Processing math: 28%
Research article Special Issues

Spreading speeds of epidemic models with nonlocal delays

  • We estimate the spreading speeds in diffusive epidemic models with nonlocal delays, nonlinear incidence rate and constant recruitment rate. The purpose is to model the process that the infective invades the habitat of the susceptible, and they coexist eventually. In order to focus on our idea, a system with a nonlinear incidence rate is firstly studied, which implies a saturation level of the infective individuals and monotone incidence rate. When the initial value of the infective has nonempty compact support, we prove the rough spreading speed that equals the minimal wave speed of traveling wave solutions in the known results. Then for a general (nonmonotone) incidence rate, we obtain the spreading speeds by constructing auxiliary systems admitting a monotone incidence rate, and prove the convergence of solutions on any compact spatial interval. Furthermore, some numerical examples are given to estimate the invasion speed and show the nontrivial effect of time delay and spatial nonlocality, which implies that the stronger spatial nonlocality leads to larger spreading speeds.

    Citation: Guo Lin, Shuxia Pan, Xiang-Ping Yan. Spreading speeds of epidemic models with nonlocal delays[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 7562-7588. doi: 10.3934/mbe.2019380

    Related Papers:

    [1] Jin Wang . Least squares solutions of matrix equation AXB=C under semi-tensor product. Electronic Research Archive, 2024, 32(5): 2976-2993. doi: 10.3934/era.2024136
    [2] Keru Wen, Jiaqi Qi, Yaqiang Wang . SDD2 tensors and B2-tensors. Electronic Research Archive, 2025, 33(4): 2433-2451. doi: 10.3934/era.2025108
    [3] Xiang Xu . Recent analytic development of the dynamic Q-tensor theory for nematic liquid crystals. Electronic Research Archive, 2022, 30(6): 2220-2246. doi: 10.3934/era.2022113
    [4] Xin Liu, Guang-Xin Huang . New error bounds for the tensor complementarity problem. Electronic Research Archive, 2022, 30(6): 2196-2204. doi: 10.3934/era.2022111
    [5] Wen Teng, Xiansheng Dai . Nonabelian embedding tensors on 3-Lie algebras and 3-Leibniz-Lie algebras. Electronic Research Archive, 2025, 33(3): 1367-1383. doi: 10.3934/era.2025063
    [6] Gongwei Liu, Mengru Wang, Pengyan Ding . Long-time dynamical behavior for a piezoelectric system with magnetic effect and nonlinear dampings. Electronic Research Archive, 2022, 30(9): 3397-3421. doi: 10.3934/era.2022173
    [7] Xiuwen Zheng, Jingjing Cui, Zhengge Huang . New preconditioned Gauss-Seidel type methods for solving multi-linear systems with M-tensors. Electronic Research Archive, 2025, 33(6): 3450-3481. doi: 10.3934/era.2025153
    [8] Lot-Kei Chou, Siu-Long Lei . High dimensional Riesz space distributed-order advection-dispersion equations with ADI scheme in compression format. Electronic Research Archive, 2022, 30(4): 1463-1476. doi: 10.3934/era.2022077
    [9] R. F. Snider . Eigenvalues and eigenvectors for a hermitian gaussian operator: Role of the Schrödinger-Robertson uncertainty relation. Electronic Research Archive, 2023, 31(9): 5541-5558. doi: 10.3934/era.2023281
    [10] Zhengmao Chen . A priori bounds and existence of smooth solutions to a Lp Aleksandrov problem for Codazzi tensor with log-convex measure. Electronic Research Archive, 2023, 31(2): 840-859. doi: 10.3934/era.2023042
  • We estimate the spreading speeds in diffusive epidemic models with nonlocal delays, nonlinear incidence rate and constant recruitment rate. The purpose is to model the process that the infective invades the habitat of the susceptible, and they coexist eventually. In order to focus on our idea, a system with a nonlinear incidence rate is firstly studied, which implies a saturation level of the infective individuals and monotone incidence rate. When the initial value of the infective has nonempty compact support, we prove the rough spreading speed that equals the minimal wave speed of traveling wave solutions in the known results. Then for a general (nonmonotone) incidence rate, we obtain the spreading speeds by constructing auxiliary systems admitting a monotone incidence rate, and prove the convergence of solutions on any compact spatial interval. Furthermore, some numerical examples are given to estimate the invasion speed and show the nontrivial effect of time delay and spatial nonlocality, which implies that the stronger spatial nonlocality leads to larger spreading speeds.


    A piezoelectric-type tensor is a third-order tensor, which plays an important role in physics [1,2,3,4,5,6] and engineering [7,8,9,10,11]. In particular, the largest C-eigenvalue of a piezoelectric tensor and its associated left and right C-eigenvectors play an important role in the piezoelectric effect and the converse piezoelectric effect in the solid crystal [12,13]. Moreover, in the process of manufacturing and developing micro/nano-electromechanical devices, the development of new multifunctional intelligent structures needs consideration piezoelectric effect [14,15]. In order to explore more information about piezoelectric-type tensors, Chen et al. [12] introduced piezoelectric-type tensors and their C-eigentriples.

    Definition 1.1. [12,Definition 2.1] Let A=(aijk)Rn×n×n be a third-order n-dimensional tensor. If the latter two indices of A are symmetric, i.e., aijk=aikj, where i,j,k[n]:={1,2,,n}, then A is called a piezoelectric-type tensor. When n=3, A is called a piezoelectric tensor.

    Definition 1.2. [12,Definition 2.2] Let A=(aijk)Rn×n×n be a piezoelectric-type tensor. If there is a real number λR, two vectors x:=(x1,x2,,xn)Rn{0} and y:=(y1,y2,,yn)Rn{0} such that

    {Ayy=λx,(1.1)xAy=λy,(1.2)xx=1,(1.3)yy=1,(1.4)

    where

    (Ayy)i:=j,k[n]aijkyjyk,(xAy)k:=i,j[n]aijkxiyj,

    then λ is called a C-eigenvalue of A, and x and y are its associated left and right C-eigenvectors, respectively. Then, (λ,x,y) is called a C-eigentriple of A and σ(A) is used to denote the spectrum of A, which is a set of all C-eigenvalues of A.

    Chen et al. provided the following results for the C-eigenvalues and C-eigenvectors of a piezoelectric-type tensor.

    Property 1.1. [12,Theorem 2.3] Let A=(aijk)Rn×n×n be a piezoelectric-type tensor.

    (a) The C-eigenvalues of A and their associated left and right C-eigenvectors always exist.

    (b) Let λ be a C-eigenvalue and (x,y) be its associated left and right C-eigenvectors. Then

    λ=xAyy:=i,j,k[n]aijkxiyjyk.

    Furthermore, (λ,x,y), (λ,x,y) and (λ,x,y) are also C-eigentriples of A.

    (c) Let λ be the largest C-eigenvalue of A. Then

    λ=max{xAyy:xx=1,yy=1}.

    As we all know, the largest C-eigenvalue of a piezoelectric-type tensor and its associated C-eigenvectors constitute the best rank-one piezoelectric-type approximation. In view of this, Liang and Yang [16,17] designed two methods to calculate the largest C-eigenvalue of a piezoelectric-type tensor. Later, Zhao and Luo [18] provided a method to calculate all C-eigentriples of a piezoelectric-type tensor by converting the C-eigenvalue problem to the Z-eigenvalue problem of tensors. Moreover, many researchers considered the C-eigenvalue localization problem and provided many C-eigenvalue localization sets [19,20,21,22,23,24]. For instance, Che et al. [25] presented the following Geršgorin-type C-eigenvalue localization set.

    Theorem 1.1. [25,Theorem 2.1] Let A=(aijk)Rn×n×n be a piezoelectric-type tensor. Then

    σ(A)Γ(A):=j[n]Γj(A),

    where

    Γj(A):={zR:|z|Rj(A)}andRj(A):=l,k[n]|alkj|.

    Definition 1.2 and Property 1.1 indicate that a C-eigenvalue λ is real and both λ and λ are C-eigenvalues, which implies that a C-eigenvalue localization set is always symmetric with respect to the origin. Therefore, the result of Theorem 1.1 is equivalent to σ(A)[ρΓ,ρΓ], where ρΓ=maxj[n]{Rj(A)}.

    The remainder of the paper is organized as follows. In Section 2, we construct a new C-eigenvalue localization set and prove that it is sharper than some existing sets. In Section 3, we provide a direct method to find all C-eigentriples when n=3. In Section 4, we reviewed the practical application of C-eigentriples of a piezoelectric-type tensor to the piezoelectric effect and converse piezoelectric effect. In Section 5, we verify the effectiveness of obtained results by numerical examples. In Section 6, we give a summary of this paper.

    In this section, we provide a new C-eigenvalue localization set and prove that it is sharper than the set in Theorem 1.1. Before that, the following lemma is needed.

    Lemma 2.1. [26,pp. 10, Cauchy-Schwarz inequality] Let x=(x1,x2,,xn)Rn and y=(y1,y2,,yn)Rn. Then

    (i[n]xiyi)2i[n]x2ii[n]y2i.

    Theorem 2.1. Let A=(aijk)Rn×n×n be a piezoelectric-type tensor. Then

    σ(A)Ω(A):=(i[n]ˆΩi(A))(i,j[n],ij(˜Ωi,j(A)Ki(A))),

    where

    ˆΩi(A):={zR:|z|¯rii(A)},˜Ωi,j(A):={zR:(|z|¯rii(A))(|z|˜rij(A))˜rii(A)¯rij(A)},Ki(A):={zR:|z|ri(A)},

    and

    ¯rij(A):=l[n]a2lij,˜rij(A):=l[n](k[n],ki|alkj|)2,ri(A):=l[n](k[n]|alki|)2,i,j[n].

    Proof. Let (λ,x,y) be a C-eigentriple of A. Let |yt||ys|maxk[n],kt,ks{|yk|}. Then 0|yt|1. From (1.2), we have

    λyt=l,k[n]alktxlyk=l[n]alttxlyt+l,k[n],ktalktxlyk.

    Taking the modulus in above equation and using the triangle inequality and Lemma 2.1, we have

    |λ||yt|l,k[n]|alkt||xl||yt|=|yt|l[n](|xl|k[n]|alkt|)|yt|l[n]|xl|2l[n](k[n]|alkt|)2=|yt|l[n](k[n]|alkt|)2,

    i.e.,

    |λ|l[n](k[n]|alkt|)2=rt(A),

    which implies that λKt(A), and

    |λ||yt|l[n]|altt||xl||yt|+l,k[n],kt|alkt||xl||yk|l[n]|altt||xl||yt|+l,k[n],kt|alkt||xl||ys|=|yt|l[n]|altt||xl|+|ys|l[n](|xl|k[n],kt|alkt|)|yt|l[n]a2lttl[n]x2l+|ys|l[n]x2ll[n](k[n],kt|alkt|)2=|yt|l[n]a2ltt+|ys|l[n](k[n],kt|alkt|)2=¯rtt(A)|yt|+˜rtt(A)|ys|,

    i.e.,

    (|λ|¯rtt(A))|yt|˜rtt(A)|ys|. (2.1)

    If |ys|=0 in (2.1), we have |λ|¯rtt(A), which implies that λˆΩt(A)Ω(A).

    If |ys|>0 in (2.1), then |λ|¯rtt(A)+˜rtt(A)rt(A), which implies that λKt(A). Now, suppose that λˆΩt(A), i.e., |λ|>¯rtt(A). The s-th equation of (1.2) is

    λys=l,k[n]alksxlyk=l[n]altsxlyt+l,k[n],ktalksxlyk,

    which implies that

    |λ||ys|l[n]|alts||xl||yt|+l,k[n],kt|alks||xl||yk|l[n]|alts||xl||yt|+l,k[n],kt|alks||xl||ys|=|yt|l[n]|alts||xl|+|ys|l[n](|xl|k[n],kt|alks|)|yt|l[n]a2ltsl[n]x2l+|ys|l[n]x2ll[n](k[n],kt|alks|)2=|yt|l[n]a2lts+|ys|l[n](k[n],kt|alks|)2=¯rts(A)|yt|+˜rts(A)|ys|,

    i.e.,

    (|λ|˜rts(A))|ys|¯rts(A)|yt|. (2.2)

    By multiplying (2.1) and (2.2) and eliminating |ys||yt|>0, we have

    (|λ|¯rtt(A))(|λ|˜rts(A))˜rtt(A)¯rts(A),

    which implies that λ(˜Ωt,s(A)Kt(A))Ω(A), and consequently, σ(A)Ω(A) by the arbitrariness of λ.

    Next, we discuss the relationship between the set Ω(A) in Theorem 2.1 and the set Γ(A) in Theorem 1.1.

    Theorem 2.2. Let A=(aijk)Rn×n×n be a piezoelectric-type tensor. Then

    Ω(A)Γ(A).

    Proof. Let zΩ(A). By Theorem 2.1, there exists i,j[n] such that zˆΩi(A) or z(˜Ωi,j(A)Ki(A)).

    Case Ⅰ. If zˆΩi(A), then

    |z|¯rii(A)Ri(A),

    which implies that zΓ(A).

    Case Ⅱ. If z(˜Ωi,j(A)Ki(A)), then z˜Ωi,j(A) and zKi(A). If z˜Ωi,j(A), then

    (|z|¯rii(A))(|z|˜rij(A))˜rii(A)¯rij(A).

    If ˜rii(A)¯rij(A)=0, then

    |z|¯rii(A)Ri(A)or|z|˜rij(A)Rj(A),

    which implies that zΓ(A).

    If ˜rii(A)¯rij(A)>0, then

    |z|¯rii(A)˜rii(A)|z|˜rij(A)¯rij(A)1.

    Therefore,

    |z|¯rii(A)˜rii(A)1or|z|˜rij(A)¯rij(A)1,

    i.e.,

    |z|¯rii(A)+˜rii(A)Ri(A)or|z|˜rij(A)+¯rij(A)Rj(A),

    and consequently zΓ(A).

    When zKi(A), we have

    |z|ri(A)Ri(A),

    then zΓ(A). Hence, Ω(A)Γ(A).

    Similarly, we can write the set Ω(A) as [ρΩ,ρΩ], where

    ρΩ:=max{maxi[n]{¯rii(A)},maxi,j[n],ijmin{12νi,j(A),ri(A)}}, (2.3)

    and

    νi,j(A):=˜rij(A)+¯rii(A)+(˜rij(A)¯rii(A))2+4˜rii(A)¯rij(A).

    Theorem 2.2 indicates that ρΩρΓ and [ρΩ,ρΩ][ρΓ,ρΓ].

    By the idea to find all M-eigenpairs of a fourth-order tensor in Theorem 7 of [27], we in this section present a direct method to find all C-eigenpair when n=3.

    Theorem 3.1. Let A=(aijk)Rn×n×n be a piezoelectric-type tensor.Then all C-eigentriples are given as follows:

    (a) If a211=a311=a112=a113=0, then (a111,(1,0,0),(±1,0,0)) and (a111,(1,0,0),(±1,0,0)) are four C-eigentriples of A.

    (b) (λ,x,y) is a C-eigentriple of A, where

    λ=a111x1+a211x2+a311x3,

    and

    x=(x1,x2,x3),y=(±1,0,0),

    x1, x2 and x3 are the real roots of the following equations:

    {a211x1a111x2=0,(3.1)a311x1a111x3=0,(3.2)a112x1+a212x2+a312x3=0,a113x1+a213x2+a313x3=0,x21+x22+x23=1.

    (c) (λ,x,y) and (λ,x,y) are two C-eigentriples of A, where

    λ=a111y21+a122y22+a133y23+2a112y1y2+2a113y1y3+2a123y2y3,

    and

    x=(1,0,0),y=(y1,y2,y3),

    y1, y2 and y3 are the real roots of the following equations:

    {a222y22+a211y21+a233y23+2a221y2y1+2a232y3y2+2a231y3y1=0,a333y23+a311y21+a322y22+2a331y3y1+2a323y2y3+2a321y2y1=0,a112y21+(a122a111)y1y2+a132y1y3a121y22a131y2y3=0,(3.3)a113y21+(a133a111)y1y3+a123y1y2a121y2y3a131y23=0,(3.4)y21+y22+y23=1.

    (d) (λ,x,y) is a C-eigentriple of A, where

    λ=a112x1t+a122x1+a222x2+a212x2t+a322x3+a312x3t,

    and

    x=(x1,x2,x3),y=±(t,1,0)t2+1,

    x1, x2 and x3 and t are the real roots of the following equations:

    {a222x1+a211x1t2+2a221x1ta111x2t2a122x22a112tx2=0,(3.5)a311t2x1+a322x1+2a321x1ta111x3t2a122x32a112x3t=0,(3.6)a112x1t2+(a122a111)x1t+(a222a211)x2t+(a322a311)x3t+a212x2t2+a312x3t2a321x3a221x2a121x1=0,(3.7)a113x1t+a123x1+a223x2+a213x2t+a313x3t+a323x3=0,x21+x22+x23=1.

    (e) (λ,x,y) and (λ,x,y) are two C-eigentriples of A, where

    λ=t2+1(a222y22+a211y22+a233y23+2a221y1y2+2a232y2y3+2a231y1y3), (3.8)

    and

    x=(t,1,0)t2+1,y=(y1,y2,y3),

    y1, y2, y3 and t are the real roots of the following equations:

    {a222y22t+a211y21t+a233y23t+2a221y2y1t+2a232y3y2t+2a231y3y1ta111y21a122y22a133y232a112y1y22a113y1y32a123y2y3=0,(3.9)a333y23+a311y21+a322y22+2a331y3y1+2a323y2y3+2a321y2y1=0,a112ty21+(a122a111)ty1y2+a132ty1y3+(a222a211)y2y1+a212y21+a232y1y3a121ty22a131y2ty3a221y22a231y2y3=0,(3.10)a113ty21+(a133a111)ty1y3+a123ty1y2+a223y1y2+a213y21+(a233a211)y1y3a121ty2y3a131ty23a221y2y3a231y23=0,(3.11)y21+y22+y23=1.

    (f) (λ,x,y) is a C-eigentriple of A, where

    λ=±(a113u1v1+a123u1v2+a133u1+a213u2v1+a223u2v2+a233u2+a313v1+a323v2+a333)/u21+u22+1, (3.12)

    and

    x=±(u1,u2,1)u21+u22+1,y=±(v1,v2,1)v21+v22+1, (3.13)

    u1, u2, v1 and v2 are the real roots of the following equations:

    {a222u1v22+a211v21u1+a233u1+2a221v1u1v2+2a232u1v2+2a231v1u1a111u2v21a122u2v22a133u22a112u2v1v22a113u2v12a123u2v2=0,(3.14)a333u1+a311u1v21+a322u1v22+2a331u1v1+2a323u1v2+2a321u1v1v2a111v21a122v22a1332a112v1v22a113v12a123v2=0,(3.15)a112u1v21+(a122a111)u1v1v2+a132v1u1+(a222a211)u2v1v2+a212u2v21+a232v1u2+a332v1+(a322a311)v1v2+a312v21a121u1v22a131u1v2a221u2v22a231v2u2a331v2a321v22=0,(3.16)a113u1v21+(a133a111)u1v1+a123v1u1v2+a223v1u2v2+a323v1v2+(a233a211)u2v1+a213u2v21+(a333a311)v1+a313v21a121u1v2a131u1a221u2v2a231u2a331a321v2=0.(3.17)

    Proof. When n=3, the specific form of (1.1)–(1.4) is

    {a111y21+a122y22+a133y23+2a112y1y2+2a113y1y3+2a123y2y3=λx1,(3.18)a222y22+a211y21+a233y23+2a221y2y1+2a232y3y2+2a231y3y1=λx2,(3.19)a333y23+a311y21+a322y22+2a331y3y1+2a323y2y3+2a321y2y1=λx3,(3.20)a111x1y1+a121x1y2+a131x1y3+a221x2y2+a211x2y1+a231x2y3+a331x3y3+a311x3y1+a321x3y2=λy1,(3.21)a112x1y1+a122x1y2+a132x1y3+a222x2y2+a212x2y1+a232x2y3+a332x3y3+a322x3y2+a312x3y1=λy2,(3.22)a113x1y1+a133x1y3+a123x1y2+a223x2y2+a233x2y3+a213x2y1+a333x3y3+a313x3y1+a323x3y2=λy3,(3.23)x21+x22+x23=1,(3.24)y21+y22+y23=1.(3.25)

    To proceed, we break the arguments into six Cases.

    (a) Assume that x=(1,0,0) and y=(±1,0,0). Then (3.18)–(3.25) becomes λ=a111 and a211=a311=a112=a113=0.

    Assume that x=(1,0,0) and y=(±1,0,0). Then (3.18)–(3.25) becomes λ=a111 and a211=a311=a112=a113=0.

    Hence, if a211=a311=a112=a113=0, then (a111,(1,0,0),(±1,0,0)) and (a111,(1,0,0),(±1,0,0)) are four C-eigentriples of A.

    (b) Assume that y=(±1,0,0). Then (3.18)–(3.25) becomes

    {a111=λx1,(3.26)a211=λx2,(3.27)a311=λx3,(3.28)a111x1+a211x2+a311x3=λ,(3.29)a112x1+a212x2+a312x3=0,(3.30)a113x1+a213x2+a313x3=0,(3.31)x21+x22+x23=1.

    By (3.26) and (3.27), we have (3.1). By (3.26) and (3.28), we have (3.2). Next, solving (3.1), (3.2), (3.30), (3.31) and (3.24), we can obtain x1, x2 and x3, which implies that x=(x1,x2,x3) and y=(±1,0,0) are a pair of C-eigenvectors. Furthermore, by (3.29), we can get a C-eigenvalue λ of A.

    (c) Assume that x=(1,0,0). Then (3.18)–(3.25) becomes

    {a111y21+a122y22+a133y23+2a112y1y2+2a113y1y3+2a123y2y3=λ,(3.32)a222y22+a211y21+a233y23+2a221y2y1+2a232y3y2+2a231y3y1=0,(3.33)a333y23+a311y21+a322y22+2a331y3y1+2a323y2y3+2a321y2y1=0,(3.34)a111y1+a121y2+a131y3=λy1,(3.35)a112y1+a122y2+a132y3=λy2,(3.36)a113y1+a133y3+a123y2=λy3,(3.37)y21+y22+y23=1.

    By (3.35) and (3.36), we have (3.3). By (3.35) and (3.37), we have (3.4). Next, solving (3.3), (3.4), (3.25), (3.33) and (3.34), we can obtain y1, y2 and y3, which implies that x=(1,0,0) and y=(y1,y2,y3) are a pair of C-eigenvectors. Furthermore, by (3.32), we can get a C-eigenvalue λ of A.

    Assume that x=(1,0,0). Similarly, we have

    λ=(a111y21+a122y22+a133y23+2a112y1y2+2a113y1y3+2a123y2y3),

    with its a pair of C-eigenvectors are x=(1,0,0) and y=(y1,y2,y3), which also satisfies (3.3), (3.4), (3.25), (3.33) and (3.34).

    (d) Assume that y=(y1,y2,0), where y20. Then (3.18)–(3.25) becomes

    {a111y21+a122y22+2a112y1y2=λx1,a222y22+a211y21+2a221y2y1=λx2,a311y21+a322y22+2a321y2y1=λx3,a111x1y1+a121x1y2+a221x2y2+a211x2y1+a311x3y1+a321x3y2=λy1,a112x1y1+a122x1y2+a222x2y2+a212x2y1+a322x3y2+a312x3y1=λy2,a113x1y1+a123x1y2+a223x2y2+a213x2y1+a313x3y1+a323x3y2=0,x21+x22+x23=1,y21+y22=1.

    Let t=y1y2. Then the above equations become

    {(a111t2+a122+2a112t)y22=λx1,(3.38)(a222+a211t2+2a221t)y22=λx2,(3.39)(a311t2+a322+2a321t)y22=λx3,(3.40)a111x1t+a121x1+a221x2+a211x2t+a311x3t+a321x3=λt,(3.41)a112x1t+a122x1+a222x2+a212x2t+a322x3+a312x3t=λ,(3.42)a113x1t+a123x1+a223x2+a213x2t+a313x3t+a323x3=0,(3.43)x21+x22+x23=1.

    By (3.38) and (3.39), we have (3.5). By (3.38) and (3.40), we have (3.6). By (3.4) and (3.42), we have (3.7). Next, solving (3.5)–(3.7), (3.24) and (3.43), we can obtain x1, x2, x3 and t, which leads to its a pair of C-eigenvectors x=(x1,x2,x3) and y=±(t,1,0)t2+1. Furthermore, by (3.42), we can get a C-eigenvalue λ of A.

    (e) Assume that x=(x1,x2,0), where x20. Then (3.18)–(3.25) becomes

    {a111y21+a122y22+a133y23+2a112y1y2+2a113y1y3+2a123y2y3=λx1,a222y22+a211y21+a233y23+2a221y2y1+2a232y3y2+2a231y3y1=λx2,a333y23+a311y21+a322y22+2a331y3y1+2a323y2y3+2a321y2y1=0,a111x1y1+a121x1y2+a131x1y3+a221x2y2+a211x2y1+a231x2y3=λy1,a112x1y1+a122x1y2+a132x1y3+a222x2y2+a212x2y1+a232x2y3=λy2,a113x1y1+a133x1y3+a123x1y2+a223x2y2+a233x2y3+a213x2y1=λy3,x21+x22=1,y21+y22+y23=1.

    Let t=x1x2. Then the above equations become

    {a111y21+a122y22+a133y23+2a112y1y2+2a113y1y3+2a123y2y3=λtx2,(3.44)a222y22+a211y21+a233y23+2a221y2y1+2a232y3y2+2a231y3y1=λx2,(3.45)a333y23+a311y21+a322y22+2a331y3y1+2a323y2y3+2a321y2y1=0,(3.46)a111tx2y1+a121tx2y2+a131tx2y3+a221x2y2+a211x2y1+a231x2y3=λy1,(3.47)a112tx2y1+a122tx2y2+a132tx2y3+a222x2y2+a212x2y1+a232x2y3=λy2,(3.48)a113tx2y1+a133tx2y3+a123tx2y2+a223x2y2+a233x2y3+a213x2y1=λy3,(3.49)y21+y22+y23=1.

    By (3.44) and (3.45), we have (3.9). By (3.47) and (3.48), we have (3.10). By (3.47) and (3.49), we have (3.11). Next, solving (3.9)–(3.11), (3.25) and (3.46), we can obtain y1, y2, y3 and t. And then, by x21+x22=1, we have x2=±1t2+1. Furthermore, by (3.45), we can get a C-eigenvalue λ of A in (3.8) and its a pair of C-eigenvectors x=±(t,1,0)t2+1 and y=(y1,y2,y3).

    (f) Assume that x=(x1,x2,x3) and y=(y1,y2,y3), where x30 and y30. Let

    u1=x1x3,u2=x2x3,v1=y1y3,v2=y2y3.

    Then (3.18)–(3.25) becomes

    {a111v21y23+a122v22y23+a133y23+2a112v1v2y23+2a113v1y23+2a123v2y23=λu1x3,(3.50)a222v22y23+a211v21y23+a233y23+2a221v1v2y23+2a232v2y23+2a231v1y23=λu2x3,(3.51)a333y23+a311v21y23+a322v22y23+2a331v1y23+2a323v2y23+2a321v1v2y23=λx3,(3.52)a111u1v1x3+a121u1v2x3+a131u1x3+a221u2v2x3+a211u2v1x3+a231u2x3+a331x3+a311v1x3+a321v2x3=λv1,(3.53)a112u1v1x3+a122u1v2x3+a132u1x3+a222u2v2x3+a212u2v1x3+a232u2x3+a332x3+a322v2x3+a312v1x3=λv2,(3.54)a113u1v1x3+a133u1x3+a123u1v2x3+a223u2v2x3+a233u2x3+a213u2v1x3+a333x3+a313v1x3+a323v2x3=λ.(3.55)

    By (3.50) and (3.51), we have (3.14). By (3.50) and (3.52), we have (3.15). By (3.53) and (3.54), we have (3.16). By (3.53) and (3.55), we have (3.17). Next, solving (3.14)–(3.17), we can obtain u_1 , u_2 , v_1 and v_2 . Furthermore, by x_1^2+x_2^2+x_3^2 = 1 and y_1^2+y_2^2+y_3^2 = 1 , we can get x and y in (3.13); by (3.55), we can get a C-eigenvalue \lambda of \mathcal{A} in (3.12).

    Remark 3.1. ⅰ) Solving the system of nonlinear equations in (b) of Theorem 3.1, we can choose any three of the first four equations to form a system of linear equations. If the determinant of the coefficient matrix of the system of linear equations is not equal to 0, then the system of linear equations has only zero solution and obviously it is not the solution of the last equation in the system of nonlinear equations, which implies that the system of nonlinear equations in (b) has no solution. If the determinant is equal to 0, then we need to verify that whether this solution satisfies the other two equations.

    ⅱ) Solving these system of nonlinear equations in (c)–(f) of Theorem 3.1, we can use the resultant method in algebraic geometry [28] to find their solutions, which has been verified and is feasible in finding all M-eigenpairs of an order 4 dimension 2 tensor in Theorem 7 of [27].

    Given two polynomials f(x) and g(x) , where

    \begin{align*} f(x)& = a_{0}x^{n}+a_{1}x^{n-1}+\cdots+a_{n}, \; \; a_{0}\neq0, \; \; n > 0.\\ g(x)& = b_{0}x^{m}+b_{1}x^{m-1}+\cdots+b_{m}, \; \; b_{0}\neq0, \; \; m > 0. \end{align*}

    Then the resultant of f(x) and g(x) is represented by {\text{Res}}_x(f, g) , that is, the determinant of (n + m)\times(n + m) is as follows:

    {\text{Res}}_x(f, g) = \det\begin{array}{c} \underbrace{\left(\begin{array}{cccc} a_0 & & & \\ a_1 &a_0 & & \\ a_2 &a_1 &\ddots& \\ \vdots&a_2 &\ddots&a_0 \\ a_m &\vdots&\ddots&a_1 \\ &a_m & &a_2 \\ & &\ddots&\vdots\\ & & &a_m \\ \end{array}\right.}_{n\; \rm{columns}} \underbrace{\left.\begin{array}{cccc} d_0 & & & \\ d_1 &d_0 & & \\ d_2 &d_1 &\ddots& \\ \vdots&d_2 &\ddots&b_0 \\ d_n &\vdots&\ddots&b_1 \\ &d_n & &b_2 \\ & &\ddots&\vdots\\ & & &b_n \\ \end{array}\right)}_{m\; \rm{columns}} \end{array},

    where the blank spaces are filled with zeros. It is showed in [28,pp. 78] that over the complex field f(x) and g(x) have a common root if and only if their resultant is zero.

    Solving the systems (3.14)–(3.17) with four variables u_1 , u_2 , v_1 and v_2 , we can obtain its solutions by successive elimination of variables as follows:

    Step 1: Mark the four equations in the systems (3.14)–(3.17) as f_{1}(u_{1}, u_{2}, v_{1}, v_{2}) , f_{2}(u_{1}, u_{2}, v_{1}, v_{2}) , f_{3}(u_{1}, u_{2}, v_{1}, v_{2}) and f_{4}(u_{1}, u_{2}, v_{1}, v_{2}) in turn, and regard f_{1} , f_{2} , f_{3} and f_{4} as functions with u_1 as a variable and u_2 , v_1 and v_2 as their coefficients. If {\text{Res}}_{u_1}(f_1, f_2) = 0 , which is a function with u_2 , v_1 and v_2 as three variables, then f_1 and f_2 have a common root. Similarly, {\text{Res}}_{u_1}(f_1, f_3) = 0 and {\text{Res}}_{u_1}(f_1, f_4) = 0 can be obtained and they are functions with u_2 , v_1 and v_2 as three variables.

    Step 2: Let

    \begin{align*} g_1(u_2, v_1, v_2): = {\text{Res}}_{u_1}(f_1, f_2) = 0, \quad g_2(u_2, v_1, v_2): = {\text{Res}}_{u_1}(f_1, f_3) = 0, \end{align*}

    and

    \begin{align*} g_3(u_2, v_1, v_2): = {\text{Res}}_{u_1}(f_1, f_4) = 0, \end{align*}

    and g_1 , g_2 and g_3 be regarded as functions with u_2 as a variable and v_1 and v_2 as their coefficients. If {\text{Res}}_{u_2}(g_1, g_2) = 0 , which is a function with v_1 and v_2 as two variables, then g_1 and g_2 have a common root. Similarly, {\text{Res}}_{u_2}(g_1, g_3) = 0 can be obtained and it is a function with v_1 and v_2 as two variables.

    Step 3: Let

    \begin{align*} h_1(v_1, v_2): = {\text{Res}}_{u_2}(g_1, g_2) = 0\quad\rm{and}\quad h_2(v_1, v_2): = {\text{Res}}_{u_2}(g_1, g_3) = 0. \end{align*}

    and h_1 and h_2 be regarded as functions with v_1 as a variable and v_2 as a coefficient. If {\text{Res}}_{v_1}(h_1, h_2) = 0 , which is a function with v_2 as a variable, then h_1 and h_2 have a common root.

    Step 4: Solving the function {\text{Res}}_{v_1}(h_1, h_2) = 0 with v_2 as a variable by Matlab command '\mathtt {solve}', its all real solutions v_2 can be obtained.

    Step 5: Substituting v_2 to h_1(v_1, v_2) = 0 and h_2(v_1, v_2) = 0 to find all their real solutions v_1 . And then, substituting v_2 and v_1 to g_1(u_2, v_1, v_2) = 0 , g_2(u_2, v_1, v_2) = 0 and g_3(u_2, v_1, v_2) = 0 to find all their real solutions u_2 . Furthermore, substituting v_2 , v_1 and u_2 to f_i(u_1, u_2, v_1, v_2) = 0 for i\in [4] to find all their real solutions u_1 . Then, all real roots u_1 , u_2 , v_1 and v_2 of (3.14)–(3.17) are obtained. Finally, by (3.12) and (3.13), we can find all C-eigentriples of \mathcal{A} in the Case (f) in Theorem 3.1.

    It is shown in [12,29] that the largest C-eigenvalue \lambda^* of a piezoelectric tensor determines the highest piezoelectric coupling constant, and its corresponding C-eigenvector y^* is the corresponding direction of the stress where this appears. In this section, let's review its physical background, which is shown in [29].

    In physics, for non-centrosymmetric materials, we can write the linear piezoelectric equation as

    \begin{eqnarray*} p_i = \sum\limits_{j, k\in[3]}a_{ijk}T_{jk}, \end{eqnarray*}

    where \mathcal{A} = (a_{ijk})\in\mathbb{R}^{3\times3\times3} is a piezoelectric tensor, T = (T_{jk})\in\mathbb{R}^{3\times3} is the stress tensor, and p = (p_i) \in \mathbb{R}^3 is the electric change density displacement.

    Now, it is worth considering, under what conditions can the maximal piezoelectricity be triggered under a unit uniaxial stress? In this case, the stress tensor T can be rewritten as T = yy^{\top} with y^{\top}y = 1 . Then, this maximal piezoelectricity problem can be formulated into an optimization model

    \left\{ {\begin{array}{*{20}{l}} {\max}&{\|p\|_2}\\ {s.t.}&{ p = \mathcal{A}yy, }\\ {}&{y^{\top}y = 1.} \end{array}} \right.

    By a dual norm, \|p\|_2 = \max\limits_{x^{\top}x = 1}x^{\top}p = \max\limits_{x^{\top}x = 1}x\mathcal{A}yy is derived and hence the above optimization model is converted to the following optimization problem

    \begin{eqnarray*} \max\; \; \; \; x\mathcal{A}yy \qquad {\text{s.t.}}\; \; x^{\top}x = 1, \; \; y^{\top}y = 1. \end{eqnarray*}

    If (x^*, y^*) is an optimal solution of the above optimization problem, then \lambda^* = x^*\mathcal{A}y^*y^* is the largest C-eigenvalue of \mathcal{A} and y^* is the unit uniaxial direction that the maximal piezoelectric effect take place along.

    Theorem 4.1. [29,Theorem 7.12] Let \lambda^* be the largest C-eigenvalue, x^* and y^* be the associated C-eigenvectors of a piezoelectric tensor \mathcal{A} .Then, \lambda^* is the maximum value of the 2-norm of the electric polarization under a unit uniaxial stress along the optimal axial direction y^* .

    Moreover, the linear equation of the inverse piezoelectric effect is

    \begin{eqnarray*} S_{jk} = \sum\limits_{i}a_{ijk}e_{i}, \end{eqnarray*}

    where S = (S_{jk})\in\mathbb{R}^{3\times3} is the strain tensor and e = (e_i) \in \mathbb{R}^3 is the electric field strength. Next, the following maximization problem is considered:

    \left\{ {\begin{array}{*{20}{l}} { \max}&{\|S\|_2: = \max\limits_{y^{\top}y = 1}y^{\top}Sy}\\ {s.t.}&{S_{jk} = \sum\limits_{i\in [3]}e_ia_{ijk}, \forall j, k\in [3], }\\ {}&{e^{\top}e = 1.} \end{array}} \right.

    By \|S\|_2 = \max\limits_{y^{\top}y = 1}y^{\top}Sy = \max\limits_{y^{\top}y = 1}e\mathcal{A}yy , the above maximization problem is rewritten as

    \begin{eqnarray*} \max\{e\mathcal{A}yy:\quad e^{\top}e = 1, \quad y^{\top}y = 1\}. \end{eqnarray*}

    If (e^*, y^*) is an optimal solution of the above optimization problem, then \lambda^* = e^*\mathcal{A}y^*y^* is the largest C-eigenvalue of \mathcal{A} , e^* and y^* are its associated C-eigenvectors.

    Theorem 4.2. [29,Theorem 7.13] Let \lambda^* be the largest C-eigenvalue and x^* and y^* be its associated C-eigenvectors of a piezoelectric tensor \mathcal{A} .Then, \lambda^* is the largest spectral norm of a strain tensor generated by the converse piezoelectric effect under unit electric field strength \|x^*\| = 1 .

    In this section, numerical examples are given to verify the obtained theoretical results.

    Example 1. Consider the eight piezoelectric tensors in [12,Examples 1-8].

    (a) The first piezoelectric tensor is \mathcal{A}_{\rm VFeSb} with its nonzero entries

    \begin{eqnarray*} a_{123} = a_{213} = a_{312} = -3.68180667. \end{eqnarray*}

    (b) The second piezoelectric tensor \mathcal{A}_{\rm SiO_2} with its nonzero entries

    \begin{eqnarray*} a_{111} = -a_{122} = -a_{212} = -0.13685, \quad a_{123} = -a_{213} = -0.009715. \end{eqnarray*}

    (c) The third piezoelectric tensor \mathcal{A}_{\rm Cr_2AgBiO_8} with its nonzero entries

    \begin{align*} a_{123}& = a_{213} = -0.22163, \quad a_{113} = -a_{223} = 2.608665, \\ a_{311}& = -a_{322} = 0.152485, \quad a_{312} = -0.37153. \end{align*}

    (d) The fourth piezoelectric tensor \mathcal{A}_{\rm RbTaO_3} with its nonzero entries

    \begin{align*} a_{113}& = a_{223} = -8.40955, \quad a_{311} = a_{322} = -4.3031, \\ a_{222}& = -a_{212} = -a_{211} = -5.412525, \quad a_{333} = -5.14766. \end{align*}

    (e) The fifth piezoelectric tensor \mathcal{A}_{\rm NaBiS_2} with its nonzero entries

    \begin{align*} a_{113}& = -8.90808, \quad a_{223} = -0.00842, \quad a_{311} = -7.11526, \\ a_{322}& = -0.6222, \quad a_{333} = -7.93831. \end{align*}

    (f) The sixth piezoelectric tensor \mathcal{A}_{\rm LiBiB_2O_5} with its nonzero entries

    \begin{align*} a_{112}& = 0.34929, \quad a_{211} = 0.16101, \quad a_{222} = 0.12562, \quad a_{312} = 2.57812, \\ a_{123}& = 2.35682, \quad a_{213} = -0.05587, \quad a_{233} = 0.1361, \quad a_{323} = 6.91074. \end{align*}

    (g) The seventh piezoelectric tensor \mathcal{A}_{\rm KBi_2F_7} with its nonzero entries

    \begin{align*} a_{111}& = 12.64393, \quad a_{211} = 2.59187, \quad a_{311} = 1.51254, \quad a_{123} = 1.59052, \\ a_{122}& = 1.08802, \quad a_{212} = 0.10570, \quad a_{312} = 0.08381, \quad a_{233} = 0.81041, \\ a_{113}& = 1.96801, \quad a_{213} = 0.71432, \quad a_{313} = 0.39030, \quad a_{333} = -0.23019, \\ a_{112}& = 0.22465, \quad a_{222} = 0.08263, \quad a_{322} = 0.68235, \quad a_{323} = 0.19013, \\ a_{133}& = 4.14350, \quad a_{223} = 0.51165. \end{align*}

    (h) The eigth piezoelectric tensor \mathcal{A}_{\rm BaNiO_3} with its nonzero entries

    \begin{align*} a_{113} = 0.038385, \; a_{223} = 0.038385, \; a_{311} = a_{322} = 6.89822, \; a_{333} = 27.4628. \end{align*}

    Ⅰ. Localization for all C-eigenvalues of the above eight piezoelectric tensors.

    Now, we use these C-eigenvalues intervals in Theorems 2.1 and 1.1, Theorems 1 and 2 of [20], Theorem 2.1 of [13], Theorems 2.2 and 2.4 of [25], Theorem 2.1 of [24], Theorem 2.1 of [23], Theorem 5 of [19], Theorem 7 of [21], Theorems 2.3–2.5 of [18] and Theorem 2.1 of [22] to locate all Ceigenvalues of the above eight piezoelectric tensors. Numerical results are shown in Table 1. Since these intervals are symmetric about the origin, only their right boundaries are listed in Table 1.

    Table 1.  Comparison among \varrho , \varrho_{\min} , \widetilde{\varrho}_{\min} , \rho_{\Gamma} , \rho_{\mathcal{L}} , \rho_{\mathcal{M}} , \rho_{\Upsilon} , \rho_{\gamma} , \rho_{\Omega^{S}} , \rho_{C} , \rho_{G} , \rho_{B} , \rho_{\min} , \rho_{\Psi} , \rho_{\Omega} and \lambda^{*} .
    \mathcal{A}_{\rm VFeSb} \mathcal{A}_{\rm SiO_2} \mathcal{A}_{\rm Cr_2AgBiO_8} \mathcal{A}_{\rm RbTaO_3} \mathcal{A}_{\rm NaBiS_2} \mathcal{A}_{\rm LiBiB_2O_5} \mathcal{A}_{\rm KBi_2F_7} \mathcal{A}_{\rm BaNiO_3}
    \varrho 7.3636 0.2882 5.6606 30.0911 17.3288 15.2911 22.6896 33.7085
    \varrho_{\min} 7.3636 0.2834 5.6606 23.5377 16.8548 12.3206 20.2351 27.5396
    \widetilde{\varrho}_{\min} 7.3636 0.2393 4.6717 22.7163 14.5723 12.1694 18.7025 27.5396
    \rho_{\Gamma} 7.3636 0.2834 5.6606 23.5377 16.8548 12.3206 20.2351 27.5396
    \rho_{\mathcal{L}} 7.3636 0.2744 4.8058 23.5377 16.5640 11.0127 18.8793 27.5109
    \rho_{\mathcal{M}} 7.3636 0.2834 4.7861 23.5377 16.8464 11.0038 19.8830 27.5013
    \rho_{\Upsilon} 7.3636 0.2834 4.7335 23.5377 16.8464 10.9998 19.8319 27.5013
    \rho_{\gamma} 7.3636 0.2744 4.7860 23.0353 16.4488 10.2581 18.4090 27.5013
    \rho_{\Omega^{S}} 7.3636 0.2744 4.2732 23.0353 16.4486 10.2581 17.7874 27.4629
    \rho_C 6.3771 0.1943 3.7242 16.0259 11.9319 7.7540 13.5113 27.4629
    \rho_G 6.3771 0.2506 4.0455 21.5313 13.9063 9.8718 14.2574 29.1441
    \rho_B 5.2069 0.2345 4.0026 19.4558 13.4158 10.0289 15.3869 27.5396
    \rho_{\min} 6.5906 0.1942 3.5097 18.0991 11.9324 8.1373 14.3299 27.4725
    \rho_{\Psi} 6.5906 0.1942 4.2909 18.9140 11.9319 8.1501 14.0690 27.4629
    \rho_{\Omega} 5.2069 0.2005 3.5097 19.2688 11.9319 8.6469 13.6514 27.4629
    \lambda^{*} 4.2514 0.1375 2.6258 12.4234 11.6674 7.7376 13.5021 27.4628

     | Show Table
    DownLoad: CSV

    In Table 1, \lambda^{*} is the largest C-eigenvalue of a piezoelectric tensor; \varrho and \varrho_{\min} are respectively the right boundaries of the interval [-\varrho, \varrho] and [-\varrho_{\min}, \varrho_{\min}] obtained by Theorems 1 and 2 in [20]; \widetilde{\varrho}_{\min} are respectively the right boundary of the interval [-\widetilde{\varrho}_{\min}, \widetilde{\varrho}_{\min}] obtained by Theorem 2.1 of [13]; \rho_{\mathcal{L}} and \rho_{\mathcal{M}} are respectively the right boundaries of the intervals [-\rho_{\mathcal{L}}, \rho_{\mathcal{L}}] and [-\rho_{\mathcal{M}}, \rho_{\mathcal{M}}] obtained by 2.2 and 2.4 in [25]; \rho_{\Upsilon} is the right boundary of the interval [-\rho_{\Upsilon}, \rho_{\Upsilon}] obtained by Theorem 2.1 of [24]; \rho_{\gamma} is the right boundary of the interval [-\rho_{\gamma}, \rho_{\gamma}] obtained by Theorem 2.1 of [23]; \rho_{\Omega^{S}} is the right boundary of the interval [-\rho_{\Omega^{S}}, \rho_{\Omega^{S}}] obtained by Theorem 5 of [19]; \rho_{C} is the right boundary of the interval [-\rho_{C}, \rho_{C}] obtained by Theorem 7 of [21]; \rho_{G} , \rho_{B} and \rho_{\min} are respectively the right boundaries of the intervals [-\rho_{G}, \rho_{G}] , [-\rho_{B}, \rho_{B}] and [-\rho_{\min}, \rho_{\min}] obtained by Theorems 2.3–2.5 in [18]; \rho_{\Psi} is the right boundary of the interval [-\rho_{\Psi}, \rho_{\Psi}] obtained by Theorem 2.1 of [22]; \rho_{\Gamma} is the right boundary of the interval [-\rho_{\Gamma}, \rho_{\Gamma}] obtained by Theorem 1.1; \rho_{\Omega} is the right boundary of the interval [-\rho_{\Omega}, \rho_{\Omega}] obtained by Theorem 2.1.

    From Table 1, it can be seen that:

    ⅰ) \rho_{\Omega} is smaller than \varrho , \varrho_{\min} , \widetilde{\varrho}_{\min} , \rho_{\Gamma} , \rho_{\mathcal{L}} , \rho_{\mathcal{M}} , \rho_{\Upsilon} , \rho_{\gamma} for the eight piezoelectric tensors.

    ⅱ) \rho_{\Omega}\leq \rho_{\Omega^S} , \rho_{\Omega}\leq \rho_B for the eight piezoelectric tensors.

    ⅲ) For some tensors, \rho_{\Omega} is smaller than \rho_C , \rho_G , \rho_{\min} and \rho_{\Psi} .For the other tensors, \rho_{\Omega} is bigger than or equal to \rho_{C} , \rho_{G} , \rho_{\min} and \rho_{\Psi} .For examples, for \mathcal{A}_{\rm VFeSb} , \rho_{\Omega} < \rho_C , \rho_\Omega < \rho_G , \rho_\Omega < \rho_{\min} and \rho_\Omega < \rho_{\Psi} ; For \mathcal{A}_{\rm SiO_2} , \rho_{\Omega} > \rho_C , \rho_\Omega > \rho_{\min} and \rho_\Omega > \rho_{\Psi} ; For \mathcal{A}_{\rm BaNiO_3} , \rho_{\Omega} > \rho_G .

    Ⅱ. Calculation for all C-eigentriples of the seventh piezoelectric tensor \mathcal{A}_{\rm KBi_2F_7} by Theorem 3.1.

    All C-eigentriples of \mathcal{A}_{\rm KBi_2F_7} are obtained by Theorem 3.1 and are showen in Table 2. And the calculation process is shown in Appendix.

    Table 2.  All C-eigentriples of \mathcal{A}_{\rm KBi_2F_7} .
    \lambda x_{1} x_{2} x_{3} y_{1} y_{2} y_{3}
    13.50214 0.97050 0.20974 0.11890 0.97226 0.05065 0.22836
    13.50214 0.97050 0.20974 0.11890 -0.97226 -0.05065 -0.22836
    4.46957 0.98196 0.18905 -0.00362 0.22771 -0.41491 -0.88091
    4.46957 0.98196 0.18905 -0.00362 -0.22771 0.41491 0.88091
    0.54486 0.75981 -0.36879 0.53544 0.06168 0.87047 -0.48833
    0.54486 0.75981 -0.36879 0.53544 -0.06168 -0.87047 0.48833
    -0.54486 -0.75981 0.36879 -0.53544 0.06168 0.87047 -0.48833
    -0.54486 -0.75981 0.36879 -0.53544 -0.06168 -0.87047 0.48833
    -4.46957 -0.98196 -0.18905 0.00362 0.22771 -0.41491 -0.88091
    -4.46957 -0.98196 -0.18905 0.00362 -0.22771 0.41491 0.88091
    -13.50214 -0.97050 -0.20974 -0.11890 0.97226 0.05065 0.22836
    -13.50214 -0.97050 -0.20974 -0.11890 -0.97226 -0.05065 -0.22836

     | Show Table
    DownLoad: CSV

    Let \mathcal{A}\in \mathbb{R}^{n\times n\times n} be a piezoelectric-type tensor. In this paper, we in Theorem 2.1 constructed a C-eigenvalue interval \Omega(\mathcal{A}) to locate all C-eigenvalues of \mathcal{A} and proved that it is tighter than that in [25,Theorem 2.1]. Subsequently, we in Theorem 3.1 provided a direct method to find all C-eigentriples of \mathcal{A} when n = 3 . Although the method in Theorem 3.1 is divided into six Cases, it is indeed a little complicated, but it can be seen from Example 1 that this method is feasible.

    The authors are very grateful to the five anonymous referees for their insightful comments and constructive suggestions, which considerably improve our manuscript. Caili Sang's work is supported by Science and Technology Plan Project of Guizhou Province (Grant No. QKHJC-ZK[2021]YB013). Jianxing Zhao's work is supported by Science and Technology Plan Project of Guizhou Province (Grant No. QKHJC-ZK[2022]YB215).

    The author declares there is no confict of interest.

    The following is the calculation process for all C-eigentriples of \mathcal{A}_{\rm KBi_2F_7} by Theorem 3.1.

    (a) Because a_{211}\neq 0 , Case (a) in Theorem 3.1 does not holds.

    (b) The system in Case (b) of Theorem 3.1 is

    \left\{ {\begin{array}{*{20}{l}} { 2.59187x_{1}-12.64393x_{2} = 0, }&{}&{}&{\left( {{\rm{A}}{\rm{.1}}} \right)}\\ {1.51254x_{1}-12.64393x_{3} = 0, }&{}&{}&{\left( {{\rm{A}}{\rm{.2}}} \right)}\\ {1.08802x_{1}+0.10570x_{2}+0.08381x_{3} = 0, }&{}&{}&{\left( {{\rm{A}}{\rm{.3}}} \right)}\\ { 1.96801x_{1}+0.71432x_{2}+0.39030x_{3} = 0, }&{}&{}&{}\\ {x_1^2+x_2^2+x_3^2 = 1.}&{}&{}&{} \end{array}} \right.

    The three Eqs (A.1)–(A.3) yield a linear system of equation Ax = 0 , where x = (x_{1}, x_{2}, x_{3})^{\top} and

    \begin{equation*} A = \left( \begin{array}{ccc} 2.59187&-12.64393&0\\ 1.51254&0&-12.64393\\ 1.08802&0.10570&0.08381 \end{array} \right). \end{equation*}

    From \det(A) = 179.0074\neq 0 , the solution of Ax = 0 is x = (x_1, x_2, x_3)^\top = (0, 0, 0)^\top , which contradicts with x_1^2+x_2^2+x_3^2 = 1 . Hence, the system in Case (b) of Theorem 3.1 has no solution.

    (c) The system in Case (c) of Theorem 3.1 is

    \left\{ \begin{array}{l} f_1(y_1, y_2, y_3) = 0.08263y_2^2+2.59187y_1^{2}+0.81041y_3^{2}+0.2114y_1y_2\\ +1.0233y_2y_3+1.42864y_1y_3 = 0, \\ f_2(y_1, y_2, y_3) = -0.23019y_3^{2}+1.51254y_1^{2}+0.68235y_2^{2}+0.7806y_1y_3\\ + 0.38026y_2y_3+0.16762y_1y_2 = 0, \\ f_3(y_1, y_2, y_3) = 0.22465y_1^2-0.22465y_2^{2}-11.55591y_1y_2+1.59052y_1y_3\\ -1.96801y_2y_3 = 0, \\ f_4(y_1, y_2, y_3) = 1.96801y_1^{2}-1.96801y_3^{2}-8.50043y_1y_3+a_{123}y_1y_2\\ -0.22465y_2y_3 = 0, \\ f_5(y_1, y_2, y_3) = y_1^2+y_2^2+y_3^2 = 1. \end{array} \right.

    We now regard f_i(y_1, y_2, y_3) , i\in [5] as a function with y_1 as a variable and y_2 and y_3 as two coefficients and obtain their resultants as follows:

    \begin{align*} {\text{Res}}_{y_1}(f_1, f_2) = &2.68640y_2^4-1.92404y_3y_2^3-5.51122y_2^2y_3^2+2.09880y_3^3y_2+3.18879y_3^4, \\ {\text{Res}}_{y_1}(f_1, f_3) = &27.58122y_2^4+331.64703y_3y_2^3+134.75405y_3^2y_2^2-55.45236y_3^3y_2 +4.93315y_3^4. \end{align*}

    Let g_1(y_2, y_3): = {\text{Res}}_{y_1}(f_1, f_2) , g_2(y_2, y_3): = {\text{Res}}_{y_1}(f_1, f_3) , and its resultant

    \begin{align*} {\text{Res}}_{y_2}(g_1, g_2) = 95376348203.97653y_3^{16} = 0. \end{align*}

    Then y_3 = 0 . Substituting y_3 = 0 into g_1 and g_2 , we have

    \begin{align*} g_1(y_2, y_3) = 2.68640y_2^4, \quad g_2(y_2, y_3) = 27.58122y_2^4. \end{align*}

    Let g_1(y_2, y_3) = 0 and g_2(y_2, y_3) = 0 . We have y_2 = 0 . Substituting y_2 = 0 and y_3 = 0 into f_1 , we have f_1(y_1, y_2, y_3) = 2.59187y_1^2 . Solving f_1(y_1, y_2, y_3) = 0 , we have y_1 = 0 . However, y_1 = y_2 = y_3 = 0 is not solution of y_1^2+y_2^2+y_3^2 = 1 . Hence, the system in Case (c) of Theorem 3.1 has no solution.

    (d) Similar to solution for Case (c), the system in Case (d) of Theorem 3.1 has no solution.

    (e) Similar to solution for Case (c), the system in Case (e) of Theorem 3.1 has no solution.

    (f) The system in Case (f) of Theorem 3.1 is

    \left\{ \begin{array}{l} f_1(u_{1}, u_{2}, v_{1}, v_{2}): = 0.08263u_{1}v_{2}^{2}+2.59187v_{1}^{2}u_{1}+0.81041u_{1}+ 0.21140v_{1}u_{1}v_{2}\\ +1.02330u_{1}v_{2}+1.42864v_{1}u_{1}-12.64393u_{2}v_{1}^{2}-1.08802u_{2}v_{2}^{2}\\ -4.14350u_{2}-0.44930u_{2}v_{1}v_{2}-3.93602u_{2}v_{1}-3.18104u_{2}v_{2} = 0, \\ f_2(u_{1}, u_{2}, v_{1}, v_{2}): = -0.23019u_{1}+1.51254u_{1}v_{1}^{2}+0.68235u_{1}v_{2}^{2}+0.78060u_{1}v_{1}\\ +0.38026u_{1}v_{2}+0.16762u_{1}v_{1}v_{2}-12.64393v_{1}^{2}-1.08802v_{2}^{2}\\ -0.44930v_{1}v_{2}-3.93602v_{1}-3.18104v_{2}-4.14350 = 0, \\ f_3(u_{1}, u_{2}, v_{1}, v_{2}): = 0.22465u_{1}v_{1}^{2}-11.55591u_{1}v_{1}v_{2}+1.59052v_{1}u_{1}\\ -2.50924u_{2}v_{1}v_{2}+0.10570u_{2}v_{1}^{2}+0.51165v_{1}u_{2}+0.19013v_{1}\\ -0.83019v_{1}v_{2}+0.08381v_{1}^{2}-0.22465u_{1}v_{2}^{2}-1.96801u_{1}v_{2}\\ -0.10570u_{2}v_{2}^{2}-0.71432v_{2}u_{2}-0.39030v_{2}-0.08381v_{2}^{2} = 0, \\ f_4(u_{1}, u_{2}, v_{1}, v_{2}): = 1.96801u_{1}v_{1}^{2}-8.50043u_{1}v_{1}+1.59052v_{1}u_{1}v_{2}+0.51165v_{1}u_{2}v_{2}\\ +0.19013v_{1}v_{2}-1.78146u_{2}v_{1}+0.71432u_{2}v_{1}^{2}-1.742730v_{1}\\ +0.39030v_{1}^{2}-0.22465u_{1}v_{2}-1.96801u_{1}-0.10570u_{2}v_{2}\\ -0.71432u_{2}-0.08381v_{2}-0.39030 = 0. \end{array} \right.

    We now regard f_i(u_1, u_2, v_1, v_2) , i\in [4] as a function with u_1 as a variable and u_2 , v_1 and v_2 as three coefficients and obtain their resultants as follows:

    \begin{align*} {\text{Res}}_{u_1}(f_1, f_2) = &(0.84336v_{2}-0.95379+2.32838v_{1}+3.78649v_{2}^2+2.58431v_{2}^3\nonumber\\ &+0.74241v_{2}^4+6.42916v_{1}^2+15.82324v_{1}^3+19.12445v_{1}^4+10.62991v_{2}v_{1}^2\nonumber\\ &+4.23911v_{2}^2v_{1}+2.79896v_{2}v_{1}^3+ 0.48895v_{2}^3v_{1}+10.34857v_{2}^2v_{1}^2\nonumber\\ &+4.57094v_{2}v_{1})u_{2}-9.10936v_{1}-3.95976v_{2}^2v_{1}^2-6.81799v_{2}\nonumber\\ &-9.81234v_{2}v_{1}-22.65734v_{2}v_{1}^2-3.01186v_{2}^2v_{1}-3.83745v_{2}v_{1}^3\nonumber\\ &-0.26713v_{2}^3v_{1}-4.47928v_{2}^2-1.37622v_{2}^3-0.08990v_{2}^4-26.60934v_{1}^2\nonumber\\ &-28.26528v_{1}^3-32.771423v_{1}^4-3.35793 = 0, \end{align*}
    \begin{align*} {\text{Res}}_{u_1}(f_1, f_3) = &(-8.73334v_{2}+7.00497v_{1}-8.00778v_{2}^2-3.02304v_{2}^3-0.25316v_{2}^4\nonumber\\ &+8.00778v_{1}^2+22.47179v_{1}^3+3.11442v_{1}^4-74.15833v_{2}v_{1}^2-39.62519v_{2}^2v_{1}\nonumber\\ &-152.49246v_{2}v_{1}^3-12.90368v_{2}^3v_{1}-8.58379v_{2}^2v_{1}^2-53.09898v_{2}v_{1})u_{2}\nonumber\\ &+0.15408v_{1}-0.31630v_{2}-0.38580v_{2}^2v_{1}^2-1.03583v_{2}v_{1}-2.07169v_{2}v_{1}^2\nonumber\\ &-1.03607v_{2}^2v_{1}-2.13403v_{2}v_{1}^3- 0.08632v_{2}^3v_{1}-0.46731v_{2}^2-0.11801v_{2}^3\nonumber\\ &-0.00693v_{2}^4+0.33955v_{1}^2+0.61253v_{1}^3+0.21722v_{1}^4 = 0, \end{align*}

    and

    \begin{align*} {\text{Res}}_{u_1}(f_1, f_4) = &(-8.73334-8.00778v_{2}-45.43188v_{1}-3.02304v_{2}^2-0.25316v_{2}^3\nonumber\\ &-54.00439v_{1}^2-103.32952v_{1}^3+26.73481v_{1}^4+6.67230v_{2}v_{1}^2\nonumber\\ &-3.93604v_{2}^2v_{1}+22.47179v_{2}v_{1}^3+1.77280v_{2}^3v_{1}+ 3.02304v_{2}^2v_{1}^2\nonumber\\ &-23.92868v_{2}v_{1})u_{2}+0.07244v_{2}^2v_{1}^2-1.96992v_{1}-0.46731v_{2}\nonumber\\ &-1.83150v_{2}v_{1}+0.08538v_{2}v_{1}^2+0.03284v_{2}^2v_{1}+0.57530v_{2}v_{1}^3\nonumber\\ &+0.01571v_{2}^3v_{1}-0.11801v_{2}^2-0.00693v_{2}^3-3.18504v_{1}^2-3.95933v_{1}^3\\ &+1.01161v_{1}^4-0.31630 = 0. \end{align*}

    Let

    \begin{align*} &g_1(u_2, v_1, v_2): = {\text{Res}}_{u_1}(f_1, f_2), \quad g_2(u_2, v_1, v_2): = {\text{Res}}_{u_1}(f_1, f_3), \\ &g_3(u_2, v_1, v_2): = {\text{Res}}_{u_1}(f_1, f_4). \end{align*}

    Then their resultants are

    \begin{align*} {\text{Res}}_{u_{2}}(g_1, g_2) = &106.21826v_{1}^8+(-5025.64756v_{2}+839.61383)v_{1}^7+(-865.25666v_{2}^2\nonumber\\ &-6653.08038v_{2}+998.05266)v_{1}^6+(-1083.52137v_{2}^3-5229.62871v_{2}^2\nonumber\\ &-7381.37411v_{2}+1094.99786)v_{1}^5+(-137.50780v^4-1593.23550v_{2}^3\nonumber\\ &-4933.36887v_{2}^2-4733.12663v_{2}+632.08073)v_{1}^4+(-70.75506v_{2}^5\nonumber\\ &-741.31965v_{2}^4-2567.50800v_{2}^3-4243.14169v_{2}^2-2467.61827v_{2}\nonumber\\ &+335.99902)v_{1}^3+(-5.62145v_{2}^6-90.33840v_{2}^5-524.86290v_{2}^4\nonumber\\ &-1366.09759v_{2}^3-1783.36316v_{2}^2-843.25156v_{2}+90.73526)v_{1}^2\nonumber\\ &+(-1.29518v_{2}^7-23.97008v_{2}^6-135.36791v_{2}^5-405.58564v_{2}^4\nonumber\\ &-682.18237v_{2}^3-624.18604v_{2}^2-209.71678v_{2}+23.37525)v_{1}\nonumber\\ &+(-0.02790v_{2}^8-0.72569v_{2}^7-6.69240v_{2}^6-28.96790v_{2}^5\nonumber\\ &-72.02906v_{2}^4-105.34644v_{2}^3-86.25447v_{2}^2-29.02430v_{2}) = 0 \end{align*}

    and

    \begin{align*} {\text{Res}}_{u_2}(g_1, g_3) = &895.48403v_{1}^8+(852.85983v_{2}-2690.30193)v_{1}^7+(304.63154v_{2}^2\nonumber\\ &+1073.45667v_{2}-4096.10056)v_{1}^6+(172.77376v_{2}^3+134.01848v_{2}^2\nonumber\\ &-2360.05799v_{2}-5632.48044)v_{1}^5+(29.00602v_{2}^4+203.47367v_{2}^3\nonumber\\ &-304.10992v_{2}^2-2878.73753v_{2}-3926.74222)v_{1}^4+(10.47279v_{2}^5\nonumber\\ &+55.51707v_{2}^4-189.59056v_{2}^3-1392.51379v_{2}^2-3083.36023v_{2}\nonumber\\ &-2315.99105)v_{1}^3+(0.80682v_{2}^6+8.30736v_{2}^5-4.53864v_{2}^4\nonumber\\ &-259.96426v_{2}^3-927.90427v_{2}^2-1442.92349v_{2}-831.16935)v_{1}^2\nonumber\\ &+(0.17104v_{2}^7+2.07986v_{2}^6-2.49973v_{2}^5-63.10600v_{2}^4\nonumber\\ &-263.71529v_{2}^3-525.06788v_{2}^2-551.19369v_{2}-230.96997)v_{1}\nonumber\\ &+(-0.02790v_{2}^7-0.72569v_{2}^6-6.69240v_{2}^5-28.96790v_{2}^4\nonumber\\ &-72.02906v_{2}^3-105.34644v_{2}^2-86.25447v_{2}-29.02430) = 0. \end{align*}

    Let

    \begin{align*} h_1(v_1, v_2): = {\text{Res}}_{u_2}(g_1, g_2)\quad\rm{and}\quad h_2(v_1, v_2): = {\text{Res}}_{u_2}(g_1, g_3). \end{align*}

    Their results are

    \begin{align*} {\text{Res}}_{v_1}(h_1, h_2) = &-1.62711\times10^{-46}v_{2}^{64}-1.18415\times10^{-44}v_{2}^{63}-4.48673\times10^{-43}v_{2}^{62}\nonumber\\ &-1.18681\times10^{-41}v_{2}^{61}- 2.43052\times10^{-40}v_{2}^{60}-4.06317\times10^{-39}v_{2}^{59}\nonumber\\ &-5.7302\times10^{-38}v_{2}^{58}-6.93518\times10^{-37}v_{2}^{57}-7.24748\times10^{-36}v_{2}^{56}\nonumber\\ &- 6.49253\times10^{-35}v_{2}^{55}-4.87257\times10^{-34}v_{2}^{54}-2.98951\times10^{-33}v_{2}^{53}\nonumber\\ &-1.49477\times10^{-32}v_{2}^{52}-6.3372\times10^{-32}v_{2}^{51}- 2.51516\times10^{-31}v_{2}^{50}\nonumber\\ &-1.06401\times10^{-30}v_{2}^{49}-5.02246\times10^{-30}v_{2}^{48}- 2.43069\times10^{-29}v_{2}^{47}\nonumber\\ &-1.09655\times10^{-28}v_{2}^{46}- 4.44371\times10^{-28}v_{2}^{45}-1.60392\times10^{-27}v_{2}^{44}\nonumber\\ &-5.08938\times10^{-27}v_{2}^{43}- 1.39566\times10^{-26}v_{2}^{42}-3.2426\times10^{-26}v_{2}^{41}\nonumber\\ &- 6.05752\times10^{-26}v_{2}^{40}-7.48945\times10^{-26}v_{2}^{39}+1.29902\times10^{-26}v_{2}^{38}\nonumber\\ &+ 4.01056\times10^{-25}v_{2}^{37}+1.382\times10^{-24}v_{2}^{36}+3.13265\times10^{-24}v_{2}^{35}\nonumber\\ &+ 5.06222\times10^{-24}v_{2}^{34}+4.80914\times10^{-24}v_{2}^{33}-1.80398\times10^{-24}v_{2}^{32}\nonumber\\ &-1.82876\times10^{-23}v_{2}^{31}-4.38298\times10^{-23}v_{2}^{30}-7.14302\times10^{-23}v_{2}^{29}\nonumber\\ &- 8.82265\times10^{-23}v_{2}^{28}-7.81232\times10^{-23}v_{2}^{27}-3.29361\times10^{-23}v_{2}^{26}\nonumber\\ &+1.21659\times10^{-23}v_{2}^{25}-5.53171\times10^{-23}v_{2}^{24}-2.91829\times10^{-22}v_{2}^{23}\nonumber\\ &-3.73689\times10^{-22}v_{2}^{22}+1.93914\times10^{-22}v_{2}^{21}+1.01905\times10^{-21}v_{2}^{20}\nonumber\\ &+8.28494\times10^{-22}v_{2}^{19}-4.6185\times10^{-22}v_{2}^{18}-1.27125\times10^{-21}v_{2}^{17}\nonumber\\ &-9.35242\times10^{-22}v_{2}^{16}-3.19849\times10^{-22}v_{2}^{15}+7.28108\times10^{-24}v_{2}^{14}\nonumber\\ &+6.11682\times10^{-23}v_{2}^{13}+6.78336\times10^{-24}v_{2}^{12}+1.47291\times10^{-24}v_{2}^{11}\nonumber\\ &+8.0039\times10^{-24}v_{2}^{10}-2.71136\times10^{-24}v_{2}^{9}-1.27876\times10^{-24}v_{2}^{8}\nonumber\\ &+1.35623\times10^{-24}v_{2}^{7}+3.48519\times10^{-25}v_{2}^{6}+2.48651\times10^{-26}v_{2}^{5}\nonumber\\ &-2.61144\times10^{-26}v_{2}^{4}-1.87784\times10^{-27}v_{2}^{3}-6.6019\times10^{-29}v_{2}^{2}\nonumber\\ &+2.43536\times10^{-29}v_{2}- 6.98911\times10^{-31}. \label{v2} \end{align*}

    Next, we obtain the solution of the system (f) by the following steps:

    Step 1. Solving {\text{Res}}_{v_1}(h_1, h_2) = 0 , we have

    \begin{align*} v_{2} = &-0.85035, \quad 0.22179, \quad -7.79725, \quad -1.78254, \quad -11.53378, \\ &-0.75907, \quad -0.70532, \quad 0.47100. \end{align*}

    Step 2. Substituting v_2 = -0.85035 into h_1(v_1, v_2) , and letting h_1(v_1, v_2) = 0 , it all real roots are v_1 = -0.43450 or v_1 = 4.25751 . Substituting v_2 = -0.85035 into h_2(v_1, v_2) , and letting h_2(v_1, v_2) = 0 , it all real roots are v_1 = -0.48184 , -0.17296 , 0.0000000000038876, or 5.04918. It is easy to see that h_1(v_1, v_2) = 0 and h_2(v_1, v_2) = 0 have no common solution, which implies that v_2 = -0.85035 is not a solution of the system (f).

    Step 3. Substituting v_2 = 0.22179 into h_1(v_1, v_2) , and letting h_1(v_1, v_2) = 0 , it all real roots are v_1 = -0.43450 or 4.25751. substituting v_2 = 0.22179 into h_2(v_1, v_2) , and letting h_2(v_1, v_2) = 0 , it all real roots are v_1 = -0.24034 or 4.25751. It is easy to see that v_1 = 4.25751 is a common solution of h_1(v_1, v_2) = 0 and h_2(v_1, v_2) = 0 .

    Step 4. Substituting v_2 = 0.22179 and v_1 = 4.25751 into g_1(u_2, v_1, v_2) , g_2(u_2, v_1, v_2) and g_3(u_2, v_1, v_2) , and letting g_1(u_2, v_1, v_2) = 0 , its all real roots are u_2 = 1.76393 ; letting g_2(u_2, v_1, v_2) = 0 , its all real roots are u_2 = 1.76393 ; letting g_3(u_2, v_1, v_2) = 0 , its all real roots are u_2 = 1.76393 . Hence, the common solution of g_1(u_2, v_1, v_2) = 0 , g_2(u_2, v_1, v_2) = 0 and g_3(u_2, v_1, v_2) = 0 is u_2 = 1.76393 .

    Step 5. Substituting v_2 = 0.22179 , v_1 = 4.25751 and u_2 = 1.76393 into f_1 , and letting f_1(u_1, u_2, v_1, v_2) = 0 , we can get its all real roots u_1 = 8.16186 .

    Step 6. By v_2 = 0.22179 , v_1 = 4.25751 , u_2 = 1.76393 , u_1 = 8.16186 , (3.2) and (3.3), we can get the corresponding C-eigentriples as follows:

    \bullet \lambda = 13.50214 and its C-eigenvectors are

    \begin{align*} x = (0.97050, 0.20974, 0.11890)^{\top}, \quad y = \pm(0.97226, 0.05065, 0.22836)^{\top}. \end{align*}

    \bullet \lambda = -13.50214 and its C-eigenvectors are

    \begin{align*} x = (-0.97050, -0.20974, -0.11890)^{\top}, \quad y = \pm(0.97226, 0.05065, 0.22836)^{\top}. \end{align*}

    Step 7. For other values of v_2 , such as, -7.79725 , -1.78254 , -11.53378 , -0.75907 , -0.70532 , 0.47100, we can also obtain their corresponding C-eigentriples by using the method similar to Steps 3–6.

    Finally, we find all C-eigentriples, which is listed in Table 2.



    [1] W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. A, 115 (1927), 700–721.
    [2] A. Korobeinikov and P. K. Maini, Non-linear incidence and stability of infectious disease models, Math. Med. Biol., 22 (2005), 113–128.
    [3] G. Huang, Y. Takeuchi, W. Ma, et al., Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192–1207.
    [4] M. Adimy, F. Crauste and S. Ruan, A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia, SIAM J. Appl. Math., 65 (2005), 1328–1352.
    [5] L. Rass, M. A. Lifshits and J. Radcliffe, Spatial deterministic epidemics, American Mathematical Soc., RI, 2003.
    [6] C. Atkinson and G. E. H. Reuter, Deterministic epidemic waves, Math. Proc. Cambridge Philos. Soc., 80 (1976), 315–330.
    [7] O. Diekmann, Thresholds and travelling waves for the geographical spread of infection, J. Math. Biol., 69 (1978), 109–130.
    [8] O. Diekmann, Run for your life. A note on the asymptotic speed of propagation of an epidemic, J. Differ. Equations, 33 (1979), 58–73.
    [9] J. D. Murray, Mathematical Biology, II. Spatial Models and Biomedical Applications, Third edition. Interdisciplinary Applied Mathematics, 18, Springer-Verlag, New York, 2003.
    [10] X. Liang and X. Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1–40.
    [11] A. Ducrot, Convergence to generalized transition waves for some Holling-Tanner prey-predator reaction-diffusion system, J. Math. Pures Appl., 100 (2013), 1–15.
    [12] A. Ducrot, Spatial propagation for a two component reaction-diffusion system arising in population dynamics, J. Differ. Equations, 260 (2016), 8316–8357.
    [13] N. F. Britton, Aggregation and the competitive exclusion principle, J. Theor. Biol., 136 (1989), 57–66.
    [14] N. F. Britton, Spatial structures and periodic traveling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663–1688.
    [15] S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread, in "Nonlinear dynamics and evolution equations" (eds. H. Brunner, X.Q. Zhao and X. Zou), Fields Inst. Commun., 48, AMS, Providence, RI, (2006), 137–200.
    [16] S. Ruan, Spatial-Temporal Dynamics in Nonlocal Epidemiological Models, in Mathematics for Life Science and Medicine, Springer, Berlin, Heidelberg, 2007, 97–122.
    [17] P. De Mottoni, E. Orlandi and A. Tesei, Asymptotic behavior for a system describing epidemics with migration and spatial spread of infection, Nonlinear Anal.: TMA, 3 (1979), 663–675.
    [18] Y. Li, W. T. Li and G. Lin, Traveling waves of a delayed diffusive SIR epidemic model, Comm. Pure Appl. Anal., 14 (2015), 1001–1022.
    [19] Y. Enatsu, Y. Nakata and Y. Muroya, Global stability of SIRS epidemic models with a class of nonlinear incidence rates and distributed delays, Acta Math. Sci. Ser. B, 32 (2012), 851–865.
    [20] S. C. Fu, Traveling waves for a diffusive SIR model with delay, J. Math. Anal. Appl., 435 (2016), 20–37.
    [21] J. Yang, S. Y. Liang and Y. Zhang, Travelling waves of a delayed SIR epidemic model with nonlinear incidence rate and spatial diffusion, PLoS One, 6 (2011), e21128.
    [22] W. F. Fagan and J. G. Bishop, Trophic interactions during primary succession: Herbivores slow a plant reinvasion at Mount St. Helens, Amer. Nat., 155 (2000), 238–251.
    [23] J. D. Murray, Mathematical Biology, I. An introduction, Third edition. Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002.
    [24] M. R. Owen and M. A. Lewis, How predation can slow, stop or reverse a prey invasion, Bull. Math. Biol., 63 (2001), 655–684.
    [25] D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, In Partial Differential Equations and Related Topics. Springer, Berlin, Heidelberg, 1975, 5–49.
    [26] J. Fang, X. Yu and X. Q. Zhao, Traveling waves and spreading speeds for time-space periodic monotone systems, J. Funct. Anal., 272 (2017), 4222–4262.
    [27] R. Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory, Math. Biosci., 93 (1989), 269–295.
    [28] H. F. Weinberger, Long-time behavior of a class of biological model, SIAM J. Math. Anal., 13 (1982), 353–396.
    [29] H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45 (2002), 183–218.
    [30] S. B. Hsu and X. Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776–789.
    [31] G. Lin, Spreading speed of the delayed Fisher equation without quasimonotonicity, Nonlinear Anal. Real World Appl., 12 (2011), 3713–3718.
    [32] X. L. Liu and S. Pan, Spreading speed in a nonmonotone equation with dispersal and delay, Mathematics, 7 (2019), 291.
    [33] G. Lin and W. T. Li, Asymptotic spreading of competition diffusion systems: the role of interspecific competitions, European J. Appl. Math., 23 (2012), 669–689.
    [34] G. Lin, W. T. Li and S. Ruan, Spreading speeds and traveling waves of a competitive recursion, J. Math. Biol., 62 (2011), 165–201.
    [35] G. Lin and R. Wang, Spatial invasion dynamics for a time period predator-prey system, Math. Methods Appl. Sci., 41 (2018), 7612–7623.
    [36] S. Pan, Invasion speed of a predator-prey system, Appl. Math. Lett., 74 (2017), 46–51.
    [37] J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996.
    [38] W. M. Liu, S. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187–204.
    [39] D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419–429.
    [40] W. T. Li, S. Ruan and Z. C. Wang, On the diffusive Nicholson's blowflies equation with nonlocal delay, J. Nonlinear Sci., 17 (2007), 505–525.
    [41] X. Li and S. Pan, Traveling wave solutions of a delayed cooperative system, Mathematics, 7 (2019), ID: 269.
    [42] X. Zou, Delay induced traveling wave fronts in reaction diffusion equations of KPP-Fisher type, J. Comput. Appl. Math., 146 (2002), 309–321.
    [43] S. Ruan and J. Wu, Reaction-diffusion systems with infinite delay, Canad. Appl. Math. Quart., 2 (1994), 485–550.
    [44] H. L. Smith and X. Zhao, Global asymptotic stability of traveling waves in delayed reaction- diffusion equations, SIAM J. Math. Anal., 31 (2000), 514–534.
    [45] Z. C. Wang, W. T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Differ. Equations, 238 (2007), 153–200.
    [46] Z. C. Wang, W. T. Li and S. Ruan, Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity, Trans. Amer. Math. Soc., 361 (2009), 2047–2084.
    [47] R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1–44.
    [48] T. Yi, Y. Chen and J. Wu, Unimodal dynamical systems: comparison principles, spreading speeds and travelling waves, J. Differ. Equations, 254 (2013), 3538–3572.
    [49] W. J. Bo, G. Lin and S. Ruan, Traveling wave solutions for time periodic reaction-diffusion systems, Discrete Contin. Dyn. Syst., 38 (2018), 4329–4351.
    [50] H. Malchow, S. V. Petrovskii and E. Venturino, Spatiaotemporal Patterns in Ecology and Epidemiology: Theory, Models and Simulation, Chapman & Hall/CRC, Boca Raton, 2008.
    [51] M. Mei, C. Ou and X. Q. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations, SIAM J. Math. Anal., 42 (2010), 2762–2790.
    [52] D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math., 22 (1976), 312–355.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4506) PDF downloads(633) Cited by(17)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog