Research article Special Issues

M-polynomials and topological indices of linear chains of benzene, napthalene and anthracene

  • The universality of M-polynomial paves way towards establishing closed forms of many leading degree-based topological indices as it is done by Hosoya polynomial for distance-based indices. The study of topological indices is recently one of the most active research areas in chemical graph theory. The aim of this paper is to establish closed formulas for M-polynomials of Linear chains of benzene, napthalene, and anthracene graphs. From this polynomial we also compute as many as nine degree-based topological indices for these three chains. Our results will potentially play an important role in pharmacy, drug design, and many other applied areas of molecular sciences.

    Citation: Cheng-Peng Li, Cheng Zhonglin, Mobeen Munir, Kalsoom Yasmin, Jia-bao Liu. M-polynomials and topological indices of linear chains of benzene, napthalene and anthracene[J]. Mathematical Biosciences and Engineering, 2020, 17(3): 2384-2398. doi: 10.3934/mbe.2020127

    Related Papers:

    [1] Saylé C. Sigarreta, Saylí M. Sigarreta, Hugo Cruz-Suárez . On degree–based topological indices of random polyomino chains. Mathematical Biosciences and Engineering, 2022, 19(9): 8760-8773. doi: 10.3934/mbe.2022406
    [2] Xinmei Liu, Xinfeng Liang, Xianya Geng . Expected Value of Multiplicative Degree-Kirchhoff Index in Random Polygonal Chains. Mathematical Biosciences and Engineering, 2023, 20(1): 707-719. doi: 10.3934/mbe.2023032
    [3] Wanlin Zhu, Minglei Fang, Xianya Geng . Enumeration of the Gutman and Schultz indices in the random polygonal chains. Mathematical Biosciences and Engineering, 2022, 19(11): 10826-10845. doi: 10.3934/mbe.2022506
    [4] H. T. Banks, Cammey E. Cole, Paul M. Schlosser, Hien T. Tran . Modeling and optimal regulation of erythropoiesis subject to benzene intoxication. Mathematical Biosciences and Engineering, 2004, 1(1): 15-48. doi: 10.3934/mbe.2004.1.15
    [5] Te-Wei Chiang, Dai-Lun Chiang, Tzer-Shyong Chen, Frank Yeong-Sung Lin, Victor R. L. Shen, Min-Chien Wang . Novel Lagrange interpolation polynomials for dynamic access control in a healthcare cloud system. Mathematical Biosciences and Engineering, 2022, 19(9): 9200-9219. doi: 10.3934/mbe.2022427
    [6] Deepalakshmi Sarkarai, Kalyani Desikan . QSPR/QSAR analysis of some eccentricity based topological descriptors of antiviral drugs used in COVID-19 treatment via Dε- polynomials. Mathematical Biosciences and Engineering, 2023, 20(9): 17272-17295. doi: 10.3934/mbe.2023769
    [7] Fengwei Li, Qingfang Ye, Juan Rada . Extremal values of VDB topological indices over F-benzenoids with equal number of edges. Mathematical Biosciences and Engineering, 2023, 20(3): 5169-5193. doi: 10.3934/mbe.2023240
    [8] Ricai Luo, Khadija Dawood, Muhammad Kamran Jamil, Muhammad Azeem . Some new results on the face index of certain polycyclic chemical networks. Mathematical Biosciences and Engineering, 2023, 20(5): 8031-8048. doi: 10.3934/mbe.2023348
    [9] Xiujun Zhang, Umair Saleem, Muhammad Waheed, Muhammad Kamran Jamil, Muhammad Zeeshan . Comparative study of five topological invariants of supramolecular chain of different complexes of N-salicylidene-L-valine. Mathematical Biosciences and Engineering, 2023, 20(7): 11528-11544. doi: 10.3934/mbe.2023511
    [10] Alessia Andò, Dimitri Breda, Giulia Gava . How fast is the linear chain trick? A rigorous analysis in the context of behavioral epidemiology. Mathematical Biosciences and Engineering, 2020, 17(5): 5059-5084. doi: 10.3934/mbe.2020273
  • The universality of M-polynomial paves way towards establishing closed forms of many leading degree-based topological indices as it is done by Hosoya polynomial for distance-based indices. The study of topological indices is recently one of the most active research areas in chemical graph theory. The aim of this paper is to establish closed formulas for M-polynomials of Linear chains of benzene, napthalene, and anthracene graphs. From this polynomial we also compute as many as nine degree-based topological indices for these three chains. Our results will potentially play an important role in pharmacy, drug design, and many other applied areas of molecular sciences.


