[1]
|
R. Stupp, W. P. Mason, M. J. Van Den Bent, M. Weller, B. Fisher, M. J. B. Taphoorn, et al., Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, N. Engl. J. Med., 352 (2005), 987-996.
|
[2]
|
R. Stupp, M. E. Hegi, W. P. Mason, M. J. Van Den Bent, M. J. B. Taphoorn, R. C. Janzer, et al., Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase iii study: 5-year analysis of the eortc-ncic trial, Lancet Oncol., 10 (2009), 459-466.
|
[3]
|
R. Bonavia, W. K. Cavenee, F. B. Furnari, Heterogeneity maintenance in glioblastoma: a social network, Cancer Res., 71 (2011), 4055-4060.
|
[4]
|
Z. An, O. Aksoy, T. Zheng, Q.-W. Fan, W. A. Weiss, Epidermal growth factor receptor and egfrviii in glioblastoma: signaling pathways and targeted therapies, Oncogene, 37 (2018), 1561-1575.
|
[5]
|
M. Nakada, D. Kita, T. Watanabe, Y. Hayashi, J.-i. Hamada, The mechanism of chemoresistance against tyrosine kinase inhibitors in malignant glioma, Brain Tumor Pathol., 31 (2014), 198-207.
|
[6]
|
N. J. Szerlip, A. Pedraza, D. Chakravarty, M. Azim, J. McGuire, Y. Fang, et al., Intratumoral heterogeneity of receptor tyrosine kinases egfr and pdgfra amplification in glioblastoma defines subpopulations with distinct growth factor response, Proc. Natl. Acad. Sci. U.S.A., 109 (2012), 3041-3046. doi: 10.1073/pnas.1114033109
|
[7]
|
L. S. Hu, S. Ning, J. M. Eschbacher, L. C. Baxter, N. Gaw, S. Ranjbar, et al., Radiogenomics to characterize regional genetic heterogeneity in glioblastoma, Neuro-oncology, 19 (2017), 128-137.
|
[8]
|
S. J. Smith, M. Diksin, S. Chhaya, S. Sairam, M. A. Estevez-Cebrero, R. Rahman, The invasive region of glioblastoma defined by 5ala guided surgery has an altered cancer stem cell marker profile compared to central tumour, Int.J. Mol. Sci., 18 (2017), 2452.
|
[9]
|
A. Sottoriva, I. Spiteri, S. G. Piccirillo, A. Touloumis, V. P. Collins, J. C. Marioni, et al., Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics, Proc. Natl. Acad. Sci. U.S.A., 110 (2013), 4009-4014.
|
[10]
|
J. G. Lyons, E. Lobo, A. M. Martorana, M. R. Myerscough, Clonal diversity in carcinomas: its implications for tumour progression and the contribution made to it by epithelial-mesenchymal transitions, Clin. Exp. Metastasis, 25 (2008), 665-677.
|
[11]
|
C. Lopez-Gines, R. Gil-Benso, R. Ferrer-Luna, R. Benito, E. Serna, J. Gonzalez-Darder, et al., New pattern of egfr amplification in glioblastoma and the relationship of gene copy number with gene expression profile, Mod. Pathol., 23 (2010), 856-865. doi: 10.1038/modpathol.2010.62
|
[12]
|
F. B. Furnari, T. F. Cloughesy, W. K. Cavenee, P. S. Mischel, Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma, Nat. Rev. Cancer, 15 (2015), 302.
|
[13]
|
B. R. Voldborg, L. Damstrup, M. Spang-Thomsen, H. S. Poulsen, Epidermal growth factor receptor (egfr) and egfr mutations, function and possible role in clinical trials, Ann. Oncol., 8 (1997), 1197-1206.
|
[14]
|
J. J. Parker, K. R. Dionne, R. Massarwa, M. Klaassen, N. K. Foreman, L. Niswander, et al., Gefitinib selectively inhibits tumor cell migration in egfr-amplified human glioblastoma, Neurooncology, 15 (2013), 1048-1057.
|
[15]
|
K. M. Talasila, A. Soentgerath, P. Euskirchen, G. V. Rosland, J. Wang, P. C. Huszthy, et al., Egfr wild-type amplification and activation promote invasion and development of glioblastoma independent of angiogenesis, Acta Neuropathol., 125 (2013), 683-698.
|
[16]
|
N. Shinojima, K. Tada, S. Shiraishi, T. Kamiryo, M. Kochi, H. Nakamura, et al., Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme, Cancer Res., 63 (2003), 6962-6970.
|
[17]
|
A. Alentorn, Y. Marie, C. Carpentier, B. Boisselier, M. Giry, M. Labussiere, et al., Prevalence, clinico-pathological value, and co-occurrence of pdgfra abnormalities in diffuse gliomas, Neurooncology, 14 (2012), 1393-1403.
|
[18]
|
P. Blume-Jensen, T. Hunter, Oncogenic kinase signalling, Nature, 411 (2001), 355
|
[19]
|
Cancer Genome Atlas Research Network, Comprehensive genomic characterization defines human glioblastoma genes and core pathways, Nature, 455 (2008), 1061.
|
[20]
|
M. M. Lino, A. Merlo, Pi3kinase signaling in glioblastoma, J. Neurooncol., 103 (2011), 417-427.
|
[21]
|
M. Snuderl, L. Fazlollahi, L. P. Le, M. Nitta, B. H. Zhelyazkova, C. J. Davidson, et al., Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma, Cancer Cell, 20 (2011), 810-817.
|
[22]
|
F. Chen, L. Ding, Co-survival of the fittest few: mosaic amplification of receptor tyrosine kinases in glioblastoma, Genome Biol., 13 (2012), 141.
|
[23]
|
M. J. Borad, M. D. Champion, J. B. Egan, W. S. Liang, R. Fonseca, A. H. Bryce, et al., Integrated genomic characterization reveals novel, therapeutically relevant drug targets in fgfr and egfr pathways in sporadic intrahepatic cholangiocarcinoma, PLoS Genet., 10, e1004135.
|
[24]
|
D. W. Craig, J. A. O'Shaughnessy, J. A. Kiefer, J. Aldrich, S. Sinari, T. M. Moses, et al., Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities, Mol. Cancer Ther., 12 (2013), 104-116.
|
[25]
|
R. Mehrian-Shai, M. Yalon, I. Moshe, I. Barshack, D. Nass, J. Jacob, et al., Identification of genomic aberrations in hemangioblastoma by droplet digital pcr and snp microarray highlights novel candidate genes and pathways for pathogenesis, BMC Genom., 17 (2016), 56.
|
[26]
|
J. C. L. Alfonso, K. Talkenberger, M. Seifert, B. Klink, A. Hawkins-Daarud, K. R. Swanson, et al., The biology and mathematical modelling of glioma invasion: a review, J. R. Soc. Interface, 14 (2017), 20170490.
|
[27]
|
K. R. Swanson, H. L. P. Harpold, D. L. Peacock, R. Rockne, C. Pennington, L. Kilbride, et al., Velocity of radial expansion of contrast-enhancing gliomas and the effectiveness of radiotherapy in individual patients: a proof of principle, Clin. Oncol., 20 (2008), 301-308. doi: 10.1016/j.clon.2008.01.006
|
[28]
|
K. R. Swanson, R. C. Rostomily, E. C. Alvord Jr, Confirmation of a theoretical model describing the relative contributions of net growth and dispersal in individual infiltrating gliomas, Can. J. Neurol. Sci., 30 (2003), 407-434.
|
[29]
|
K. R. Swanson, R. C. Rostomily, E. C. Alvord Jr, A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle, Br. J. Cancer, 98 (2008), 113-119.
|
[30]
|
K. R. Swanson, E. C. Alvord, J. D. Murray, Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy, Br. J. Cancer, 86 (2002), 14-18.
|
[31]
|
K. R. Swanson, E. C. Alvord Jr, J. D. Murray, A quantitative model for differential motility of gliomas in grey and white matter, Cell Prolif., 33 (2000), 317-329.
|
[32]
|
K. R. Swanson, C. Bridge, J. D. Murray, E. C. Alvord Jr, Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion, J. Neurosci., 216 (2003), 1-10.
|
[33]
|
A. L. Baldock, S. Ahn, R. Rockne, S. Johnston, M. Neal, D. Corwin, et al., Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas, PLoS One, 9, e99057.
|
[34]
|
P. R. Jackson, J. Juliano, A. Hawkins-Daarud, R. C. Rockne, K. R. Swanson, Patient-specific mathematical neuro-oncology: using a simple proliferation and invasion tumor model to inform clinical practice, Bull. Math. Biol., 77 (2015), 846-856.
|
[35]
|
C. H. Wang, J. K. Rockhill, M. Mrugala, D. L. Peacock, A. Lai, K. Jusenius, et al., Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model, Cancer Res., 69 (2009), 9133-9140.
|
[36]
|
K. J. Painter, T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Quart, 10 (2002), 501-543.
|
[37]
|
P. Gerlee, S. Nelander, The impact of phenotypic switching on glioblastoma growth and invasion, PLoS Comput. Biol., 8, e1002556.
|
[38]
|
K. R. Swanson, R. C. Rockne, J. Claridge, M. A. Chaplain, E. C. Alvord, A. R. A. Anderson, Quantifying the role of angiogenesis in malignant progression of gliomas: in silico modeling integrates imaging and histology, Cancer Res., 71 (2011), 7366-7375.
|
[39]
|
S. M. Blower, H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: an hiv model, as an example, International Statistical Review/Revue Internationale de Statistique, 229-243.
|
[40]
|
A. Hawkins-Daarud, S. K. Johnston, K. R. Swanson, Quantifying uncertainty and robustness in a biomathematical model-based patient-specific response metric for glioblastoma, JCO Clin. Cancer Inform., 3 (2019), 1-8.
|
[41]
|
S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178-196.
|
[42]
|
S. C. Massey, J. C. Urcuyo, B. M. Marin, J. N. Sarkaria, K. R. Swanson, Quantifying glioblastoma drug response dynamics incorporating resistance and blood brain barrier penetrance from experimental data, Front. Physiol., In Press.
|
[43]
|
C. A. Smith, C. A. Yates, The auxiliary region method: a hybrid method for coupling pde-and brownian-based dynamics for reaction-diffusion systems, Royal Soc. Open Sci., 5 (2018), 180920.
|