Citation: Poonkuzhali Sugumaran, Vinodhkumar Sukumaran. Recommendations to improve dead stock management in garment industry using data analytics[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 8121-8133. doi: 10.3934/mbe.2019409
[1] | Tetiana Biloborodova, Lukasz Scislo, Inna Skarga-Bandurova, Anatoliy Sachenko, Agnieszka Molga, Oksana Povoroznyuk, Yelyzaveta Yevsieieva . Fetal ECG signal processing and identification of hypoxic pregnancy conditions in-utero. Mathematical Biosciences and Engineering, 2021, 18(4): 4919-4942. doi: 10.3934/mbe.2021250 |
[2] | Dawid Czapla, Sander C. Hille, Katarzyna Horbacz, Hanna Wojewódka-Ściążko . Continuous dependence of an invariant measure on the jump rate of a piecewise-deterministic Markov process. Mathematical Biosciences and Engineering, 2020, 17(2): 1059-1073. doi: 10.3934/mbe.2020056 |
[3] | Lei Lu, Tingting Zhu, Ying Tan, Jiandong Zhou, Jenny Yang, Lei Clifton, Yuan-Ting Zhang, David A. Clifton . Refined matrix completion for spectrum estimation of heart rate variability. Mathematical Biosciences and Engineering, 2024, 21(8): 6758-6782. doi: 10.3934/mbe.2024296 |
[4] | Mark Kei Fong Wong, Hao Hei, Si Zhou Lim, Eddie Yin-Kwee Ng . Applied machine learning for blood pressure estimation using a small, real-world electrocardiogram and photoplethysmogram dataset. Mathematical Biosciences and Engineering, 2023, 20(1): 975-997. doi: 10.3934/mbe.2023045 |
[5] | Luca Dedè, Francesco Regazzoni, Christian Vergara, Paolo Zunino, Marco Guglielmo, Roberto Scrofani, Laura Fusini, Chiara Cogliati, Gianluca Pontone, Alfio Quarteroni . Modeling the cardiac response to hemodynamic changes associated with COVID-19: a computational study. Mathematical Biosciences and Engineering, 2021, 18(4): 3364-3383. doi: 10.3934/mbe.2021168 |
[6] | Zhenjun Tang, Yongzheng Yu, Hanyun Zhang, Mengzhu Yu, Chunqiang Yu, Xianquan Zhang . Robust image hashing via visual attention model and ring partition. Mathematical Biosciences and Engineering, 2019, 16(5): 6103-6120. doi: 10.3934/mbe.2019305 |
[7] | Weidong Gao, Yibin Xu, Shengshu Li, Yujun Fu, Dongyang Zheng, Yingjia She . Obstructive sleep apnea syndrome detection based on ballistocardiogram via machine learning approach. Mathematical Biosciences and Engineering, 2019, 16(5): 5672-5686. doi: 10.3934/mbe.2019282 |
[8] | Chunkai Zhang, Yingyang Chen, Ao Yin, Xuan Wang . Anomaly detection in ECG based on trend symbolic aggregate approximation. Mathematical Biosciences and Engineering, 2019, 16(4): 2154-2167. doi: 10.3934/mbe.2019105 |
[9] | Zuzana Chladná . Optimal time to intervene: The case of measles child immunization. Mathematical Biosciences and Engineering, 2018, 15(1): 323-335. doi: 10.3934/mbe.2018014 |
[10] | Fengjuan Liu, Binbin Qu, Lili Wang, Yahui Xu, Xiufa Peng, Chunling Zhang, Dexiang Xu . Effect of selective sleep deprivation on heart rate variability in post-90s healthy volunteers. Mathematical Biosciences and Engineering, 2022, 19(12): 13851-13860. doi: 10.3934/mbe.2022645 |
[1] | P. Ignaciuk, Base-stock distributed inventory management in continuous-review logistic systems-control system perspective, 2017 22nd International Conference on Methods and Models in Automation and Robotics, (2017), 1027-1032. Available from: https://ieeexplore.ieee.org/abstract/document/8046971. |
[2] | O. Bounou, A. E. Barkany and A. E. Biyaali, Bayesian model for spare parts management, 10 th International Colloquium on Logistics and Supply Chain Management, (2017), 204-208. Available from: https://ieeexplore.ieee.org/document/7962899. |
[3] | R. Guidotti, G. Rossetti, L. Pappalardo, et al., Market basket prediction using user-centric temporal annotated recurring sequences, 2017 IEEE International Conference on Data Mining, (2017), 895-900. Available from: https://ieeexplore.ieee.org/abstract/document/8215574. |
[4] | Y. Sun, C. Liang, S. Sutherland, et al., Modeling player decisions in a supply chain game, 2016 IEEE Conference on Computational Intelligence and Games (CIG), (2016), 1-8. Available from: https://ieeexplore.ieee.org/abstract/document/7860444. |
[5] | G. S. Karakozov, G. B. Virabyan, S. V. Verlinski, et al., Construction of decision support system in business design based on integration of information technology, 2016 6th International Conference on Computers Communications and Control, (2016), 240-243. Available from: https://ieeexplore.ieee.org/abstract/document/7496767. |
[6] | H Wani and N Ashtankar, Big data in supply chain management, 2017 4th International Conference on Advanced Computing and Communication Systems, (2017), 1-4. Available from: https://ieeexplore.ieee.org/abstract/document/8014602. |
[7] | U. S. Dharmapriya, S. B. Kiridena and N. Shukla, A review of supply network configuration literature and decision support tools, 2016 IEEE International Conference on Industrial Engineering and Engineering Management, (2016), 149-153. Available from: https://ieeexplore.ieee.org/abstract/document/7797854. |
[8] | D. Das, L. Sahoo and S. Datta, A Survey on Recommendation System, Int. J. Comput. Appl., 160 (2017), 6-10. |
[9] | S. Zhang, L. Yao, A. Sun et al., Deep Learning based Recommender System: A Survey and New Perspectives, ACM Comput. Surv., 52 (2017), 1-35. |
[10] | A. Mugdha and L. Vina, Survey: Collaborative Recommender Systems Using Multiclass Co-Clustering, Int. J. Innovative Res. Comput. Commun. Eng., 5 (2017), 452-457. |
[11] | S. Sehgala, S. Chaudhrya, P. Biswasa, et al., A new genre of Recommender systems based on modern paradigms of data filtering, Proc. Comput. Sci., 92 (2016), 562-567. |
[12] | K. Kulkarni, K. Wagh, S. Badgujar, et al., A Study Of Recommender Systems With Hybrid Collaborative Filtering, Int. Res. J. Eng. Technol., 4 (2016), 2216-2219. |
[13] | S. Jeble, S. kumari and Y. Patil, Role of big data and predictive analytics, Int. J. Autom. Log., 2 (2016), 307-331. |
[14] | K. Anusha, C. Yashaswini and S. Manishankar, Segmentation of Retail Mobile Market Using HMS Algorithm, Int. J. Electr. Comput. Eng., 6 (2016), 1818-1827. |
[15] | D. S Jasim, Data mining approach and its application to dresses sales recommendation, Available from: https://www.researchgate.net/publication/293464737. |
[16] | M. A. Ullah, A Model for Predicting Outfit Sales: Using Data Mining Methods, in Emerging Technologies in Data Mining and Information Security, Springer, (2019), 813. |
[17] | U. Muhammad and A. Adeel, Dresses Attribute Sales Dataset. Available from: https://archive.ics.uci.edu/ml/datasets/dresses_attribute_sales. |
1. | R. Pratt, N. J. C. Stapelberg, Early warning biomarkers in major depressive disorder: a strategic approach to a testing question, 2018, 23, 1354-750X, 563, 10.1080/1354750X.2018.1463563 | |
2. | N.J.C. Stapelberg, R. Pratt, D.L. Neumann, D.H.K. Shum, S. Brandis, V. Muthukkumarasamy, B. Stantic, M. Blumenstein, J.P. Headrick, From feedback loop transitions to biomarkers in the psycho-immune-neuroendocrine network: Detecting the critical transition from health to major depression, 2018, 90, 01497634, 1, 10.1016/j.neubiorev.2018.03.005 |