    Chemical graph theory is an emerging subfield of Mathematical Chemistry which helps in providing us tools such as polynomials and functions [1] to characterize properties of substances [2]. Wiener index has been largely used in [3]. A general modelling of some vertex-based indices of benzenoid systems has been presented in [4] and hexagonal systems in [5]. These tools carry potential information relating the structural properties of a molecular substance. Mathematicians are actively developing structural polynomials and functions that can take structural parameters such as number of atoms or molecules in a certain unit or number of bonds etc. as inputs to these functions and the out put information will be related to the properties of these molecular substances [6]. The main problem comes in the development of a very general polynomial that can generate these key functions after successive operations of differentiation and integration. The Hosoya polynomial is one such ingredient in the context of distance-based topological indices and key functions obtained from it are Weiner index, hyper Weiner index, and Harary index [6]. The M-polynomial is quite similar to the Hosoya polynomial except the fact that it produces degree-based topological indices.

    A similar breakthrough was obtained recently by Deutsch and Klavzar [7] in 2015 in the form of M-polynomial which is extensively used nowadays to obtain many degree-based indices of different structures. The Authors established closed forms of degree-based indices of some famous structures like nanostar dendrimers in [8], titania nanotubes in [9], V-phenylenic nanotubes and nanotori in [10], boron nanotubes in [11], polyhex nanoubes in [12] and benzenoid systems in [13]. These indices have been closely linked with properties of chemical substances [14]. Wiener indices of trees have been computed in [15] which have a lots of applications. Benzenoid hydrocarbons play a vital role in our environment, food and chemical industries. In this article we are concerned about some linear chains of hydrocarbon in which benzene is an integral element. All considered graphs are simple and connected. We fix G for a connected simple graph with edge set E(G) and vertex set V(G), du is the degree of vertex u, δ=min{du:uV(G)} and Δ=max{du:uV(G)}. The M- Polynomial of G is defined as

    M(G,x,y)=δjiΔmijxiyj,

    where mij is the number of edges uvϵE(G) such that ij [7]. For the sake of mere computation, we prefer to notate M(x,y)=f(x,y). In 1975 Milan Randic introduced the Randic index R1/2(G) and he defined it as

    R1/2(G)=uvϵE(G)(1/dudv).

    the generalized Randic index is defined as

    Rα(G)=uvϵE(G)(1/dudv)α

    , [16]. Randic used this index to study molecular attributes in [17]. Bollobas et al. discussed graphs with maximal weight using Randic index in [18]. New look of this index is presented in [19]. Authors discussed some molecular graphs with Randic index in [20] and with maximal Randic index in [21]. The Inverse Randic index [22], is defined as

    RRα(G)=uvϵE(G)(dudv)α.

    It is clear that R1/2(G) is a special case of Rα(G) where α=1/2. This index has vast application in diverse areas [23] and [24]. Some recent results about Randic index can be traced from [25]. Gutman and Trinajstic defined two other indices as

    M1(G)=uvϵE(G)dudv,
    M2(G)=uvϵE(G)dudv,

    and the modified second Zagreb index is

    Mm2(G)=uvϵE(G)1/dudv.

    For details about these indices we refer to [26] and [27]. Some properties of Zagreb index have been outlined in [28] The Symetric Division index is also an important index given as

    SSD(G)=uvϵE(G){(min(du,dv))/(max(du,dv))+(max(du,dv))/(min(du,dv))}

    Harmonic Index is

    H(G)=uvϵE(G)2/du+dv,

    the inverse sum index is

    I(G)=uvϵE(G)dudv/(dudv),

    and the augmented Zagreb index is

    A(G)=uvϵE(G){dudv/(du+dv2)}3.

    For further details of these indices, we refer to [29] and [30] where Zagreb indices and some of its variants have been provided. We use the following notations for the operations

    Dx=xf(x,y)x,
    Dy=yf(x,y)y,
    δx=x0f(t,y)tdt,
    δy=y0f(t,y)tdt,
    Jf(x,y)=f(x,x),

    and

    Qα(f(x,y)=xαf(x,y).

    Benzenoid graphs play important part in industry of hydrocarbons. Saturation numbers of benzenoid graphs have been computed in [31]. Linear chains of these benzene contribute in formation of many other important hydrocarbons. In 1981 Graovac et al. studied about benzenoid system with zero Energy gap [32]. In 2001 Gutman discussed Hosoya polynomial of benzenooid graphs [33]. In 2004 Vukicevic et al. gave the results about the Wiener indices of Benzenoid graph [34]. In 2006 Gutman et al. computed the formula for calculating resonance energy of benzenoid hydrocarbons [35]. In 2009 vesel studied about 4-tiling of benzenoid graphs [36]. In 2011 Das et al. gave the spectral properties of some matrix of benzenoid systems [37].

    In the present article we focus on the combinatorial and topological aspects of Linear chains of Benzene, Nepthalene and Anthracene graphs. In particular we establish closed results for M-polynomials of these systems and then using successive operations of calculus, we derive formulas for topological indices of these systems.

    In this section we will compute M Polynomial of linear chains of benzene, napthalene and anthracene graphs and also some topological indices related to these graphs. We start with the linear chains of benzene.

    Figure 1.  Linear chain of benzene graph.

    .

    Theorem 2.1.1 The M-Polynomial of linear chain of benzene graph is

    M(Bn,x,y)=6x2y2+4(n1)x3y2+(n1)x3y3.

    Proof. Let Bn be the linear chain of benzene graph. Then from Figure 1 we have

    |V(Bn)|=4n+2
    |E(Bn)|=5n+1

    The edge set E(Bn has following three partitions

    |E2,2|={e=uvϵE(Bn)|du=2dv=2},|E3,2|={e=uvϵE(Bn)|du=3dv=2},|E3,3|={e=uvϵE(Bn)|du=3dv=3},

    and

    |E2,2|=6,|E3,2|=4(n1),|E3,3|=n1.

    Thus, M polynomial of Bn is

    M(Bn,x,y)=ijmij(Bn)xiyj=22m22(Bn)x2y2+32m32(Bn)x3y2+33m33(Bn)x3y3=22m22(Bn)x2y2+32m32(Bn)x3y2+33m33(Bn)x3y3=|E2,2|x2y2+|E3,2|x3y2+|E3,3|x3y3=6x2y2+4(n1)x3y2+(n1)x3y3.

    Now using the operations discussed in introduction we have the following results,

    proposition 2.1.2 Let Bn be linear chain of benzene graph then

    1. M1(Bn)=26n2

    2. M2(Bn)=33n9

    3. Mm2(Bn)=7n/9+13/8

    4. Rα(Bn)=(3α.2α+2+32α)n+(22α+1.33α.2α+232α)

    5. RRα(Bn)=(1/3α.2α1+1/32α)n+(3/22α11/3α.2α21/32α)

    6. SSD(Bn)=32n/3+2

    7. H(Bn)=29n/15+16/15

    8. I(Bn)=63n/103/10

    9. A(Bn)=2777n/64+295/64

    Proof. Let

    M(Bn,x,y)=6x2y2+4(n1)x3y2+(n1)x3y3.

    Then,

    Dx(f(x,y))=12x2y2+12(n1)x3y2+3(n1)x3y3.Dy(f(x,y))=12x2y2+8(n1)x3y2+3(n1)x3y3.DyDx(f(x,y))=24x2y2+24(n1)x3y2+9(n1)x3y3.δx(f(x,y))=3x2y2+4/3(n1)x3y2+1/3(n1)x3y3.δxδy(f(x,y))=3/2x2y2+2/3(n1)x3y2+1/9(n1)x3y3.DαxDαy(f(x,y))=22α+1.3x2y2+3α.2α+2(n1)x3y2+32α(n1)x3y3.δαxδαy(f(x,y))=3/22α1x2y2+1/3α.2α2(n1)x3y2+1/32α(n1)x3y3.δyDx(f(x,y))=6x2y2+6(n1)x3y2+(n1)x3y3.δxDy(f(x,y))=6x2y2+6(n1)x3y2+(n1)x3y3.δxJ(f(x,y))=3/2x4+4/5(n1)x5+1/6(n1)x6.δxJ(DyDx(f(x,y)))=6x4+24/5(n1)x5+3/2(n1)x6.δ3xQ2J(D3xD3y(f(x,y)))=48x2+32(n1)x3+729/64(n1)x4

    1. First zagreb Index :

    M1(Bn)=(Dx+Dy)f(x,y)|x=y=1=26n2,

    2. Second Zagreb Index :

    M2(Bn)=(DyDx)f(x,y)|x=y=1=33n9,

    3. Modified Second Zagreb Index :

    Mm2(Bn)=(δxδy)f(x,y)|x=y=1=7n/9+13/8,

    4. Generalized Randic Index :

    Rα(Bn)=DαxDαy(f(x,y))|x=y=1=(3α.2α+2+32α)n+(22α+1.33α.2α+232α),

    5. Inverse randic Index :

    RRα(Bn)=δαxδαy(f(x,y))|x=y=1=(1/3α.2α1+1/32α)n+(3/22α11/3α.2α21/32α),

    6.Symmetric division Index:

    SSD(Bn)=(δxDx+δyDy)f(x,y)|x=y=1=32n/3+2,

    7.Harmonic Index:

    H(Bn)=2δxJ(f(x,y))|x=1=29n/15+16/15,

    8.Inverse Sum Index :

    I(Bn)=δxJ(DyDx(f(x,y)))|x=1=63n/103/10,

    9. Augmented zagreb Index :

    A(Bn)=δ3xQ2J(D3xD3y(f(x,y)))|x=1=2777n/64+295/64,

    Now we move towards the second main object of this article. Figure 2 is a linear chain of Napthalene graphs.

