Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Local dynamics and coexistence of predator–prey model with directional dispersal of predator

  • 2 The author is now with the Department of Mathematics, Tamkang University, 151, Yingzhuan Road, Tamsui, New Taipei City, 251301, Taiwan.
  • Received: 15 June 2020 Accepted: 23 September 2020 Published: 30 September 2020
  • In this paper, we study the effect of directional dispersal of a predator on a predator– prey model. The prey is assumed to have traits making it undetectable to the predator and difficult to chase the prey directly. Directional dispersal of the predator is described when the predator has learned the high hunting efficiency in certain areas, thereby dispersing toward these areas instead of directly chasing the prey. We investigate the stability of the semi-trivial solution and the existence of a coexistence steady-state. Moreover, we show that the predator that moves toward a high-predation area may make the predators survive under the condition the predators cannot survive when they disperse randomly. The results are obtained through eigenvalue analysis and fixed-point index theory. Finally, we present the numerical simulation and its biological interpretations based on the obtained results.

    Citation: Kwangjoong Kim, Wonhyung Choi. Local dynamics and coexistence of predator–prey model with directional dispersal of predator[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 6737-6755. doi: 10.3934/mbe.2020351

    Related Papers:

    [1] Yuxuan Zhang, Xinmiao Rong, Jimin Zhang . A diffusive predator-prey system with prey refuge and predator cannibalism. Mathematical Biosciences and Engineering, 2019, 16(3): 1445-1470. doi: 10.3934/mbe.2019070
    [2] Yun Kang, Sourav Kumar Sasmal, Komi Messan . A two-patch prey-predator model with predator dispersal driven by the predation strength. Mathematical Biosciences and Engineering, 2017, 14(4): 843-880. doi: 10.3934/mbe.2017046
    [3] Yong Luo . Global existence and stability of the classical solution to a density-dependent prey-predator model with indirect prey-taxis. Mathematical Biosciences and Engineering, 2021, 18(5): 6672-6699. doi: 10.3934/mbe.2021331
    [4] Yongli Cai, Malay Banerjee, Yun Kang, Weiming Wang . Spatiotemporal complexity in a predator--prey model with weak Allee effects. Mathematical Biosciences and Engineering, 2014, 11(6): 1247-1274. doi: 10.3934/mbe.2014.11.1247
    [5] Eric M. Takyi, Charles Ohanian, Margaret Cathcart, Nihal Kumar . Dynamical analysis of a predator-prey system with prey vigilance and hunting cooperation in predators. Mathematical Biosciences and Engineering, 2024, 21(2): 2768-2786. doi: 10.3934/mbe.2024123
    [6] Jin Zhong, Yue Xia, Lijuan Chen, Fengde Chen . Dynamical analysis of a predator-prey system with fear-induced dispersal between patches. Mathematical Biosciences and Engineering, 2025, 22(5): 1159-1184. doi: 10.3934/mbe.2025042
    [7] Lazarus Kalvein Beay, Agus Suryanto, Isnani Darti, Trisilowati . Hopf bifurcation and stability analysis of the Rosenzweig-MacArthur predator-prey model with stage-structure in prey. Mathematical Biosciences and Engineering, 2020, 17(4): 4080-4097. doi: 10.3934/mbe.2020226
    [8] Yuanfu Shao . Bifurcations of a delayed predator-prey system with fear, refuge for prey and additional food for predator. Mathematical Biosciences and Engineering, 2023, 20(4): 7429-7452. doi: 10.3934/mbe.2023322
    [9] Swadesh Pal, Malay Banerjee, Vitaly Volpert . Spatio-temporal Bazykin’s model with space-time nonlocality. Mathematical Biosciences and Engineering, 2020, 17(5): 4801-4824. doi: 10.3934/mbe.2020262
    [10] Eric Ruggieri, Sebastian J. Schreiber . The Dynamics of the Schoener-Polis-Holt model of Intra-Guild Predation. Mathematical Biosciences and Engineering, 2005, 2(2): 279-288. doi: 10.3934/mbe.2005.2.279
  • In this paper, we study the effect of directional dispersal of a predator on a predator– prey model. The prey is assumed to have traits making it undetectable to the predator and difficult to chase the prey directly. Directional dispersal of the predator is described when the predator has learned the high hunting efficiency in certain areas, thereby dispersing toward these areas instead of directly chasing the prey. We investigate the stability of the semi-trivial solution and the existence of a coexistence steady-state. Moreover, we show that the predator that moves toward a high-predation area may make the predators survive under the condition the predators cannot survive when they disperse randomly. The results are obtained through eigenvalue analysis and fixed-point index theory. Finally, we present the numerical simulation and its biological interpretations based on the obtained results.




    [1] M. Iida, M. Mimura, H. Ninomiya, Diffusion, cross-diffusion and competitive interaction, J. Math. Biol., 53 (2006), 617-641.
    [2] W. Ko, K. Ryu, On a predator-prey system with cross diffusion representing the tendency of predators in the presence of prey species, J. Math. Anal. Appl., 341 (2008), 1133-1142. doi: 10.1016/j.jmaa.2007.11.018
    [3] T. Kadota, K. Kuto, Positive steady states for a prey-predator model with some nonlinear diffusion terms, J. Math. Anal. Appl., 323 (2006), 1387-1401. doi: 10.1016/j.jmaa.2005.11.065
    [4] K. Kuto, A strongly coupled diffusion effect on the stationary solution set of a prey-predator model, Adv. Differential. Equ., 12 (2007), 145-172.
    [5] K. Kuto, Y. Yamada, Coexistence problem for a prey-predator model with density-dependent diffusion, Nonlinear Anal.-Theor., 71 (2009), e2223-e2232.
    [6] K. Kuto, Y. Yamada, Limiting characterization of stationary solutions for a prey-predator model with nonlinear diffusion of fractional type, Differ. Integral. Equ., 22 (2009), 725-752.
    [7] Y. Lou, W. Ni, Diffusion vs cross-diffusion: an elliptic approach, J. Differ. Equations, 154 (1999), 157-190. doi: 10.1006/jdeq.1998.3559
    [8] K. Ryu, I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions, Discrete Contin. Dyn-A, 9 (2003), 1049. doi: 10.3934/dcds.2003.9.1049
    [9] K. Ryu, I. Ahn, Coexistence theorem of steady states for nonlinear self-cross diffusion systems with competitive dynamics, J. Math. Anal. Appl., 283 (2003), 46-65. doi: 10.1016/S0022-247X(03)00162-8
    [10] N. Shigesada, K. Kawasaki, E. Teramoto, Spatial segregation of interacting species, J. Theor. Biol., 79 (1979), 83-99. doi: 10.1016/0022-5193(79)90258-3
    [11] I. Averill, K. Lam, Y. Lou, The role of advection in a two-species competition model: a bifurcation approach, volume 245. American Mathematical Society, 2017.
    [12] X. Chen, K. Lam, Y. Lou, Dynamics of a reaction-diffusion-advection model for two competing species, Discrete Contin. Dyn. S., 32 (2012), 3841-3859. doi: 10.3934/dcds.2012.32.3841
    [13] C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn-A, 34 (2014), 1701-1745. doi: 10.3934/dcds.2014.34.1701
    [14] R. S. Cantrell, C. Cosner, Y. Lou, Movement toward better environments and the evolution of rapid diffusion, Math. Biosci., 204 (2006), 199-214. doi: 10.1016/j.mbs.2006.09.003
    [15] R. S. Cantrell, C. Cosner, Y. Lou, Advection-mediated coexistence of competing species, P. Roy. Soc. Edinb. A., 137 (2007), 497-518. doi: 10.1017/S0308210506000047
    [16] R. S. Cantrell, C. Cosner, Y. Lou, Approximating the ideal free distribution via reaction-diffusion- advection equations, J. Differ. Equations, 245 (2008), 3687-3703. doi: 10.1016/j.jde.2008.07.024
    [17] C. Cosner, Y. Lou, Does movement toward better environments always benefit a population?, J. Math. Anal. Appl., 277 (2003), 489-503. doi: 10.1016/S0022-247X(02)00575-9
    [18] K. Kuto, T. Tsujikawa, Limiting structure of steady-states to the lotka-volterra competition model with large diffusion and advection, J. Differ. Equations, 258 (2015), 1801-1858. doi: 10.1016/j.jde.2014.11.016
    [19] K.-Y. Lam, W.-M. Ni, Advection-mediated competition in general environments, J. Differ. Equations, 257 (2014), 3466-3500. doi: 10.1016/j.jde.2014.06.019
    [20] K.-Y. Lam, W. M. Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, Discrete Contin. Dyn. Syst., 28 (2010), 1051-1067. doi: 10.3934/dcds.2010.28.1051
    [21] E. Cho, Y.-J. Kim, Starvation driven diffusion as a survival strategy of biological organisms, B. Math. Biol., 75 (2013), 845-870. doi: 10.1007/s11538-013-9838-1
    [22] W. Choi, S. Baek, I. Ahn, Intraguild predation with evolutionary dispersal in a spatially heterogeneous environment, J. Math. Biol., 78 (2019), 2141-2169. doi: 10.1007/s00285-019-01336-5
    [23] W. Choi, I. Ahn, Strong competition model with non-uniform dispersal in a heterogeneous environment, Appl. Math. Lett., 88 (2019), 96-102. doi: 10.1016/j.aml.2018.08.014
    [24] W. Choi, I. Ahn, Non-uniform dispersal of logistic population models with free boundaries in a spatially heterogeneous environment, J. Math. Anal. Appl., 479 (2019), 283-314. doi: 10.1016/j.jmaa.2019.06.027
    [25] W. Choi, I. Ahn, Predator-prey interaction systems with non-uniform dispersal in a spatially heterogeneous environment, J. Math. Anal. Appl., 485 (2020), 123860. doi: 10.1016/j.jmaa.2020.123860
    [26] Y.-J. Kim, O. Kwon, F. Li, Evolution of dispersal toward fitness, B. Math. Biol., 75 (2013), 2474- 2498. doi: 10.1007/s11538-013-9904-8
    [27] Y.-J. Kim, O. Kwon, F. Li, Global asymptotic stability and the ideal free distribution in a starvation driven diffusion, J. Math. Biol., 68 (2014), 1341-1370. doi: 10.1007/s00285-013-0674-6
    [28] Y.-J. Kim, O. Kwon, Evolution of dispersal with starvation measure and coexistence, B. Math. Biol., 78 (2016), 254-279. doi: 10.1007/s11538-016-0142-8
    [29] W. Choi, I. Ahn, Effect of prey-taxis on predator's invasion in a spatially heterogeneous environment, Appl. Math. Lett., 98 (2019), 256-262. doi: 10.1016/j.aml.2019.06.021
    [30] S. Wu, J. Shi, B. Wu, Global existence of solutions and uniform persistence of a diffusive predator- prey model with prey-taxis, J. Differ. Equations, 260 (2016), 5847-5874. doi: 10.1016/j.jde.2015.12.024
    [31] H. Jin, Z. Wang, Global stability of prey-taxis systems, J. Differ. Equations, 262 (2017), 1257- 1290. doi: 10.1016/j.jde.2016.10.010
    [32] Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Anal.-Real., 11 (2010), 2056-2064. doi: 10.1016/j.nonrwa.2009.05.005
    [33] X. He, S. Zheng, Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis, Appl. Math. Lett., 49 (2015), 73-77. doi: 10.1016/j.aml.2015.04.017
    [34] C. Li, X. Wang, Y. Shao, Steady states of a predator-prey model with prey-taxis, Nonlinear Anal.- Theor., 97 (2014), 155-168. doi: 10.1016/j.na.2013.11.022
    [35] P. A. Abrams, L. R. Ginzburg, The nature of predation: prey dependent, ratio dependent or neither?, Trends Ecol. Evol., 15 (2000), 337-341.
    [36] R. Arditi, L. R. Ginzburg, Coupling in predator-prey dynamics: ratio-dependence, J. Theor. Biol., 139 (1989), 311-326. doi: 10.1016/S0022-5193(89)80211-5
    [37] C. Cosner, D. L. DeAngelis, J. S. Ault, D. B. Olson, Effects of spatial grouping on the functional response of predators, Theor. Popul. Biol., 56 (1999), 65-75. doi: 10.1006/tpbi.1999.1414
    [38] J. M. Culp, N. E. Glozier, G. J. Scrimgeour, Reduction of predation risk under the cover of darkness: avoidance responses of mayfly larvae to a benthic fish, Oecologia, 86 (1991), 163-169. doi: 10.1007/BF00317527
    [39] F. Mougeot, V. Bretagnolle, Predation risk and moonlight avoidance in nocturnal seabirds, J. Avian. Biol., 31 (2000), 376-386. doi: 10.1034/j.1600-048X.2000.310314.x
    [40] T. Caro, Antipredator defenses in birds and mammals, University of Chicago Press, 2005.
    [41] H. B. Cott, Adaptive coloration in animals, 1940.
    [42] J. M. Hemmi, Predator avoidance in fiddler crabs: 1. escape decisions in relation to the risk of predation, Anim. Behav., 69 (2005), 603-614. doi: 10.1016/j.anbehav.2004.06.018
    [43] W. J. Bell, Searching behaviour: the behavioural ecology of finding resources, Springer Science & Business Media, 2012.
    [44] S. Benhamou, Spatial memory and searching efficiency, Anim. Behav., 47 (1994), 1423-1433. doi: 10.1006/anbe.1994.1189
    [45] S. Benhamou, Bicoordinate navigation based on non-orthogonal gradient fields, J. Theo. Biol., 225 (2003), 235-239. doi: 10.1016/S0022-5193(03)00242-X
    [46] W. F. Fagan, M. A. Lewis, M. Auger-Meth ′ e, T. Avgar, S. Benhamou, G. Breed, et al., Spatial ′ memory and animal movement, Ecol. Lett., 16 (2013), 1316-1329.
    [47] S. M. Flaxman, Y. Lou, Tracking prey or tracking the prey's resource? mechanisms of movement and optimal habitat selection by predators, J. Theor. Biol., 256 (2009), 187-200. doi: 10.1016/j.jtbi.2008.09.024
    [48] S. M. Flaxman, Y. Lou, F. G. Meyer, Evolutionary ecology of movement by predators and prey, Theor. Ecol., 4 (2011), 255-267. doi: 10.1007/s12080-011-0120-6
    [49] A. M. Kittle, M. Anderson, T. Avgar, J. A. Baker, G. S. Brown, J. Hagens, et al., Landscape-level wolf space use is correlated with prey abundance, ease of mobility, and the distribution of prey habitat, Ecosphere, 8 (2017), e01783.
    [50] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, In Function spaces, differential operators and nonlinear analysis, pages 9-126. Springer, 1993.
    [51] R. S. Cantrell, C. Cosner, Spatial ecology via reaction-diffusion equations, John Wiley & Sons, 2004.
    [52] L. J. S. Allen, B. M. Bolker, Y. Lou, A. L. Nevai, Asymptotic profiles of the steady states for an sis epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1. doi: 10.3934/dcds.2008.21.1
    [53] X. He, W.-M. Ni, Global dynamics of the lotka-volterra competition-diffusion system: Diffusion and spatial heterogeneity i, Commun. Pur. Appl. Math., 69 (2016), 981-1014. doi: 10.1002/cpa.21596
    [54] E. N. Dancer, On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl., 91 (1983), 131-151. doi: 10.1016/0022-247X(83)90098-7
    [55] L. Li, Coexistence theorems of steady states for predator-prey interacting systems, T. Am. Math. Soc., 305 (1988), 143-166. doi: 10.1090/S0002-9947-1988-0920151-1
    [56] M. Wang, Z. Li, Q. Ye, Existence of positive solutions for semilinear elliptic system, In Qualitative aspects and applications of nonlinear evolution equations, 1991.
    [57] K. Ryu, I. Ahn, Positive solutions for ratio-dependent predator-prey interaction systems, J. Differ. Equations, 218 (2005), 117-135. doi: 10.1016/j.jde.2005.06.020
  • This article has been cited by:

    1. Tianyuan Xu, Shanming Ji, Ming Mei, Jingxue Yin, Traveling waves for time-delayed reaction diffusion equations with degenerate diffusion, 2018, 265, 00220396, 4442, 10.1016/j.jde.2018.06.008
    2. Yun-Rui Yang, Wan-Tong Li, Shi-Liang Wu, Exponential stability of traveling fronts in a diffusion epidemic system with delay, 2011, 12, 14681218, 1223, 10.1016/j.nonrwa.2010.09.017
    3. Tianyuan Xu, Shanming Ji, Ming Mei, Jingxue Yin, Sharp oscillatory traveling waves of structured population dynamics model with degenerate diffusion, 2020, 269, 00220396, 8882, 10.1016/j.jde.2020.06.029
    4. Shi-Liang Wu, Hai-Qin Zhao, San-Yang Liu, Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability, 2011, 62, 0044-2275, 377, 10.1007/s00033-010-0112-1
    5. Guo-Bao Zhang, Wan-Tong Li, Nonlinear stability of traveling wavefronts in an age-structured population model with nonlocal dispersal and delay, 2013, 64, 0044-2275, 1643, 10.1007/s00033-013-0303-7
    6. Shangjiang Guo, Johannes Zimmer, Stability of travelling wavefronts in discrete reaction–diffusion equations with nonlocal delay effects, 2015, 28, 0951-7715, 463, 10.1088/0951-7715/28/2/463
    7. Qifeng Zhang, Chengjian Zhang, A new linearized compact multisplitting scheme for the nonlinear convection–reaction–diffusion equations with delay, 2013, 18, 10075704, 3278, 10.1016/j.cnsns.2013.05.018
    8. Jingdong Wei, Lixin Tian, Jiangbo Zhou, Zaili Zhen, Existence, uniqueness and asymptotic behavior of traveling wave fronts for a generalized Fisher equation with nonlocal delay, 2017, 103, 09600779, 536, 10.1016/j.chaos.2017.07.003
    9. Jingjun Zhao, Rui Zhan, Yang Xu, Explicit exponential Runge–Kutta methods for semilinear parabolic delay differential equations, 2020, 178, 03784754, 366, 10.1016/j.matcom.2020.06.025
    10. Guangying Lv, Mingxin Wang, Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations, 2010, 23, 0951-7715, 845, 10.1088/0951-7715/23/4/005
    11. Ansgar Jüngel, 2010, Chapter 15, 978-0-8176-4945-6, 397, 10.1007/978-0-8176-4946-3_15
    12. Ming Mei, Chunhua Ou, Xiao-Qiang Zhao, Global Stability of Monostable Traveling Waves For Nonlocal Time-Delayed Reaction-Diffusion Equations, 2010, 42, 0036-1410, 2762, 10.1137/090776342
    13. Rui Huang, Ming Mei, Yong Wang, Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity, 2012, 32, 1078-0947, 3621, 10.3934/dcds.2012.32.3621
    14. Yun-Rui Yang, Wan-Tong Li, Shi-Liang Wu, Stability of traveling waves in a monostable delayed system without quasi-monotonicity, 2013, 14, 14681218, 1511, 10.1016/j.nonrwa.2012.10.015
    15. Guo-Bao Zhang, Ruyun Ma, Spreading speeds and traveling waves for a nonlocal dispersal equation with convolution-type crossing-monostable nonlinearity, 2014, 65, 0044-2275, 819, 10.1007/s00033-013-0353-x
    16. Shi-Liang Wu, Wan-Tong Li, San-Yang Liu, Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay, 2012, 17, 1553-524X, 347, 10.3934/dcdsb.2012.17.347
    17. Yun-Rui Yang, Li Liu, Stability of traveling waves in a population dynamics model with spatio-temporal delay, 2016, 132, 0362546X, 183, 10.1016/j.na.2015.11.006
    18. Maohua Ran, Yu He, Linearized Crank–Nicolson method for solving the nonlinear fractional diffusion equation with multi-delay, 2018, 95, 0020-7160, 2458, 10.1080/00207160.2017.1398326
    19. Ming Mei, Chi-Kun Lin, Chi-Tien Lin, Joseph W.-H. So, Traveling wavefronts for time-delayed reaction–diffusion equation: (II) Nonlocal nonlinearity, 2009, 247, 00220396, 511, 10.1016/j.jde.2008.12.020
    20. Ming Mei, Chi-Kun Lin, Chi-Tien Lin, Joseph W.-H. So, Traveling wavefronts for time-delayed reaction–diffusion equation: (I) Local nonlinearity, 2009, 247, 00220396, 495, 10.1016/j.jde.2008.12.026
    21. Guo-Bao Zhang, Global stability of traveling wave fronts for non-local delayed lattice differential equations, 2012, 13, 14681218, 1790, 10.1016/j.nonrwa.2011.12.010
    22. Mengqi Li, Peixuan Weng, Yong Yang, Nonlinear stability of traveling waves for a multi-type SIS epidemic model, 2018, 11, 1793-5245, 1850003, 10.1142/S1793524518500031
    23. Shi-Liang Wu, Wan-Tong Li, San-Yang Liu, Asymptotic stability of traveling wave fronts in nonlocal reaction–diffusion equations with delay, 2009, 360, 0022247X, 439, 10.1016/j.jmaa.2009.06.061
    24. Changchun Liu, Ming Mei, Jiaqi Yang, Global stability of traveling waves for nonlocal time-delayed degenerate diffusion equation, 2022, 306, 00220396, 60, 10.1016/j.jde.2021.10.027
    25. Rui Huang, Zhuangzhuang Wang, Tianyuan Xu, Smooth traveling waves for doubly nonlinear degenerate diffusion equations with time delay, 2022, 0003-6811, 1, 10.1080/00036811.2022.2136074
    26. Rui Huang, Zhanghua Liang, Zhuangzhuang Wang, Existence and stability of traveling waves for doubly degenerate diffusion equations, 2023, 74, 0044-2275, 10.1007/s00033-023-01938-6
    27. Stability of traveling fronts in a population model with nonlocal delay and advection, 2015, 3, 2321-5666, 498, 10.26637/mjm304/008
    28. Dildora Muhamediyeva, D. Bazarov, Cross-diffusion systems with convective transport, 2023, 401, 2267-1242, 02022, 10.1051/e3sconf/202340102022
    29. Dildora Muhamediyeva, Nilufar Mirzaeva, Elmurod Kodirov, Boymirzo Samijonov, 2024, 3147, 0094-243X, 040013, 10.1063/5.0210488
    30. Na Shi, Xin Wu, Zhaohai Ma, Multidimensional Stability of Planar Traveling Waves for Competitive–Cooperative Lotka–Volterra System of Three Species, 2025, 13, 2227-7390, 197, 10.3390/math13020197
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3990) PDF downloads(111) Cited by(8)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog