Citation: Kwangjoong Kim, Wonhyung Choi. Local dynamics and coexistence of predator–prey model with directional dispersal of predator[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 6737-6755. doi: 10.3934/mbe.2020351
[1] | Yuxuan Zhang, Xinmiao Rong, Jimin Zhang . A diffusive predator-prey system with prey refuge and predator cannibalism. Mathematical Biosciences and Engineering, 2019, 16(3): 1445-1470. doi: 10.3934/mbe.2019070 |
[2] | Yun Kang, Sourav Kumar Sasmal, Komi Messan . A two-patch prey-predator model with predator dispersal driven by the predation strength. Mathematical Biosciences and Engineering, 2017, 14(4): 843-880. doi: 10.3934/mbe.2017046 |
[3] | Yong Luo . Global existence and stability of the classical solution to a density-dependent prey-predator model with indirect prey-taxis. Mathematical Biosciences and Engineering, 2021, 18(5): 6672-6699. doi: 10.3934/mbe.2021331 |
[4] | Yongli Cai, Malay Banerjee, Yun Kang, Weiming Wang . Spatiotemporal complexity in a predator--prey model with weak Allee effects. Mathematical Biosciences and Engineering, 2014, 11(6): 1247-1274. doi: 10.3934/mbe.2014.11.1247 |
[5] | Eric M. Takyi, Charles Ohanian, Margaret Cathcart, Nihal Kumar . Dynamical analysis of a predator-prey system with prey vigilance and hunting cooperation in predators. Mathematical Biosciences and Engineering, 2024, 21(2): 2768-2786. doi: 10.3934/mbe.2024123 |
[6] | Jin Zhong, Yue Xia, Lijuan Chen, Fengde Chen . Dynamical analysis of a predator-prey system with fear-induced dispersal between patches. Mathematical Biosciences and Engineering, 2025, 22(5): 1159-1184. doi: 10.3934/mbe.2025042 |
[7] | Lazarus Kalvein Beay, Agus Suryanto, Isnani Darti, Trisilowati . Hopf bifurcation and stability analysis of the Rosenzweig-MacArthur predator-prey model with stage-structure in prey. Mathematical Biosciences and Engineering, 2020, 17(4): 4080-4097. doi: 10.3934/mbe.2020226 |
[8] | Yuanfu Shao . Bifurcations of a delayed predator-prey system with fear, refuge for prey and additional food for predator. Mathematical Biosciences and Engineering, 2023, 20(4): 7429-7452. doi: 10.3934/mbe.2023322 |
[9] | Swadesh Pal, Malay Banerjee, Vitaly Volpert . Spatio-temporal Bazykin’s model with space-time nonlocality. Mathematical Biosciences and Engineering, 2020, 17(5): 4801-4824. doi: 10.3934/mbe.2020262 |
[10] | Eric Ruggieri, Sebastian J. Schreiber . The Dynamics of the Schoener-Polis-Holt model of Intra-Guild Predation. Mathematical Biosciences and Engineering, 2005, 2(2): 279-288. doi: 10.3934/mbe.2005.2.279 |
[1] | M. Iida, M. Mimura, H. Ninomiya, Diffusion, cross-diffusion and competitive interaction, J. Math. Biol., 53 (2006), 617-641. |
[2] |
W. Ko, K. Ryu, On a predator-prey system with cross diffusion representing the tendency of predators in the presence of prey species, J. Math. Anal. Appl., 341 (2008), 1133-1142. doi: 10.1016/j.jmaa.2007.11.018
![]() |
[3] |
T. Kadota, K. Kuto, Positive steady states for a prey-predator model with some nonlinear diffusion terms, J. Math. Anal. Appl., 323 (2006), 1387-1401. doi: 10.1016/j.jmaa.2005.11.065
![]() |
[4] | K. Kuto, A strongly coupled diffusion effect on the stationary solution set of a prey-predator model, Adv. Differential. Equ., 12 (2007), 145-172. |
[5] | K. Kuto, Y. Yamada, Coexistence problem for a prey-predator model with density-dependent diffusion, Nonlinear Anal.-Theor., 71 (2009), e2223-e2232. |
[6] | K. Kuto, Y. Yamada, Limiting characterization of stationary solutions for a prey-predator model with nonlinear diffusion of fractional type, Differ. Integral. Equ., 22 (2009), 725-752. |
[7] |
Y. Lou, W. Ni, Diffusion vs cross-diffusion: an elliptic approach, J. Differ. Equations, 154 (1999), 157-190. doi: 10.1006/jdeq.1998.3559
![]() |
[8] |
K. Ryu, I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions, Discrete Contin. Dyn-A, 9 (2003), 1049. doi: 10.3934/dcds.2003.9.1049
![]() |
[9] |
K. Ryu, I. Ahn, Coexistence theorem of steady states for nonlinear self-cross diffusion systems with competitive dynamics, J. Math. Anal. Appl., 283 (2003), 46-65. doi: 10.1016/S0022-247X(03)00162-8
![]() |
[10] |
N. Shigesada, K. Kawasaki, E. Teramoto, Spatial segregation of interacting species, J. Theor. Biol., 79 (1979), 83-99. doi: 10.1016/0022-5193(79)90258-3
![]() |
[11] | I. Averill, K. Lam, Y. Lou, The role of advection in a two-species competition model: a bifurcation approach, volume 245. American Mathematical Society, 2017. |
[12] |
X. Chen, K. Lam, Y. Lou, Dynamics of a reaction-diffusion-advection model for two competing species, Discrete Contin. Dyn. S., 32 (2012), 3841-3859. doi: 10.3934/dcds.2012.32.3841
![]() |
[13] |
C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn-A, 34 (2014), 1701-1745. doi: 10.3934/dcds.2014.34.1701
![]() |
[14] |
R. S. Cantrell, C. Cosner, Y. Lou, Movement toward better environments and the evolution of rapid diffusion, Math. Biosci., 204 (2006), 199-214. doi: 10.1016/j.mbs.2006.09.003
![]() |
[15] |
R. S. Cantrell, C. Cosner, Y. Lou, Advection-mediated coexistence of competing species, P. Roy. Soc. Edinb. A., 137 (2007), 497-518. doi: 10.1017/S0308210506000047
![]() |
[16] |
R. S. Cantrell, C. Cosner, Y. Lou, Approximating the ideal free distribution via reaction-diffusion- advection equations, J. Differ. Equations, 245 (2008), 3687-3703. doi: 10.1016/j.jde.2008.07.024
![]() |
[17] |
C. Cosner, Y. Lou, Does movement toward better environments always benefit a population?, J. Math. Anal. Appl., 277 (2003), 489-503. doi: 10.1016/S0022-247X(02)00575-9
![]() |
[18] |
K. Kuto, T. Tsujikawa, Limiting structure of steady-states to the lotka-volterra competition model with large diffusion and advection, J. Differ. Equations, 258 (2015), 1801-1858. doi: 10.1016/j.jde.2014.11.016
![]() |
[19] |
K.-Y. Lam, W.-M. Ni, Advection-mediated competition in general environments, J. Differ. Equations, 257 (2014), 3466-3500. doi: 10.1016/j.jde.2014.06.019
![]() |
[20] |
K.-Y. Lam, W. M. Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, Discrete Contin. Dyn. Syst., 28 (2010), 1051-1067. doi: 10.3934/dcds.2010.28.1051
![]() |
[21] |
E. Cho, Y.-J. Kim, Starvation driven diffusion as a survival strategy of biological organisms, B. Math. Biol., 75 (2013), 845-870. doi: 10.1007/s11538-013-9838-1
![]() |
[22] |
W. Choi, S. Baek, I. Ahn, Intraguild predation with evolutionary dispersal in a spatially heterogeneous environment, J. Math. Biol., 78 (2019), 2141-2169. doi: 10.1007/s00285-019-01336-5
![]() |
[23] |
W. Choi, I. Ahn, Strong competition model with non-uniform dispersal in a heterogeneous environment, Appl. Math. Lett., 88 (2019), 96-102. doi: 10.1016/j.aml.2018.08.014
![]() |
[24] |
W. Choi, I. Ahn, Non-uniform dispersal of logistic population models with free boundaries in a spatially heterogeneous environment, J. Math. Anal. Appl., 479 (2019), 283-314. doi: 10.1016/j.jmaa.2019.06.027
![]() |
[25] |
W. Choi, I. Ahn, Predator-prey interaction systems with non-uniform dispersal in a spatially heterogeneous environment, J. Math. Anal. Appl., 485 (2020), 123860. doi: 10.1016/j.jmaa.2020.123860
![]() |
[26] |
Y.-J. Kim, O. Kwon, F. Li, Evolution of dispersal toward fitness, B. Math. Biol., 75 (2013), 2474- 2498. doi: 10.1007/s11538-013-9904-8
![]() |
[27] |
Y.-J. Kim, O. Kwon, F. Li, Global asymptotic stability and the ideal free distribution in a starvation driven diffusion, J. Math. Biol., 68 (2014), 1341-1370. doi: 10.1007/s00285-013-0674-6
![]() |
[28] |
Y.-J. Kim, O. Kwon, Evolution of dispersal with starvation measure and coexistence, B. Math. Biol., 78 (2016), 254-279. doi: 10.1007/s11538-016-0142-8
![]() |
[29] |
W. Choi, I. Ahn, Effect of prey-taxis on predator's invasion in a spatially heterogeneous environment, Appl. Math. Lett., 98 (2019), 256-262. doi: 10.1016/j.aml.2019.06.021
![]() |
[30] |
S. Wu, J. Shi, B. Wu, Global existence of solutions and uniform persistence of a diffusive predator- prey model with prey-taxis, J. Differ. Equations, 260 (2016), 5847-5874. doi: 10.1016/j.jde.2015.12.024
![]() |
[31] |
H. Jin, Z. Wang, Global stability of prey-taxis systems, J. Differ. Equations, 262 (2017), 1257- 1290. doi: 10.1016/j.jde.2016.10.010
![]() |
[32] |
Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Anal.-Real., 11 (2010), 2056-2064. doi: 10.1016/j.nonrwa.2009.05.005
![]() |
[33] |
X. He, S. Zheng, Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis, Appl. Math. Lett., 49 (2015), 73-77. doi: 10.1016/j.aml.2015.04.017
![]() |
[34] |
C. Li, X. Wang, Y. Shao, Steady states of a predator-prey model with prey-taxis, Nonlinear Anal.- Theor., 97 (2014), 155-168. doi: 10.1016/j.na.2013.11.022
![]() |
[35] | P. A. Abrams, L. R. Ginzburg, The nature of predation: prey dependent, ratio dependent or neither?, Trends Ecol. Evol., 15 (2000), 337-341. |
[36] |
R. Arditi, L. R. Ginzburg, Coupling in predator-prey dynamics: ratio-dependence, J. Theor. Biol., 139 (1989), 311-326. doi: 10.1016/S0022-5193(89)80211-5
![]() |
[37] |
C. Cosner, D. L. DeAngelis, J. S. Ault, D. B. Olson, Effects of spatial grouping on the functional response of predators, Theor. Popul. Biol., 56 (1999), 65-75. doi: 10.1006/tpbi.1999.1414
![]() |
[38] |
J. M. Culp, N. E. Glozier, G. J. Scrimgeour, Reduction of predation risk under the cover of darkness: avoidance responses of mayfly larvae to a benthic fish, Oecologia, 86 (1991), 163-169. doi: 10.1007/BF00317527
![]() |
[39] |
F. Mougeot, V. Bretagnolle, Predation risk and moonlight avoidance in nocturnal seabirds, J. Avian. Biol., 31 (2000), 376-386. doi: 10.1034/j.1600-048X.2000.310314.x
![]() |
[40] | T. Caro, Antipredator defenses in birds and mammals, University of Chicago Press, 2005. |
[41] | H. B. Cott, Adaptive coloration in animals, 1940. |
[42] |
J. M. Hemmi, Predator avoidance in fiddler crabs: 1. escape decisions in relation to the risk of predation, Anim. Behav., 69 (2005), 603-614. doi: 10.1016/j.anbehav.2004.06.018
![]() |
[43] | W. J. Bell, Searching behaviour: the behavioural ecology of finding resources, Springer Science & Business Media, 2012. |
[44] |
S. Benhamou, Spatial memory and searching efficiency, Anim. Behav., 47 (1994), 1423-1433. doi: 10.1006/anbe.1994.1189
![]() |
[45] |
S. Benhamou, Bicoordinate navigation based on non-orthogonal gradient fields, J. Theo. Biol., 225 (2003), 235-239. doi: 10.1016/S0022-5193(03)00242-X
![]() |
[46] | W. F. Fagan, M. A. Lewis, M. Auger-Meth ′ e, T. Avgar, S. Benhamou, G. Breed, et al., Spatial ′ memory and animal movement, Ecol. Lett., 16 (2013), 1316-1329. |
[47] |
S. M. Flaxman, Y. Lou, Tracking prey or tracking the prey's resource? mechanisms of movement and optimal habitat selection by predators, J. Theor. Biol., 256 (2009), 187-200. doi: 10.1016/j.jtbi.2008.09.024
![]() |
[48] |
S. M. Flaxman, Y. Lou, F. G. Meyer, Evolutionary ecology of movement by predators and prey, Theor. Ecol., 4 (2011), 255-267. doi: 10.1007/s12080-011-0120-6
![]() |
[49] | A. M. Kittle, M. Anderson, T. Avgar, J. A. Baker, G. S. Brown, J. Hagens, et al., Landscape-level wolf space use is correlated with prey abundance, ease of mobility, and the distribution of prey habitat, Ecosphere, 8 (2017), e01783. |
[50] | H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, In Function spaces, differential operators and nonlinear analysis, pages 9-126. Springer, 1993. |
[51] | R. S. Cantrell, C. Cosner, Spatial ecology via reaction-diffusion equations, John Wiley & Sons, 2004. |
[52] |
L. J. S. Allen, B. M. Bolker, Y. Lou, A. L. Nevai, Asymptotic profiles of the steady states for an sis epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1. doi: 10.3934/dcds.2008.21.1
![]() |
[53] |
X. He, W.-M. Ni, Global dynamics of the lotka-volterra competition-diffusion system: Diffusion and spatial heterogeneity i, Commun. Pur. Appl. Math., 69 (2016), 981-1014. doi: 10.1002/cpa.21596
![]() |
[54] |
E. N. Dancer, On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl., 91 (1983), 131-151. doi: 10.1016/0022-247X(83)90098-7
![]() |
[55] |
L. Li, Coexistence theorems of steady states for predator-prey interacting systems, T. Am. Math. Soc., 305 (1988), 143-166. doi: 10.1090/S0002-9947-1988-0920151-1
![]() |
[56] | M. Wang, Z. Li, Q. Ye, Existence of positive solutions for semilinear elliptic system, In Qualitative aspects and applications of nonlinear evolution equations, 1991. |
[57] |
K. Ryu, I. Ahn, Positive solutions for ratio-dependent predator-prey interaction systems, J. Differ. Equations, 218 (2005), 117-135. doi: 10.1016/j.jde.2005.06.020
![]() |
1. | Tianyuan Xu, Shanming Ji, Ming Mei, Jingxue Yin, Traveling waves for time-delayed reaction diffusion equations with degenerate diffusion, 2018, 265, 00220396, 4442, 10.1016/j.jde.2018.06.008 | |
2. | Yun-Rui Yang, Wan-Tong Li, Shi-Liang Wu, Exponential stability of traveling fronts in a diffusion epidemic system with delay, 2011, 12, 14681218, 1223, 10.1016/j.nonrwa.2010.09.017 | |
3. | Tianyuan Xu, Shanming Ji, Ming Mei, Jingxue Yin, Sharp oscillatory traveling waves of structured population dynamics model with degenerate diffusion, 2020, 269, 00220396, 8882, 10.1016/j.jde.2020.06.029 | |
4. | Shi-Liang Wu, Hai-Qin Zhao, San-Yang Liu, Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability, 2011, 62, 0044-2275, 377, 10.1007/s00033-010-0112-1 | |
5. | Guo-Bao Zhang, Wan-Tong Li, Nonlinear stability of traveling wavefronts in an age-structured population model with nonlocal dispersal and delay, 2013, 64, 0044-2275, 1643, 10.1007/s00033-013-0303-7 | |
6. | Shangjiang Guo, Johannes Zimmer, Stability of travelling wavefronts in discrete reaction–diffusion equations with nonlocal delay effects, 2015, 28, 0951-7715, 463, 10.1088/0951-7715/28/2/463 | |
7. | Qifeng Zhang, Chengjian Zhang, A new linearized compact multisplitting scheme for the nonlinear convection–reaction–diffusion equations with delay, 2013, 18, 10075704, 3278, 10.1016/j.cnsns.2013.05.018 | |
8. | Jingdong Wei, Lixin Tian, Jiangbo Zhou, Zaili Zhen, Existence, uniqueness and asymptotic behavior of traveling wave fronts for a generalized Fisher equation with nonlocal delay, 2017, 103, 09600779, 536, 10.1016/j.chaos.2017.07.003 | |
9. | Jingjun Zhao, Rui Zhan, Yang Xu, Explicit exponential Runge–Kutta methods for semilinear parabolic delay differential equations, 2020, 178, 03784754, 366, 10.1016/j.matcom.2020.06.025 | |
10. | Guangying Lv, Mingxin Wang, Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations, 2010, 23, 0951-7715, 845, 10.1088/0951-7715/23/4/005 | |
11. | Ansgar Jüngel, 2010, Chapter 15, 978-0-8176-4945-6, 397, 10.1007/978-0-8176-4946-3_15 | |
12. | Ming Mei, Chunhua Ou, Xiao-Qiang Zhao, Global Stability of Monostable Traveling Waves For Nonlocal Time-Delayed Reaction-Diffusion Equations, 2010, 42, 0036-1410, 2762, 10.1137/090776342 | |
13. | Rui Huang, Ming Mei, Yong Wang, Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity, 2012, 32, 1078-0947, 3621, 10.3934/dcds.2012.32.3621 | |
14. | Yun-Rui Yang, Wan-Tong Li, Shi-Liang Wu, Stability of traveling waves in a monostable delayed system without quasi-monotonicity, 2013, 14, 14681218, 1511, 10.1016/j.nonrwa.2012.10.015 | |
15. | Guo-Bao Zhang, Ruyun Ma, Spreading speeds and traveling waves for a nonlocal dispersal equation with convolution-type crossing-monostable nonlinearity, 2014, 65, 0044-2275, 819, 10.1007/s00033-013-0353-x | |
16. | Shi-Liang Wu, Wan-Tong Li, San-Yang Liu, Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay, 2012, 17, 1553-524X, 347, 10.3934/dcdsb.2012.17.347 | |
17. | Yun-Rui Yang, Li Liu, Stability of traveling waves in a population dynamics model with spatio-temporal delay, 2016, 132, 0362546X, 183, 10.1016/j.na.2015.11.006 | |
18. | Maohua Ran, Yu He, Linearized Crank–Nicolson method for solving the nonlinear fractional diffusion equation with multi-delay, 2018, 95, 0020-7160, 2458, 10.1080/00207160.2017.1398326 | |
19. | Ming Mei, Chi-Kun Lin, Chi-Tien Lin, Joseph W.-H. So, Traveling wavefronts for time-delayed reaction–diffusion equation: (II) Nonlocal nonlinearity, 2009, 247, 00220396, 511, 10.1016/j.jde.2008.12.020 | |
20. | Ming Mei, Chi-Kun Lin, Chi-Tien Lin, Joseph W.-H. So, Traveling wavefronts for time-delayed reaction–diffusion equation: (I) Local nonlinearity, 2009, 247, 00220396, 495, 10.1016/j.jde.2008.12.026 | |
21. | Guo-Bao Zhang, Global stability of traveling wave fronts for non-local delayed lattice differential equations, 2012, 13, 14681218, 1790, 10.1016/j.nonrwa.2011.12.010 | |
22. | Mengqi Li, Peixuan Weng, Yong Yang, Nonlinear stability of traveling waves for a multi-type SIS epidemic model, 2018, 11, 1793-5245, 1850003, 10.1142/S1793524518500031 | |
23. | Shi-Liang Wu, Wan-Tong Li, San-Yang Liu, Asymptotic stability of traveling wave fronts in nonlocal reaction–diffusion equations with delay, 2009, 360, 0022247X, 439, 10.1016/j.jmaa.2009.06.061 | |
24. | Changchun Liu, Ming Mei, Jiaqi Yang, Global stability of traveling waves for nonlocal time-delayed degenerate diffusion equation, 2022, 306, 00220396, 60, 10.1016/j.jde.2021.10.027 | |
25. | Rui Huang, Zhuangzhuang Wang, Tianyuan Xu, Smooth traveling waves for doubly nonlinear degenerate diffusion equations with time delay, 2022, 0003-6811, 1, 10.1080/00036811.2022.2136074 | |
26. | Rui Huang, Zhanghua Liang, Zhuangzhuang Wang, Existence and stability of traveling waves for doubly degenerate diffusion equations, 2023, 74, 0044-2275, 10.1007/s00033-023-01938-6 | |
27. | Stability of traveling fronts in a population model with nonlocal delay and advection, 2015, 3, 2321-5666, 498, 10.26637/mjm304/008 | |
28. | Dildora Muhamediyeva, D. Bazarov, Cross-diffusion systems with convective transport, 2023, 401, 2267-1242, 02022, 10.1051/e3sconf/202340102022 | |
29. | Dildora Muhamediyeva, Nilufar Mirzaeva, Elmurod Kodirov, Boymirzo Samijonov, 2024, 3147, 0094-243X, 040013, 10.1063/5.0210488 | |
30. | Na Shi, Xin Wu, Zhaohai Ma, Multidimensional Stability of Planar Traveling Waves for Competitive–Cooperative Lotka–Volterra System of Three Species, 2025, 13, 2227-7390, 197, 10.3390/math13020197 |