    Figure 2.  Linear chain of napthalene graphs.

    . Theorem 2.1.3 The M-Polynomial of linear napthalene L.Nn graph is

    M(L.Nn,x,y)=6x2y2+4(2n1)x3y2+(5n4)x3y3.

    Proof. Let L.Nn be the linear napthalene graph. Then from Figure 2 we have

    |V(L.Nn)|=10n
    |E(L.Nn)|=13n2.

    The edge set E(L.Nn has following three partitions

    |E2,2|={e=uvϵE(L.Nn)|du=2dv=2},|E3,2|={e=uvϵE(L.Nn)|du=3dv=2},|E3,3|={e=uvϵE(L.Nn)|du=3dv=3},

    and

    |E2,2|=6,|E3,2|=8n4=4(2n1),|E3,3|=5n4.

    Thus, M polynomial of L.Nn is

    M(Bn,x,y)=ijmij(L.Nn)xiyj=22m22(L.Nn)x2y2+32m32(L.Nn)x3y2+33m33(L.Nn)x3y3=22m22(L.Nn)x2y2+32m32(L.Nn)x3y2+33m33(L.Nn)x3y3=|E2,2|x2y2+|E3,2|x3y2+|E3,3|x3y3=6x2y2+4(2n1)x3y2+(5n4)x3y3.

    proposition 2.1.4 Let L.Nn be linear napthalene graph then,

    1. M1(L.Nn)=70n20,

    2. M2(L.Nn)=93n36,

    3. Mm2(L.Nn)=17n/9+7/18,

    4. Rα(L.Nn)=(5.32α+3α.2α+3)n+(22α+1.33α.2α+24.32α),

    5. RRα(L.Nn)=(5/32α+1/3α.2α2)n+(3/22α11/3α.2α24/32α),

    6. SSD(L.Nn)=82n/314/3,

    7. H(L.Nn)=73n/15+1/15,

    8. I(L.Nn)=171n/1024/5,

    9. A(L.Nn)=7741n/64473/16.

    Proof. Let

    M(L.Nn,x,y)=6x2y2+4(2n1)x3y2+(5n4)x3y3.

    Then,

    Dx(f(x,y))=12x2y2+12(2n1)x3y2+3(5n4)x3y3,Dy(f(x,y))=12x2y2+8(2n1)x3y2+3(5n4)x3y3,DyDx(f(x,y))=24x2y2+24(2n1)x3y2+9(5n4)x3y3,δx(f(x,y))=3x2y2+4/3(2n1)x3y2+1/3(5n4)x3y3,δxδy(f(x,y))=3/2x2y2+2/3(2n1)x3y2+1/9(5n4)x3y3,DαxDαy(f(x,y))=22α+1.3x2y2+3α.2α+2(2n1)x3y2+32α(5n4)x3y3,δαxδαy(f(x,y))=3/22α1x2y2+1/3α.2α2(2n1)x3y2+1/32α(5n4)x3y3,δyDx(f(x,y))=6x2y2+6(n1)x3y2+(5n4)x3y3,δxDy(f(x,y))=6x2y2+8/3(2n1)x3y2+(5n4)x3y3,δxJ(f(x,y))=3/2x4+4/5(2n1)x5+1/6(5n4)x6,δxJ(DyDx(f(x,y)))=6x4+24/5(2n1)x5+3/2(5n4)x6,δ3xQ2J(D3xD3y(f(x,y)))=48x2+32(2n1)x3+729/64(5n4)x4.

    1. First zagreb Index :

    M1(L.Nn)=(Dx+Dy)f(x,y)|x=y=1=70n20.

    2. Second Zagreb Index :

    M2(L.Nn)=(DyDx)f(x,y)|x=y=1=93n36.

    3. Modified Second Zagreb Index :

    Mm2(L.Nn)=(δxδy)f(x,y)|x=y=1=17n/9+7/18.

    4. Generalized randic Index :

    Rα(L.Nn)=DαxDαy(f(x,y))|x=y=1=(5.32α+3α.2α+3)n+(22α+1.33α.2α+24.32α).

    5. Inverse randic Index :

    RRα(L.Nn)=δαxδαy(f(x,y))|x=y=1=(5/32α+1/3α.2α2)n+(3/22α11/3α.2α24/32α).

    6.Symmetric division Index:

    SSD(L.Nn)=(δxDx+δyDy)f(x,y)|x=y=1=82n/314/3.

    7.Harmonic Index:

    H(L.Nn)=2δxJ(f(x,y))|x=1=73n/15+1/15.

    8.Inverse Sum Index :

    I(L.Nn)=δxJ(DyDx(f(x,y)))|x=1=171n/1024/5.

    9. Augmented zagreb Index :

    A(L.Nn)=δ3xQ2J(D3xD3y(f(x,y)))|x=1=7741n/64473/16.

    Now we move towards the theoretical aspects of linear chain of anthracene graphs. Following Figure 3 gives a mathematical pattern of carbon atoms sequencing.

    Figure 3.  Linear chain of anthracene graph.

    Theorem 2.1.5 The M-Polynomial of linear anthracene L.An graph is

    M(L.An,x,y)=6x2y2+4(3n1)x3y2+2(3n2)x3y3.

    Proof. Let L.An be the linear anthracene graph. Then from figure 3 we have

    |V(L.An)|=14n,
    |E(L.An)|=18n2,

    The edge set E(L.An has following three partitions

    |E2,2|={e=uvϵE(L.An)|du=2dv=2},|E3,2|={e=uvϵE(L.An)|du=3dv=2},|E3,3|={e=uvϵE(L.An)|du=3dv=3},

    and

    |E2,2|=6,|E3,2|=4(3n1),|E3,3|=2(3n2).

    Thus, M polynomial of L.An is

    M(Bn,x,y)=ijmij(L.An)xiyj,=22m22(L.An)x2y2+32m32(L.An)x3y2+33m33(L.An)x3y3,=22m22(L.An)x2y2+32m32(L.An)x3y2+33m33(L.An)x3y3,=|E2,2|x2y2+|E3,2|x3y2+|E3,3|x3y3=6x2y2+4(3n1)x3y2+2(3n2)x3y3,

    proposition 2.1.6 Let L.An be linear anthracene graph then,

    1. M1(L.An)=96n20,

    2. M2(L.An)=126n36,

    3. Mm2(L.An)=8n/3+7/18,

    4. Rα(L.An)=(32α+1.2+3α+1.2α+2)n+(22α+1.33α.2α+232α.22),

    5. RRα(L.An)=(1/3α1.2α2+2/32α1)n+(3/22α11/3α.2α24/32α),

    6. SSD(L.An)=38n14/3,

    7. H(L.An)=34n/5+1/15,

    8. I(L.An)=117n/524/5,

    9. A(L.An)=825n473/16.

    Proof. Let

    M(L.An,x,y)=6x2y2+4(3n1)x3y2+2(3n2)x3y3.

    Then,

    Dx(f(x,y))=12x2y2+12(3n1)x3y2+6(3n2)x3y3,Dy(f(x,y))=12x2y2+8(3n1)x3y2+6(3n2)x3y3,DyDx(f(x,y))=24x2y2+24(3n1)x3y2+18(3n2)x3y3,δx(f(x,y))=3x2y2+4/3(3n1)x3y2+2/3(3n2)x3y3,δxδy(f(x,y))=3/2x2y2+2/3(3n1)x3y2+2/9(3n2)x3y3,DαxDαy(f(x,y))=22α+1.3x2y2+3α.2α+2(3n1)x3y2+32α.2(3n2)x3y3,δαxδαy(f(x,y))=3/22α1x2y2+1/3α.2α2(3n1)x3y2+2/32α(3n2)x3y3,δyDx(f(x,y))=6x2y2+6(3n1)x3y2+2(3n2)x3y3,δxDy(f(x,y))=6x2y2+8/3(3n1)x3y2+2(3n2)x3y3,δxJ(f(x,y))=3/2x4+4/5(3n1)x5+1/3(3n2)x6,δxJ(DyDx(f(x,y)))=6x4+24/5(3n1)x5+3(3n2)x6,δ3xQ2J(D3xD3y(f(x,y)))=48x2+32(3n1)x3+729/32(3n2)x4.

    1. First zagreb Index :

    M1(L.An)=(Dx+Dy)f(x,y)|x=y=1=96n20

    2. Second Zagreb Index :

    M2(L.An)=(DyDx)f(x,y)|x=y=1=126n36

    3. Modified Second Zagreb Index :

    .Mm2(L.An)=(δxδy)f(x,y)|x=y=1=8n/3+7/18

    4. Generalized randic Index :

    Rα(L.An)=DαxDαy(f(x,y))|x=y=1=(32α+1.2+3α+1.2α+2)n+(22α+1.33α.2α+232α.22)

    5. Inverse randic Index :

    RRα(L.An)=δαxδαy(f(x,y))|x=y=1=(1/3α1.2α2+2/32α1)n+(3/22α11/3α.2α24/32α)

    6.Symmetric division Index:

    SSD(L.An)=(δxDx+δyDy)f(x,y)|x=y=1=38n14/3

    7.Harmonic Index:

    H(L.An)=2δxJ(f(x,y))|x=1=34n/5+1/15

    8.Inverse Sum Index :

    I(L.An)=δxJ(DyDx(f(x,y)))|x=1=117n/524/5

    9. Augmented zagreb Index :

    A(L.An)=δ3xQ2J(D3xD3y(f(x,y)))|x=1=825n473/16.

    In this paper we derived M-polynomials and closed forms of some degree-based topological indices of linear chains of benzene, napthalene and anthracene graphs. Actual features about these results are the correlation of these indices on the basic units of these three chains. These indices could potentially play a significant role in determining properties of these compounds and others in which these compounds are used. It is important to mention here that some of these topological indices are derived directly by using techniques and definitions available in the literature.

    Conceptualization, Mobeen Munir and Jiabao Liu; Investigation, Cheng Zhonglin and Cheng-Peng Li; Writing original draft, Kalsoom Yasmin.

    We are highly thankful to reviewer's comments to improve the quality of article.

    This research is funded from Major natural science research projects in Colleges and universities of Anhui Province in 2019 (No. KJ2019 ZD77).

    The authors declare that they have no competing interests.



    [1] G. Rucker, C. Rucker, On topological indices, boiling points, and cycloalkanes, J. Chem. Inf. Comput. Sci., 39 (1999), 788-802.
    [2] S. Klavzar, I. Gutman, A comparison of the schultz molecular topological index with the wiener index, J. Chem. Inf. Comput. Sci., 36 (1996), 1001-1003.
    [3] F. M. Bruckler, C. T. Dosli, A. Graovac, I. Gutman, On a class of distance-based molecular structure descriptors, Chem. Phys. Lett., 503 (2011), 336-338.
    [4] H. Deng, J. Yang, F. Xia, A general modeling of some vertex-degree based topological indices in benzenoid systems and phenylenes, Comput. Math. Appl., 61 (2011), 3017-3023.
    [5] H. Zhang, F. Zhang, The clar covering polynomial of hexagonal systems I, Discrete Appl. Math., 69 (1996), 147-167.
    [6] I. Gutman, Some properties of the Wiener polynomial, Graph. Theory Notes N. Y., 125 (1993), 13-18.
    [7] E. Deutsch, S. Klavzar, M-polynomial and degreebased topological indices,Iran. J. Math. Chem, 6 (2015), 93-102.
    [8] M. Munir, W. Nazeer, S. Rafique, S. M. Kang, M-polynomial and related topological indices of nanostar dendrimers, Symmetry, 8 (2016), 97.
    [9] M. Munir, W.Nazeer, S.Rafique, A. R. Nizami, S. M. Kang, M-polynomial and degree-based topological indices of titaniananotubes, Symmetry, 8 (2016), 117.
    [10] Y. Kwun, M. Munir, W. Nazeer, S. Rafique, S. M. Kang, M-polynomial and degree-based topological indices of Vphenylenic nanotubes and nanotori, Sci. Rep., 7 (2017), 8756.
    [11] M. Munir, W. Nazeer, S. Rafique, A. R. Nizami, S. M. Kang, Some computational aspects of triangular boron nanotubes, Symmetry, 9 (2016), 6.
    [12] M. Munir, W. Nazeer, S. Rafique, S. M. Kang, M-polynomial and degree-based topological indices of polyhex nanotubes, Symmetry, 8 (2016), 149.
    [13] A. Ali, W. Nazeer, M. Munir, S. M. Kang, M-Polynomials and topological indices of zigzag and rhombic benzenoidsystems, Open Chem., 16 (2018), 73-78.
    [14] H. Wiener, Structural determination of paran boiling points, JACS, 69 (1947), 17-20.
    [15] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math., 66 (2001), 211-249.
    [16] I. Gutman, O. E. Polansky, Mathematical concepts in organic chemistry, Springer Science and Business Media, Berlin, Germany, (2012).
    [17] M. Randic, On characterization of molecular attributes, Acta Chim. Slov., 45 (1998), 239.
    [18] B. Bollobas, P. Erdos, Graphs of extremal weights, Ars Combinatoria, 50 (1998), 225-233.
    [19] D. Amic, D. Beslo, B. Lucic, S. Nikolic, N. Trinajstic, The vertex-connectivity index revisited, J. Chem. Inf. Comput. Sci., 38 (1998), 819-822.
    [20] Y. Hu, X. Li, Y. Shi, T. Xu, I.Gutman, On molecular graphs with smallest and greatest zeroth-order general Randic index, Match-Commun. Math. Co., 54 (2005), 425-434.
    [21] G. Caporossi, I. Gutman, P. Hansen, L. Pavlovic, Graphs with maximum connectivity index, Comput. Biol. Chem., 27(2003), 85-90.
    [22] X. Li, I. Gutman, Mathematical chemistry monographs no. 1, Kragujevac, 330 (2006), 6.
    [23] L. Kier, Molecular connectivity in chemistry and drug research, Elsevier, NY. USA, 14 (2012).
    [24] L. B. Kierand, L. H. Hall, Molecular connectivity in structure activity analysis, research studies, chemometrics research studies press, 1st edition, (1986).
    [25] I. Gutman, B. Furtula, Recent Results in the Theory of Randic Index, University of Kragujevac and Faculty of Science Kragujevac, Kragujevac, Serbia, (2008).
    [26] S. Nikolic, G. Kovacevic, A. Milicevic, N. Trinajstic, The Zagreb indices 30 years after, Croa. Chem. Acta, 76 (2003), 113-124.
    [27] I. Gutman, K. C. Das, The first Zagreb index 30 years after, Math. Commun. Math. Comput. Chem., 50 (2004), 83-92.
    [28] K. C. Das, I. Gutman, Some properties of the second Zagreb index, Match-Commun. Math. Co., 52 (2004), 1-3.
    [29] N. Trinajstic, S. Nikolic, A. Milicevic, I. Gutman, About the Zagreb Indices, Kemija u Industriji: Casopis Kemicara i Kemijskih Inzenjera Hrvatske, 59 (2010), 577-589.
    [30] D. Vukicevic, A. Graovac, Valence connectivity versus Randic, Zagreb and modified Zagreb index, a linear algorithm to check discriminative properties of indices in acyclic molecular graphs, Croa. Chem. Acta, 77 (2004), 501-508.
    [31] T. Doslic, I. Zubac, Saturation number of benzenoid graphs, Math. Commun. Math. Comput. Chem., (2015).
    [32] A. Graovac, N. Trinjstic, Graph thoretical search for benzenoid polymers with zero energy gap, Croat. Chem. Acta, 4 (1981), 571-579.
    [33] I. Gutman, M. Petkovsek, R. Z. pleterselt, On Hosoya polynomial of benzenoid Graph, Math. Commun., (2001).
    [34] D. Vukicevic, N. Trinajstic, Wiener indices of benzenoid graph, Bull. Chem. Technol. Macedon., 23 (2004), 113-129.
    [35] I. Gutman, S. Radenkovic, Simple formula for calculating resonance energy of benzenoid hydrocarbons, Bull. Chem. Technol. Macedon., 25 (2006), 17-21.
    [36] A. vesel, 4-tilings of benzenoid graphs Math. Commun Math. Comput. Chem., 62 (2009), 221-234.
    [37] K. C. Das, F. M. Bhatti, S. G. lee, I. Gutman, Spectral properties of the he matrix of hexagonal systems, Math. Commun Math. Comput. Chem., 65 (2011), 753-774.
  • This article has been cited by:

    1. M.C. Shanmukha, Sokjoon Lee, A. Usha, K.C. Shilpa, Muhammad Azeem, Structural descriptors of anthracene using topological coindices through CoM-polynomial, 2023, 10641246, 1, 10.3233/JIFS-223947
    2. Saylé C. Sigarreta, Saylí M. Sigarreta, Hugo Cruz-Suárez, On degree–based topological indices of random polyomino chains, 2022, 19, 1551-0018, 8760, 10.3934/mbe.2022406
    3. Sourav Mondal, Muhammad Imran, Nilanjan De, Anita Pal, Neighborhood M-polynomial of titanium compounds, 2021, 14, 18785352, 103244, 10.1016/j.arabjc.2021.103244
    4. Ghazanfar Abbas, Muhammad Ibrahim, Ali Ahmad, Muhammad Azeem, Kashif Elahi, Amin Jajarmi, M-Polynomials and Associated Topological Indices of Sodalite Materials, 2021, 2021, 1563-5147, 1, 10.1155/2021/5924409
    5. Ali N. A. Koam, Ali Ahmad, Muhammad Azeem, Muhammad Kamran Siddiqui, Algebraic Properties for Molecular Structure of燤agnesium營odide, 2023, 135, 1526-1506, 1131, 10.32604/cmes.2022.020884
    6. Ying-Fang Zhang, Muhammad Usman Ghani, Faisal Sultan, Mustafa Inc, Murat Cancan, Connecting SiO4 in Silicate and Silicate Chain Networks to Compute Kulli Temperature Indices, 2022, 27, 1420-3049, 7533, 10.3390/molecules27217533
    7. S. Jeyamangala Abirami, S. Angelin Kavitha Raj, Muhammad Kamran Siddiqui, Tariq Javed Zia, Computation of degree‐based topological indices for the complex structure of ruthenium bipyridine, 2024, 124, 0020-7608, 10.1002/qua.27310
    8. Haleemah Ghazwani, Muhammad Kamran Jamil, Ali Ahmad, Muhammad Azeem, Ali N. A. Koam, Applications of magnesium iodide structure via modified-polynomials, 2024, 14, 2045-2322, 10.1038/s41598-024-64344-6
    9. Zaryab Hussain, Ahmed Sayed M. Metwally, Zohib Akram, Samia Chehbi Gamoura, Temperature Entropies of Silicate Network, 2024, 1876-990X, 10.1007/s12633-024-03191-6
    10. Ali N. A. Koam, Ali Ahmad, Raed Qahiti, Muhammad Azeem, Waleed Hamali, Shonak Bansal, Enhanced Chemical Insights into Fullerene Structures via Modified Polynomials, 2024, 2024, 1076-2787, 10.1155/2024/9220686
    11. Ali Ahmad, Ali N. A. Koam, Muhammad Azeem, Reverse-degree-based topological indices of fullerene cage networks, 2023, 121, 0026-8976, 10.1080/00268976.2023.2212533
    12. Ali N. A. Koam, Ali Ahmad, Muhammad Azeem, Boron clusters sheets with algebraic properties, 2023, 121, 0026-8976, 10.1080/00268976.2023.2228424
    13. Muhammad Yaseen, Badr S. Alkahtani, Hong Min, Mohd Anjum, Group Theoretic Approach towards the Balaban Index of Catacondensed Benzenoid Systems and Linear Chain of Anthracene, 2024, 16, 2073-8994, 996, 10.3390/sym16080996
    14. Jian Zhong Xu, Zaryab Hussain, Ahmed Sayed M. Metwally, Muhammad Ahsan Binyamin, A Mathematical Investigation for the Temperature Indices of SiO4
    in Silicate and Silicate Chain Networks, 2024, 16, 1876-990X, 4003, 10.1007/s12633-024-02980-3
    15. Shivani Rai, Biswajit Deb, On the first and second Zagreb indices of some products of signed graphs, 2023, 20, 0972-8600, 185, 10.1080/09728600.2023.2237092
    16. Tumiso Kekana, Kazeem Olalekan Aremu, Maggie Aphane, Exploring a novel approach for computing topological descriptors of graphene structure using neighborhood multiple M-polynomial, 2025, 10, 2297-4687, 10.3389/fams.2024.1508134
    17. Adnan Asghar, Muhammad Rafaqat, Investigating the Neighborhood Degree Based Topological Indices of Certain Isomeric Natural Polymers, 2025, 2470-1343, 10.1021/acsomega.4c08243
    18. Adnan Asghar, QSPR analysis of anti-hepatitis prescription drugs using degree based topological indices through M-polynomial and NM-polynomial, 2025, 12, 2411-1414, 10.15826/chimtech.2025.12.2.06
    19. Vladislav Ryabov, Topological Polynomials and Indices of Line Graphs of Wheel Graphs, 2025, 7, 2006-1137, 15, 10.53469/jerp.2025.07(02).03
    20. Ali Al Khabyah, Ali Ahmad, Muhammad Azeem, Ali N. A. Koam, Degree-based topological properties of borophene sheets, 2025, 48, 2191-0219, 10.1515/mgmc-2024-0017
    21. Qing Zhang, Fairouz Tchier, Zaryab Hussain, Adnan Aslam, Xuewu Zuo, On the bounds for the Euler Sombor index of molecular trees and its applications, 2025, 1598-5865, 10.1007/s12190-025-02506-z
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4619) PDF downloads(401) Cited by(21)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog