5220) PDF downloads(186) Cited by(7)

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog