
Citation: H. M. Srivastava, Khaled M. Saad, J. F. Gómez-Aguilar, Abdulrhman A. Almadiy. Some new mathematical models of the fractional-order system of human immune against IAV infection[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 4942-4969. doi: 10.3934/mbe.2020268
[1] | Akira Nishimura, Tadaki Inoue, Yoshito Sakakibara, Masafumi Hirota, Akira Koshio, Fumio Kokai, Eric Hu . Optimum molar ratio of H2 and H2O to reduce CO2 using Pd/TiO2. AIMS Materials Science, 2019, 6(4): 464-483. doi: 10.3934/matersci.2019.4.464 |
[2] | Liang Wu . Cu-based mutlinary sulfide nanomaterials for photocatalytic applications. AIMS Materials Science, 2023, 10(5): 909-933. doi: 10.3934/matersci.2023049 |
[3] | Nhung Thi-Tuyet Hoang, Anh Thi-Kim Tran, Nguyen Van Suc, The-Vinh Nguyen . Antibacterial activities of gel-derived Ag-TiO2-SiO2 nanomaterials under different light irradiation. AIMS Materials Science, 2016, 3(2): 339-348. doi: 10.3934/matersci.2016.2.339 |
[4] | Evangelos Karagiannis, Dimitra Papadaki, Margarita N. Assimakopoulos . Circular self-cleaning building materials and fabrics using dual doped TiO2 nanomaterials. AIMS Materials Science, 2022, 9(4): 534-553. doi: 10.3934/matersci.2022032 |
[5] | Ya-Ting Tsu, Yu-Wen Chen . Preparation of gold-containing binary metal clusters by co-deposition-precipitation method and for hydrogenation of chloronitrobenzene. AIMS Materials Science, 2017, 4(3): 738-754. doi: 10.3934/matersci.2017.3.738 |
[6] | Ahmed Z. Abdullah, Adawiya J. Haider, Allaa A. Jabbar . Pure TiO2/PSi and TiO2@Ag/PSi structures as controllable sensor for toxic gases. AIMS Materials Science, 2022, 9(4): 522-533. doi: 10.3934/matersci.2022031 |
[7] | Nahlah Challob Younus, Hussein M. Hussein . A competitive candidate for the Cu2ZnSnS4 compound in solar photocatalytic degradation of organic pollutants. AIMS Materials Science, 2025, 12(2): 380-394. doi: 10.3934/matersci.2025020 |
[8] | Alfa Akustia Widati, Nuryono Nuryono, Indriana Kartini . Water-repellent glass coated with SiO2–TiO2–methyltrimethoxysilane through sol–gel coating. AIMS Materials Science, 2019, 6(1): 10-24. doi: 10.3934/matersci.2019.1.10 |
[9] | Zoubir Chaieb, Ould Mohamed Ouarda, Azzeddine Abderrahmane Raho, Mouhyddine Kadi-Hanifi . Effect of Fe and Si impurities on the precipitation kinetics of the GPB zones in the Al-3wt%Cu-1wt%Mg alloy. AIMS Materials Science, 2016, 3(4): 1443-1455. doi: 10.3934/matersci.2016.4.1443 |
[10] | Ririn Cahyanti, Sumari Sumari, Fauziatul Fajaroh, Muhammad Roy Asrori, Yana Fajar Prakasa . Fe-TiO2/zeolite H-A photocatalyst for degradation of waste dye (methylene blue) under UV irradiation. AIMS Materials Science, 2023, 10(1): 40-54. doi: 10.3934/matersci.2023003 |
There are different patterns of rumor spreading depending on the presence or absence of online media [7], for example, the emergence of influential spreaders [2]. Before the development of online media, rumors were transmitted from person to person. With the development of online media such as social network service (SNS), personal broadcasting, blog, and group chatting, rumors can now spread in a variety of ways. In the past, offline media was the starting point and an important means of information delivery. Recently, it has become a social problem that offline media reproduces and delivers rumors from online media. This is a sign that information in online is rapidly being accepted by various social classes. In this paper, we study how the combination of classical interpersonal rumor spreading and online media influences rumor outbreak.
In order to consider the influence of online media, we denote by
dIdt=b−λsIS−λwIW−δiI,dSdt=λsIS+λwIW−σsSS−σrSR−μS−δsS,dWdt=ξS−δwW,dRdt=σsSS+σrSR+μS−δrR. | (1) |
Remark 1. (1) This rumor spreading process is a relatively short time process. Thus, we do not consider vertical transmission. See [8].
(2) If we take
Since the Daley-Kendall model [3], various studies on rumor spreading have been conducted. We briefly state the history of rumor spreading models associated with online media. See [12] for a general rumor spread, and [14] for threshold phenomena for general epidemic models. Since information transmission via online media developed in the late 1990s, intensive researches on rumors and online media began mainly in the early 2000s. In [1], the authors focused on the spread of computer-based rumors and analyzed the spread of rumors via computer-based communication in terms of information transmission. The authors in [7] noted the difference between online-based media and offline media. The study in [17] considered the spread of rumors through online networks by using the SIR model. The fast speed and unprofessional communication of online media is considered in [13]. See also [9]. In [11], a statistical rumor diffusion model is considered for online networks and it contained positive and negative bipolar reinforcement factors. [4,6,18] studied a rumor propagation model similar to the European fox rabies SIR model for the situation of changing online community number. In [10], the authors studied the rumor propagation phenomena for a model with two layers: online and offline. See also [19] for the SEIR type online rumor model.
This paper is organized as follows. In Section 2, we present the nonnegativity property of the solution to (1) and the stability of the rumor-free equilibrium. The basic reproduction number
In this section, we consider the conservation of nonnegativity of the densities
Lemma 2.1. Let
S(0)2+W(0)2>0, |
then the solution is nonnegative for all
Proof. We take any positive
|I(t)|,|S(t)|,|W(t)|,|R(t)|<C(T). |
By the first equation in (1) and the boundedness, if
I(t)=I(0)e−∫t0(λsS(s)+λwW(s)+δi)ds+b∫t0e−∫tu(λsS(s)+λwW(s)+δi)dsdu>0. |
We first prove that
S(t−s)<0. |
Let
S(t)=S(0)e∫t0(λsI(s)−σsS(s)−σrR(s)−μ−δs)ds+∫t0λwI(u)W(u)e∫tu(λsI(s)−σsS(s)−σrR(s)−μ−δs)dsdu. | (2) |
This and the positivity of
W(t)=W(0)e−δwt+∫t0ξS(u)e−δw(t−u)du. | (3) |
Thus,
However, on
(I(t),S(t),W(t),R(t))=(I(t0)e−δi(t−t0)+b(1−e−δi(t−t0))δi,0,0,R(t0)e−δr(t−t0)) |
is a solution to (1). By uniqueness of the solution, there is no
Similarly, we can also easily obtain that there is no
Moreover, if
In this part, we calculate the basic reproduction number using a next-generation matrix. To consider the asymptotic behavior of the dynamics in (1), we determine the equilibrium point such that
˙I=˙S=˙W=˙R=0. | (4) |
If we assume that there is no rumor
E0=(Irf,Srf,Wrf,Rrf)=(bδi,0,0,0). |
The basic reproduction number
For the infected compartments, the next generation matrices at the rumor-free state
F=1δi(bλsbλw00)andV=(μ+δs0−ξδw), |
and hence
V−1=1(μ+δs)δw(δw0ξμ+δs). |
Here,
FV−1=(bλs(μ+δs)δi+bλwξ(μ+δs)δiδwbλwδiδw00). |
Therefore, we obtain the following formula for the basic reproduction number:
R0=ρ(FV−1)=bδi(λsμ+δs+λwξ(μ+δs)δw). |
Here,
For the linear stability, we consider the Jacobian matrix as follows.
J=(−λsS−λwW−δi−λsI−λwI0λsS+λwWλsI−2σsS−σrR−μ−δsλwI−σrS0ξ−δw002σsS+σrR+μ0σrS−δr). |
Since the rumor-free equilibrium is
E0=(bδi,0,0,0), |
the Jacobian matrix at the rumor-free equilibrium is given by
JE0=(−δi−λsbδi−λwbδi00λsbδi−μ−δsλwbδi00ξ−δw00μ0−δr). |
Therefore, the corresponding characteristic equation is
p(x)=(x+δr)(x+δi)×(x2−(bλsδi−μ−δs−δw)x−bδwλsδi+μδw+δsδw−bλwξδi). |
Assume that
bδiλsμ+δs<bδi(λsμ+δs+λwξ(μ+δs)δw)<1. |
Thus,
c1:=−(bλsδi−μ−δs−δw)>δw>0. |
Note that
c2:=−bδwλsδi+(μ+δs)δw−bλwξδi=δw(μ+δs)(−bλsδi(μ+δs)−bλwξδiδw(μ+δs)+1)=δw(μ+δs)(1−R0)>0. |
Clearly,
p0(x)=x2−(bλsδi−μ−δs−δw)x−bδwλsδi+(μ+δs)δw−bλwξδi=x2+c1x+c2. |
Since
Clearly, if
Theorem 2.2. The rumor-free equilibrium
The rumor-free equilibrium
Theorem 2.3. If
{(I,S,R,W):S>0orW>0}∩{(I,S,W,R):I,S,W,R≥0}. |
Proof. Let
V0(I,S,W)=[I−Irf−IrflogIIrf]+S+IrfλsδwW, |
where
I−Irf−IrflogIIrf>0,forI≠Irf, |
and
I−Irf−IrflogIIrf=0,forI=Irf, |
we note that
dV0dt=(b−λsIS−λwIW−δiI)−bδi(bI−λsS−λsW−δi)+λsIS+λwIW−σsSS−σrSR−(μ+δs)S+bλsδiδw(ξS−δwW)=b−δiI−σsSS−σrSR−(μ+δs)S+bλsδiδw(ξS−δwW)−bδi(bI−λsS−λsW−δi)=−b(bδiI+δiIb−2)−σsSS−σrSR−(μ+δs)S+bλsδiδw(ξS−δwW)+bδi(λsS+λsW)=−b(bδiI+δiIb−2)−σsSS−σrSR−(μ+δs)S(1−bλs(μ+δs)δi−bλsξ(μ+δs)δiδw). |
Therefore, we have
dV0dt=−b(bδiI+δiIb−2)−σsSS−σrSR−(μ+δs)S(1−R0). | (5) |
Note that by Lemma 2.1 in Section 2,
dV0dt<0. |
Therefore,
Therefore, the rumor-free equilibrium
In this section, we present the existence and stability of endemic steady states for the rumor spreading model with an online reservoir. Endemic state refers to a nonzero steady state of
To obtain the endemic equilibrium
E∗=(I∗,S∗,W∗,R∗), |
we consider the following steady state equation:
dIdt=dSdt=dWdt=dRdt=0. |
Then the endemic equilibrium
0=b−λsI∗S∗−λwI∗W∗−δiI∗,0=λsI∗S∗+λwI∗W∗−σsS∗S∗−σrS∗R∗−μS∗−δsS∗,0=ξS∗−δwW∗,0=σsS∗S∗+σrS∗R∗+μS∗−δrR∗. |
We set
U∗=δwξW∗,˜I∗=δiI∗,˜S∗=δsS∗,˜R∗=δrR∗, |
and
˜μ=μδs,˜λs=λsδw+λwξδiδsδw,˜σs=σsδ2s,˜σr=σrδsδr. |
Then
0=b−˜λs˜I∗˜S∗−˜I∗,0=˜λs˜I∗˜S∗−˜σs˜S∗˜S∗−˜σr˜S∗˜R∗−˜μ˜S∗−˜S∗,0=˜σs˜S∗˜S∗+˜σr˜S∗˜R∗+˜μ˜S∗−˜R∗. | (6) |
Note that the basic reproduction number satisfies
R0=b˜λs˜μ+1. |
To find endemic equilibrium
˜S∗>0. |
The sum of all equations in (6) implies that
˜R∗=(b−˜I∗−˜S∗). | (7) |
From the second equation in (6),
(˜λs˜S∗+˜σr˜S∗)˜I∗=˜σs˜S∗˜S∗−˜σr˜S∗˜S∗+(˜μ+1)˜S∗+˜σrb˜S∗. | (8) |
By (7)-(8),
˜I∗=˜σs−˜σr˜λs+˜σr˜S∗+˜μ+1+˜σrb˜λs+˜σr:=β˜S∗+γ. |
Substituting
b−˜λs(β˜S∗+γ)˜S∗−(β˜S∗+γ)=0. |
Therefore, we have
β˜λs˜S2∗+(˜λsγ+β)˜S∗+γ−b=0. | (9) |
If we obtain positive
˜I∗=b˜λs˜S∗+1 |
and
˜R∗=˜σs˜S∗˜S∗+˜μ˜S∗1−˜σr˜S∗. |
Thus, if all components are nonnegative,
S∗<1˜σr. | (10) |
Theorem 3.1. If
Proof. Assume that
● Case 1
˜S∗=b−γ˜λsγ=bb˜σr+˜μ+1R0−1R0<1˜σr. |
Condition (10) holds, which implies that a positive endemic state
● Case 2
˜S2∗+(b˜σr+˜μ+1˜σs−˜σr+1˜λs)˜S∗+b˜σs−˜σr1−R0R0=0. |
Since
b˜σs−˜σr1−R0R0<0. |
Therefore, there is a unique positive real root of the equation. To check the condition in (10), let
f(x)=x2+(b˜σr+˜μ+1˜σs−˜σr+1˜λs)x+b˜σs−˜σr1−R0R0. | (11) |
By elementary calculation,
f(1/˜σr)=(˜λs+˜σr)(˜μ˜σr+˜σs)˜λs˜σ2r(˜σs−˜σr). | (12) |
Thus,
● Case 3
D=(b˜σr+˜μ+1˜σs−˜σr+1˜λs)2−4b˜σs−˜σr1−R0R0. |
Since we assume that
Let
g(x)=(x−˜σr+˜λs(1+˜μ+b˜σr))2−4˜λs(−1−˜μ+b˜λs)(˜σr−x). |
Then the discriminant is represented as for
D=g(˜σs)(˜λs+˜σr)2. |
Note that
x=−b˜σr˜λs+˜σr−2b˜λ2s+˜μ˜λs+˜λs. |
Since we assume that
−b˜σr˜λs+˜σr−2b˜λ2s+˜μ˜λs+˜λs<−(˜μ+1)˜σr+˜σr−2b˜λ2s+˜μ˜λs+˜λs=−˜μ˜σr+˜λs(−2b˜λs+˜μ+1)<0. |
Therefore, the minimum value of
g(˜σs)≥g(0)=(˜λs(b˜σr+˜μ+1)−˜σr)2+4˜σr˜λs(−b˜λs+˜μ+1)=:h(˜σr). |
We consider
h(˜σr)≥4b˜μ˜λ3s(b˜λs−˜μ−1)(b˜λs−1)2>0. |
Therefore,
b˜σs−˜σr1−R0R0>0. |
Thus,
By (12) and
f(1/˜σr)=(˜λs+˜σr)(˜μ˜σr+˜σs)˜λs˜σ2r(˜σs−˜σr)<0. |
Therefore,
For any case, we conclude that if
For the remaining part, we assume that
● Case 1
˜S∗=b−γ˜λsγ=bb˜σr+˜μ+1R0−1R0≤0. |
Thus there is no positive endemic state
● Case 2
D=g(˜σs)(˜λs+˜σr)2 |
and
Since we assume that
b˜σs−˜σr1−R0R0≥0, |
this implies that if
Note that
x=−bσrλs+μλs+λs+(σs−σr)2λs(σs−σr)<0. |
Thus,
● Case 3
˜S2∗+(b˜σr+˜μ+1˜σs−˜σr+1˜λs)˜S∗+b˜σs−˜σr1−R0R0=0. |
Since
b˜σs−˜σr1−R0R0≥0. |
Therefore, there is at most one positive real root of the equation. However,
f(1/˜σr)=(˜λs+˜σr)(˜μ˜σr+˜σs)˜λs˜σ2r(˜σs−˜σr)<0. |
Thus, (10) does not hold. This implies that there is no positive endemic equilibrium
Therefore, we conclude that if
In this part, we consider asymptotic stability for the endemic state
Theorem 3.2. If
{(I,S,R,W):S>0orW>0}∩{(I,S,W,R):I,S,W,R≥0}. |
Proof. Let
V∗(I,S,W,R)=[I−I∗−I∗logII∗]+[S−S∗−S∗logSS∗]+λwδwI∗[W−W∗−W∗logWW∗]+R∗σrμ+R∗σr[R−R∗−R∗logRR∗]=:J1+J2+J3+J4. |
In the same manner as Theorem 2.3, note that
We claim that if
dV∗dt<0. |
Since
(b−λsI∗S∗−λwI∗W∗−δiI∗)=0. |
Therefore,
dJ1dt=(b−λsIS−λwIW−δiI)(1−I∗I)+(b−λsI∗S∗−λwI∗W∗−δiI∗)(1−II∗)=b(2−I∗I−II∗)−λs(I∗−I)(S∗−S)−λw(I∗−I)(W∗−W). |
Similarly,
(λsI∗S∗+λwI∗W∗−σsS∗S∗−σrS∗R∗−μS∗)=0. |
This implies that
dJ2dt=(λsIS+λwIW−σsSS−σrSR−(μ+δs)S)(1−S∗S)+(λsI∗S∗+λwI∗W∗−σsS∗S∗−σrS∗R∗−(μ+δs)S∗)(1−SS∗)=λs(I∗−I)(S∗−S)−σs(S∗−S)(S∗−S)−σr(R∗−R)(S∗−S)+λwIW(1−S∗S)+λwI∗W∗(1−SS∗). |
Note that
dJ3dt=λwδwI∗(ξS−δwW)(1−W∗W). |
We add the derivatives of
d(J1+J2+J3)dt−b(2−I∗I−II∗)+σs(S∗−S)(S∗−S)+σr(R∗−R)(S∗−S)=−λw(I∗−I)(W∗−W)+λwIW(1−S∗S)+λwI∗W∗(1−SS∗)+λwδwI∗(ξS−δwW)(1−W∗W)=λwI∗W+λwIW∗−λwIS∗SW−λwI∗SS∗W∗+λwδwI∗(ξS−δwW)(1−W∗W). |
Using
d(J1+J2+J3)dt−b(2−I∗I−II∗)+σs(S∗−S)(S∗−S)+σr(R∗−R)(S∗−S)=λw(IW∗−IS∗SW−ξδwI∗W∗WS+I∗W∗). | (13) |
Using
IW∗−IS∗SW−ξδwI∗W∗WS+I∗W∗=(IW∗+I∗I∗IW∗−2I∗W∗)−(ξδwI∗SW∗W+IS∗SW+I∗I∗IW∗−3I∗W∗)=I∗W∗(II∗+I∗I−2)−ξδwI∗W∗(SW+δ2wξ2IWI∗S+δwξI∗I−3δwξ). | (14) |
Combining (13) and (14) with
d(J1+J2+J3)dt=(λwξδwI∗S∗−b)(II∗+I∗I−2)−λwξ2δ2wI∗S∗(SW+δ2wξ2IWI∗S+δwξI∗I−3δwξ)−σs(SS+S∗S∗−2SS∗)−σr(SR+S∗R∗−S∗R−R∗S). |
Since
σsS∗S∗+σrS∗R∗+μS∗−δrR∗=0, |
we have
μ+R∗σrR∗σrdJ4dt=dRdt(1−R∗R)=(σsSS+σrSR+μS−δrR)(1−R∗R)+(σsS∗S∗+σrS∗R∗+μS∗−δrR∗)(1−RR∗)=σs(SS+S∗S∗−R∗RSS−RR∗S∗S∗)+σr(SR+S∗R∗−R∗RRS−RR∗R∗S∗)+μ(S+S∗−R∗RS−RR∗S∗). |
Then we have
dV∗dt=(λwξδwI∗S∗−b)(II∗+I∗I−2)−λwξ2δ2wI∗S∗(SW+δ2wξ2IWI∗S+δwξI∗I−3δwξ)−σs(SS+S∗S∗−2SS∗)−σr(SR+S∗R∗−S∗R−R∗S)+R∗σrμ+R∗σrσs(SS+S∗S∗−R∗RSS−RR∗S∗S∗)+R∗σrμ+R∗σrσr(SR+S∗R∗−R∗RRS−RR∗R∗S∗) |
+R∗σrμ+R∗σrμ(S+S∗−R∗RS−RR∗S∗). |
Note that
−σs(SS+S∗S∗−2SS∗)+R∗σrμ+R∗σrσs(SS+S∗S∗−R∗RSS−RR∗S∗S∗)=−μμ+R∗σrσs(SS+S∗S∗−2SS∗)−R∗σrμ+R∗σrσsS∗S(R∗RSS∗+RR∗S∗S−2) |
and
−σr(SR+S∗R∗−S∗R−R∗S)+R∗σrμ+R∗σrσr(SR+S∗R∗−R∗RRS−RR∗R∗S∗)+R∗σrμ+R∗σrμ(S+S∗−R∗RS−RR∗S∗)=−R∗σrμ+R∗σrμS(RR∗+R∗R−2). |
In conclusion, we have
dV∗dt=(λwξδwI∗S∗−b)(II∗+I∗I−2)−λwξ2δ2wI∗S∗(SW+δ2wξ2IWI∗S+δwξI∗I−3δwξ)−μμ+R∗σrσs(SS+S∗S∗−2SS∗)−R∗σrμ+R∗σrσsS∗S(R∗RSS∗+RR∗S∗S−2)−R∗σrμ+R∗σrμS(RR∗+R∗R−2). |
From the first equation in (1), it follows that
b=λsI∗S∗+λwI∗W∗+δiI∗=λsI∗S∗+λwξδwI∗S∗+δiI∗. |
This implies that
λwξδwI∗S∗−b=−λsI∗S∗−δiI∗<0. |
By the relationship between arithmetic and geometric means, if
(I(t),S(t),W(t),R(t))≠(I∗,S∗,W∗,R∗)andS(t)>0, |
then
dV∗dt<0. |
If we assume that
{(I,S,R,W):S>0orW>0}∩{(I,S,W,R):I,S,W,R≥0}. |
In this section, we carry out some numerical simulations to verify the theoretical results. We use the fourth-order Runge-Kutta method with time step size
As shown before, the basic reproduction number is
R0=ρ(FV−1)=bδi(λsμ+δs+λwξ(μ+δs)δw). |
We assume that the influx
Now, we investigate the influence of an online reservoir. We change
Even though the contact rates
We next compare the SIR and SIWR models. Without online an reservoir, the basic reproduction number of the SIR model is given by
RSIR0=bλs(μ+δs)δi. |
If we fix the parameters such as
In this paper, we consider a rumor spreading model with an online reservoir. By using a next-generation matrix, we calculated the basic reproduction number
S.-H. Choi and H. Seo are partially supported by National Research Foundation (NRF) of Korea (no. 2017R1E1A1A03070692). H. Seo is partially supported by NRF of Korea (no. 2020R1I1A1A01069585).
[1] | D. S. Jones, M. J. Plank, B. D. Sleeman, Differential Equations and Mathematical Biology, Chapman & Hall (CRC Press), Baton Roca, Florida, 2010. |
[2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 2006. |
[3] | H. M. Srivastava, Fractional-order derivatives and integrals: Introductory overview and recent developments, Kyungpook Math. J., 60 (2020), 73-116. |
[4] | S. Kumar, A. Ahmadian, R. Kumar, D. Kumar, J. Singh, D. Baleanu, et al., An efficient numerical method for fractional SIR epidemic model of infectious disease by using Bernstein wavelets, Mathematics, 8 (2020), 558. |
[5] | J. Singh, A. Kilicman, D. Kumar, R. Swroop, F. M. Ali, Numerical study for fractional model of nonlinear predator-prey biological population dynamical system, Therm. Sci., 23 (2019), S2017- S2025. |
[6] | S. Aljhani, M. S. Md Noorani, A. K. Alomari, Numerical solution of fractional-order HIV model using homotopy method, Discrete Dyn. Nat. Soc., 2020 (2020), 2149037. |
[7] | J. M. Amigó, M. Small, Mathematical methods in medicine: Neuroscience, cardiology and pathology, Philos. Trans. A Math. Phys. Eng. Sci., 375 (2017), 20170016. |
[8] | M. A. Khan, S. W. Shah, S. Ullah, J. F. Gómez-Aguilar, A dynamical model of asymptomatic carrier zika virus with optimal control strategies, Nonlinear Anal. Real World Appl., 50 (2019), 144-170. |
[9] | M. A. Taneco-Hernández, V. F. Morales-Delgado, J. F. Gómez-Aguilar, Fractional Kuramoto-Sivashinsky equation with power law and stretched Mittag-Leffler kernel, Phys. A, 527 (2019), 121085. |
[10] | S. Ullah, M. A. Khan, J. F. Gómez-Aguilar, Mathematical formulation of hepatitis B virus with optimal control analysis, Optim. Control Appl. Methods, 40 (2019), 529-544. |
[11] | V. F. Morales-Delgado, J. F. Gómez-Aguilar, K. M. Saad, M. A. Khane, P. Agarwal, Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: A fractional calculus approach, Phys. A, 523 (2019), 48-65. |
[12] | V. F. Morales-Delgado, J. F. Gómez-Aguilar, K. M. Saad, R. F. E. Jiméenez, Application of the Caputo-Fabrizio and Atangana-Baleanu fractional derivatives to mathematical model of cancer chemotherapy effect, Math. Methods Appl. Sci., 42 (2019), 1167-1193. |
[13] | E. Bonyah, M. A. Khan, K. O. Okosun, J. F. Gómez-Aguilar, Modelling the effects of heavy alcohol consumption on the transmission dynamics of gonorrhea with optimal control, Math. Biosci., 309 (2019), 1-11. |
[14] | V. F. Morales-Delgado, J. F. Gómez-Aguilar, M. A. Taneco-Hernándeza, R. F. Escobar-Jiménez, V. H. Olivares-Peregrino, Mathematical modeling of the smoking dynamics using fractional differential equations with local and nonlocal kernel, J. Nonlinear Sci. Appl., 11 (2018), 994- 1014. |
[15] | E. Uçar, S. Uçar, N. Özdemir, Z. Hammouch, Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative. Chaos Solitons Fractals, 118 (2019), 300- 306. |
[16] | M. A. Khan, Z. Hammouch, D. Baleanu, Modeling the dynamics of hepatitis E via the CaputoFabrizio derivative, Math. Model. Natur. Phenom., 14 (2019), 311. |
[17] | J. Hristov, Derivation of the fractional Dodson equation and beyond: Transient diffusion with a non-singular memory and exponentially fading-out diffusivity, Progr. Fract. Differ. Appl., 3 (2017), 1-16. |
[18] | K. M. Owolabi, A. Atangana, Numerical simulation of noninteger order system in subdiffusive, diffusive, and superdiffusive scenarios, J. Comput. Nonlinear Dyn., 12 (2017), 031010. |
[19] | K. M. Saad, K. M. Khader, J. F. Gómez-Aguilar, D. Baleanu, Numerical solutions of the fractional Fisher's type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods, Chaos, 29 (2019), 023116. |
[20] | M. M. Khader, K. M. Saad, Numerical treatment for studying the blood ethanol concentration systems with different forms of fractional derivatives, Int. J. Modern Phys. C., 31 (2020), 1-13. |
[21] | K. M. Saad, J. F. Gómez-Aguilar, Coupled reaction-diffusion waves in a chemical system via fractional derivatives in Liouville-Caputo sense, Rev. Mex. Fís., 64 (2018), 539-547. |
[22] | K. M. Saad, J. F. Gómez-Aguilar, Analysis of reaction-diffusion system via a new fractional derivative with non-singular kernel, Phys. A, 509 (2018), 703-716. |
[23] | K. M. Saad, New fractional derivative with non-singular kernel for deriving Legendre spectral collocation method, Alexandria Eng. J., 2019, forthcoming. |
[24] | K. M. Saad, H. M. Srivastava, J. F. Gómez-Aguilar, A fractional quadratic autocatalysis associated with chemical clock reactions involving linear inhibition, Chaos Solitons Fractals, 132 (2020), 109557. |
[25] | A. K. Alomari, Homotopy-Sumudu transforms for solving system of fractional partial differential equations, Adv. Differ. Equations, 2020 (2020), 222. |
[26] | A. Goswami, J. Singh, D. Kumar, Sushila, An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma, Phys. A, 524 (2019), 563-575. |
[27] | J. Singh, D. Kumar, D. Baleanu, On the analysis of fractional diabetes model with exponential law, Adv. Differ. Equations, 2018 (2018), 231. |
[28] | K. M. Saad, E. H. F. Al-Shareef, A. K. Alomari, D. Baleanu, J. F. Gómez-Aguilar, On exact solutions for time-fractional Korteweg-de Vries and Korteweg-de Vries-Burgers' equations using homotopy analysis transform method, Chin. J. Phys., 63 (2020), 149-162. |
[29] | M. Masjed-Jamei, Z. Moalemi, H. M. Srivastava, I. Area, Some modified Adams-Bashforth methods based upon the weighted Hermite quadrature rules, Math. Methods Appl. Sci., 43 (2020), 1380-1398. |
[30] | K. Diethelm, N. J. Ford, A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29 (2020), 3-22. |
[31] | K. Diethelm, A. J. Ford, A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), 31-52. |
[32] | L. Galeone, R. Garrappa, Fractional Adams-Moulton methods, Math. Comput. Simul., 79 (2008), 1358-1367. |
[33] | C. Li, C. Tao, On the fractional Adams method, Comput. Math. Appl., 58 (2009), 1573-1588. |
[34] | V. Daftardar-Gejji, H. Jafari, Analysis of a system of non autonomous fractional differential equations involving Caputo derivatives, J. Math. Anal. Appl., 328 (2007), 1026-1033. |
[35] | V. Daftardar-Gejji, Y. Sukale, S. Bhalekar, A new predictor-corrector method for fractional differential equations, Appl. Math. Comput., 244 (2014), 158-182. |
[36] | A. Atangana, K. M. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Phenom., 13 (2018), 3. |
[37] | B. Hancioglua, D. Swigona, G. Clermont, A dynamical model of human immune response to influenza A virus infection, J. Theoret. Biol., 246 (2007), 70-86. |
[38] | Y. Zhang, Z. Xu, Y. Cao, Host-Virus Interaction: How Host Cells Defend Against Influenza A Virus Infection, Viruses, 12 (2020), 376. |
[39] | E. De Vries, W. Du, H. Guo, C. A. De Haan, Influenza A Virus Hemagglutinin-NeuraminidaseReceptor Balance: Preserving Virus Motility, Trends Microbiol., 28 (2020), 57-67. |
[40] | B. Li, S. M. Clohisey, B. S. Chia, B. Wang, A. Cui, T. Eisenhaure, et al., Genome-wide CRISPR screen identifies host dependency factors for influenza A virus infection, Nat. Commun., 11 (2020), 164. |
[41] | R. Jia, S. Liu, J. Xu, X. Liang, IL16 deficiency enhances Th1 and cytotoxic T lymphocyte response against influenza A virus infection, Biosci. Trends, 13 (2020), 516-522. |
[42] | B. Asquith, C. R. M. Bangham, An introduction to lymphocyte and viral dynamics: The power and limitations of mathematical analysis, Proc. Biol. Sci., 270 (2003), 1651-1657. |
[43] | I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, Academic Press, San Diego, London and Toronto, 1999, 198, 1-340. |
[44] | K. S. Miller, B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley and Sons, New York, Chichester, Brisbane, Toronto and Singapore, 1993. |
[45] | W. Faridi, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85. |
[46] | H. Singh, H. M. Srivastava, Numerical simulation for fractional-order Bloch equation arising in nuclear magnetic resonance by using the Jacobi polynomials, Appl. Sci., 10 (2020), 2850. |
[47] | H. M. Srivastava, H. I. Abdel-Gawad, K. M. Saad, Stability of traveling waves based upon the Evans function and Legendre polynomials, Appl. Sci., 10 (2020), 846. |
[48] | H. M. Srivastava, H. Günerhan, B. Ghanbari, Exact traveling wave solutions for resonance nonlinear Schrödinger equation with intermodal dispersions and the Kerr law nonlinearity, Math. Methods Appl. Sci., 42 (2019), 7210-7221. |
[49] | H. M. Srivastava, F. A. Shah, R. Abass, An application of the Gegenbauer wavelet method for the numerical solution of the fractional Bagley-Torvik equation, Russian J. Math. Phys., 26 (2019), 77-93. |
[50] | H. M. Srivastava, R. S. Dubey, M. Jain, A study of the fractional-order mathematical model of diabetes and its resulting complications, Math. Methods Appl. Sci., 42 (2019), 4570-4583. |
[51] | H. M. Srivastava, H. Günerhan, Analytical and approximate solutions of fractional-order susceptible-infected-recovered epidemic model of childhood disease, Math. Methods Appl. Sci., 42 (2019), 935-941. |
[52] | B. Ahmad, M. Alghanmi, A. Alsaedi, H. M. Srivastava, S. K. Ntouyas, The Langevin equation in terms of generalized Liouville-Caputo derivatives with nonlocal boundary conditions involving a generalized fractional integral, Mathematics, 7 (2019), 533. |
1. | Akira Nishimura, 2021, Chapter 4, 978-1-83968-223-0, 10.5772/intechopen.93105 | |
2. | B. Toubal, K. Elkourd, R. Bouab, O. Abdelaziz, The impact of copper–cerium (Cu–Ce) addition on anatase-TiO2 nanostructured films for its inactivation of Escherichia coli and Staphylococcus aureus, 2022, 103, 0928-0707, 549, 10.1007/s10971-022-05763-7 | |
3. | Akira Nishimura, Ryouga Shimada, Yoshito Sakakibara, Akira Koshio, Eric Hu, Comparison of CO2 Reduction Performance with NH3 and H2O between Cu/TiO2 and Pd/TiO2, 2021, 26, 1420-3049, 2904, 10.3390/molecules26102904 | |
4. | Akira Nishimura, Impact of molar ratio of NH3 and H2O on CO2 reduction performance over Cu/TiO2 photocatalyst, 2019, 3, 25764543, 176, 10.15406/paij.2019.03.00179 |