Research article Special Issues

Tuning extreme learning machine by an improved electromagnetism-like mechanism algorithm for classification problem

  • Received: 21 February 2019 Accepted: 13 May 2019 Published: 23 May 2019
  • Extreme learning machine (ELM) is a kind of learning algorithm for single hidden-layer feedforward neural network (SLFN). Compared with traditional gradient-based neural network learning algorithms, ELM has the advantages of fast learning speed, good generalization performance and easy implementation. But due to the random determination of input weights and hidden biases, ELM demands more hidden neurons and cannot guarantee the optimal network structure. Here, we report a new learning algorithm to overcome the disadvantages of ELM by tuning the input weights and hidden biases through an improved electromagnetism-like mechanism (EM) algorithm called DAEM and Moore-Penrose (MP) generalized inverse to analytically determine the output weights of ELM. In DAEM, three different solution updating strategies inspired by dragonfly algorithm (DA) are implemented. Experimental results indicate that the proposed algorithm DAEM-ELM has better generalization performance than traditional ELM and other evolutionary ELMs.

    Citation: Mengya Zhang, Qing Wu, Zezhou Xu. Tuning extreme learning machine by an improved electromagnetism-like mechanism algorithm for classification problem[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4692-4707. doi: 10.3934/mbe.2019235

    Related Papers:

    [1] Clément Cancès . On the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types. Networks and Heterogeneous Media, 2010, 5(3): 635-647. doi: 10.3934/nhm.2010.5.635
    [2] Giuseppe Maria Coclite, Lorenzo di Ruvo, Jan Ernest, Siddhartha Mishra . Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks and Heterogeneous Media, 2013, 8(4): 969-984. doi: 10.3934/nhm.2013.8.969
    [3] Frederike Kissling, Christian Rohde . The computation of nonclassical shock waves with a heterogeneous multiscale method. Networks and Heterogeneous Media, 2010, 5(3): 661-674. doi: 10.3934/nhm.2010.5.661
    [4] Shyam Sundar Ghoshal . BV regularity near the interface for nonuniform convex discontinuous flux. Networks and Heterogeneous Media, 2016, 11(2): 331-348. doi: 10.3934/nhm.2016.11.331
    [5] Christophe Chalons, Paola Goatin, Nicolas Seguin . General constrained conservation laws. Application to pedestrian flow modeling. Networks and Heterogeneous Media, 2013, 8(2): 433-463. doi: 10.3934/nhm.2013.8.433
    [6] Felisia Angela Chiarello, Giuseppe Maria Coclite . Nonlocal scalar conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2023, 18(1): 380-398. doi: 10.3934/nhm.2023015
    [7] Raimund Bürger, Stefan Diehl, María Carmen Martí . A conservation law with multiply discontinuous flux modelling a flotation column. Networks and Heterogeneous Media, 2018, 13(2): 339-371. doi: 10.3934/nhm.2018015
    [8] Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina . Conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2007, 2(1): 159-179. doi: 10.3934/nhm.2007.2.159
    [9] Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada . A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks and Heterogeneous Media, 2021, 16(2): 187-219. doi: 10.3934/nhm.2021004
    [10] Darko Mitrovic . Existence and stability of a multidimensional scalar conservation law with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(1): 163-188. doi: 10.3934/nhm.2010.5.163
  • Extreme learning machine (ELM) is a kind of learning algorithm for single hidden-layer feedforward neural network (SLFN). Compared with traditional gradient-based neural network learning algorithms, ELM has the advantages of fast learning speed, good generalization performance and easy implementation. But due to the random determination of input weights and hidden biases, ELM demands more hidden neurons and cannot guarantee the optimal network structure. Here, we report a new learning algorithm to overcome the disadvantages of ELM by tuning the input weights and hidden biases through an improved electromagnetism-like mechanism (EM) algorithm called DAEM and Moore-Penrose (MP) generalized inverse to analytically determine the output weights of ELM. In DAEM, three different solution updating strategies inspired by dragonfly algorithm (DA) are implemented. Experimental results indicate that the proposed algorithm DAEM-ELM has better generalization performance than traditional ELM and other evolutionary ELMs.




    [1] W. Cao, X. Wang, Z. Ming, et al., A review on neural networks with random weights, Neurocomputing, (2017), S0925231217314613.
    [2] G. Camps-Valls, D. Tuia, L. Bruzzone, et al., Advances in hyperspectral image classification: earth monitoring with statistical learning methods, IEEE Signal Proc. Mag., 31 (2013), 45–54.
    [3] L. Wang, Y. Zeng and T. Chen, Back propagation neural network with adaptive differential evolution algorithm for time series forecasting, Expert Syst. Appl., 42 (2015), 855–863.
    [4] E. Maggiori, Y. Tarabalka, G. Charpiat, et al., Convolutional neural networks for large-scale remote sensing image classification, IEEE T. Geosci. Remote, 55 (2016), 645–657.
    [5] G. B. Huang, Q. Y. Zhu and C. K. Siew, Extreme learning machine: theory and applications, Neurocomputing, 70 (2006), 489–501.
    [6] J. Zhang, Y. F. Lu, B. Q. Zhang, et al., Device-free localization using empirical wavelet transform-based extreme learning machine, Proceedings of the 30th Chinese Control and Decision Conference, (2018), 2585–2590.
    [7] Y. J. Li, S. Zhang, Y. X. Yin, et al., A soft sensing scheme of gas utilization prediction for blast furnace via improved extreme learning machine, Neural Process. Lett. (2018), 10.1007/s11063-018-9888-3.
    [8] J. Zhang, Y. F. Xu, J. Q. Xue, et al., Real-time prediction of solar radiation based on online sequential extreme learning machine, Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications, (2018), 53–57.
    [9] R. Z. Song, W. D. Xiao, Q. L. Wei, et al., Neural-network-based approach to finite-time optimal control for a class of unknown nonlinear systems, Soft Comput., 18 (2014), 1645–1653.
    [10] J. Zhang, W. D. Xiao, Y. J. Li, et al., Multilayer probability extreme learning machine for device-free localization. Neurocomputing, (2019), 10.1016/j.neucom.2018.11.106.
    [11] Y. Park, and H. S. Yang, Convolutional neural network based on an extreme learning machine for image classification, Neurocomputing, 339 (2019), 66–76.
    [12] G. B. Huang, H. Zhou, X. Ding, et al., Extreme learning machine for regression and multiclass classification, IEEE T. Syst. Man Cy. B., 42 (2012), 513–529.
    [13] F. Han, H. F. Yao and Q. H. Ling, An improved evolutionary extreme learning machine based on particle swarm optimization, Neurocomputing, 116 (2013), 87–93.
    [14] A. Rashno, B. Nazari, S. Sadri, et al., Effective pixel classification of mars images based on ant colony optimization feature selection and extreme learning machine, Neurocomputing, 226 (2017), 66–79.
    [15] G. Li, P. Niu, Y. Ma, et al., Tuning extreme learning machine by an improved artificial bee colony to model and optimize the boiler efficiency, Knowl-Based Syst., 67 (2014), 278–289.
    [16] İ. B. Ş, and S. Fang, An electromagnetism-like mechanism for global optimization, J. Global Optim., 25 (2003), 263–282.
    [17] C. J. Zhang, X. Y. Li, L. Gao, et al., An improved electromagnetism-like mechanism algorithm for constrained optimization, Expert Syst. Appl., 40 (2013), 5621–5634.
    [18] C. T. Tseng, C. H. Lee, Y. S. P. Chiu, et al., A discrete electromagnetism-like mechanism for parallel machine scheduling under a grade of service provision, Int. J. Prod. Res., 55 (2017), 3149–3163.
    [19] X. Y. Li, L. Gao, Q. K. Pan, et al., An effective hybrid genetic algorithm and variable neighborhood search for integrated process planning and scheduling in a packaging machine workshop, IEEE T. Syst. Man Cy. Syst., (2018), 10.1109/TSMC.2018.2881686.
    [20] X. Y. Li, C. Lu, L. Gao, et al., An Effective Multi-Objective Algorithm for Energy Efficient Scheduling in a Real-Life Welding Shop, IEEE T. Ind. Inform., 14 (2018), 5400–5409.
    [21] X. Y. Li, S. Q. Xiao, C. Y. Wang, et al., Mathematical Modeling and a Discrete Artificial Bee Colony Algorithm for the Welding Shop Scheduling Problem, Memetic Comp., (2019), 10.1007/s12293-019-00283-4.
    [22] Q. Wu, L. Gao, X. Y. Li, et al., Applying an electromagnetism-like mechanism algorithm on parameter optimisation of a multi-pass milling process, Int. J. Prod. Res., 51 (2013), 1777–1788.
    [23] K. J. Wang, A. M. Adrian, K. H. Chen, et al., An improved electromagnetism-like mechanism algorithm and its application to the prediction of diabetes mellitus, J. Biomed. Inform., 54 (2015), 220–229.
    [24] S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Comput. Appl., 27 (2016), 1053–1073.
    [25] G. Huang, G. B. Huang, S. Song, et al., Trends in extreme learning machines: a review, Neural Networks, 61 (2015), 32–48.
    [26] P. L. Bartlett, The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network, IEEE T. Inform. Theory, 44 (2002), 525–536.
    [27] Q. Y. Zhu, A. K. Qin, P. N. Suganthan, et al., Evolutionary extreme learning machine, Pattern Recogn., 38 (2005), 1759–1763.
    [28] D. Dua, and E. K. Taniskidou, UCI Machine Learning Repository Irvine, CA: University of California, School of Information and Computer Science, 2017. Available from: http://archive.ics.uci.edu/ml.
    [29] Y. Wang, A. Wang, Q. Ai, et al., A novel artificial bee colony optimization strategy-based extreme learning machine algorithm, Prog. Artif. Intell., 6 (2016), 1–12.
  • This article has been cited by:

    1. Boris Andreianov, Clément Cancès, A phase-by-phase upstream scheme that converges to the vanishing capillarity solution for countercurrent two-phase flow in two-rock media, 2014, 18, 1420-0597, 211, 10.1007/s10596-014-9403-5
    2. Eduardo Abreu, Mathilde Colombeau, Eugeny Panov, Weak asymptotic methods for scalar equations and systems, 2016, 444, 0022247X, 1203, 10.1016/j.jmaa.2016.06.047
    3. Boris Andreianov, Clément Cancès, On interface transmission conditions for conservation laws with discontinuous flux of general shape, 2015, 12, 0219-8916, 343, 10.1142/S0219891615500101
    4. Elyes Ahmed, Caroline Japhet, Michel Kern, Space–time domain decomposition for two-phase flow between different rock types, 2020, 371, 00457825, 113294, 10.1016/j.cma.2020.113294
    5. Clément Cancès, Michel Pierre, An Existence Result for Multidimensional Immiscible Two-Phase Flows with Discontinuous Capillary Pressure Field, 2012, 44, 0036-1410, 966, 10.1137/11082943X
    6. Cynthia Michalkowski, Kilian Weishaupt, Veronika Schleper, Rainer Helmig, Modeling of Two Phase Flow in a Hydrophobic Porous Medium Interacting with a Hydrophilic Structure, 2022, 144, 0169-3913, 481, 10.1007/s11242-022-01816-1
    7. Boris Andreianov, Kenneth Hvistendahl Karlsen, Nils Henrik Risebro, A Theory of L 1-Dissipative Solvers for Scalar Conservation Laws with Discontinuous Flux, 2011, 201, 0003-9527, 27, 10.1007/s00205-010-0389-4
    8. Boris Andreianov, Clément Cancès, Vanishing capillarity solutions of Buckley–Leverett equation with gravity in two-rocks’ medium, 2013, 17, 1420-0597, 551, 10.1007/s10596-012-9329-8
    9. B. Andreianov, K. Brenner, C. Cancès, Approximating the vanishing capillarity limit of two-phase flow in multi-dimensional heterogeneous porous medium, 2014, 94, 00442267, 655, 10.1002/zamm.201200218
    10. Tufan Ghosh, Carina Bringedal, Rainer Helmig, G.P. Raja Sekhar, Upscaled equations for two-phase flow in highly heterogeneous porous media: Varying permeability and porosity, 2020, 145, 03091708, 103716, 10.1016/j.advwatres.2020.103716
    11. Clément Cancès, David Maltese, A Gravity Current Model with Capillary Trapping for Oil Migration in Multilayer Geological Basins, 2021, 81, 0036-1399, 454, 10.1137/19M1284233
    12. Brahim Amaziane, Mikhail Panfilov, Leonid Pankratov, Homogenized Model of Two-Phase Flow with Local Nonequilibrium in Double Porosity Media, 2016, 2016, 1687-9120, 1, 10.1155/2016/3058710
    13. MIROSLAV BULÍČEK, PIOTR GWIAZDA, AGNIESZKA ŚWIERCZEWSKA-GWIAZDA, MULTI-DIMENSIONAL SCALAR CONSERVATION LAWS WITH FLUXES DISCONTINUOUS IN THE UNKNOWN AND THE SPATIAL VARIABLE, 2013, 23, 0218-2025, 407, 10.1142/S0218202512500510
    14. Konstantin Brenner, Clément Cancès, Danielle Hilhorst, Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure, 2013, 17, 1420-0597, 573, 10.1007/s10596-013-9345-3
    15. PATRICK HENNING, MARIO OHLBERGER, BEN SCHWEIZER, HOMOGENIZATION OF THE DEGENERATE TWO-PHASE FLOW EQUATIONS, 2013, 23, 0218-2025, 2323, 10.1142/S0218202513500334
    16. Boris Andreianov, Abraham Sylla, Finite volume approximation and well-posedness of conservation laws with moving interfaces under abstract coupling conditions, 2023, 30, 1021-9722, 10.1007/s00030-023-00857-9
    17. F. Claret, N. I. Prasianakis, A. Baksay, D. Lukin, G. Pepin, E. Ahusborde, B. Amaziane, G. Bátor, D. Becker, A. Bednár, M. Béreš, S. Bérešová, Z. Böthi, V. Brendler, K. Brenner, J. Březina, F. Chave, S. V. Churakov, M. Hokr, D. Horák, D. Jacques, F. Jankovský, C. Kazymyrenko, T. Koudelka, T. Kovács, T. Krejčí, J. Kruis, E. Laloy, J. Landa, T. Ligurský, T. Lipping, C. López-Vázquez, R. Masson, J. C. L. Meeussen, M. Mollaali, A. Mon, L. Montenegro, B. Pisani, J. Poonoosamy, S. I. Pospiech, Z. Saâdi, J. Samper, A.-C. Samper-Pilar, G. Scaringi, S. Sysala, K. Yoshioka, Y. Yang, M. Zuna, O. Kolditz, EURAD state-of-the-art report: development and improvement of numerical methods and tools for modeling coupled processes in the field of nuclear waste disposal, 2024, 3, 2813-3412, 10.3389/fnuen.2024.1437714
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4666) PDF downloads(680) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog