Citation: Mengya Zhang, Qing Wu, Zezhou Xu. Tuning extreme learning machine by an improved electromagnetism-like mechanism algorithm for classification problem[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4692-4707. doi: 10.3934/mbe.2019235
[1] | Clément Cancès . On the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types. Networks and Heterogeneous Media, 2010, 5(3): 635-647. doi: 10.3934/nhm.2010.5.635 |
[2] | Giuseppe Maria Coclite, Lorenzo di Ruvo, Jan Ernest, Siddhartha Mishra . Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks and Heterogeneous Media, 2013, 8(4): 969-984. doi: 10.3934/nhm.2013.8.969 |
[3] | Frederike Kissling, Christian Rohde . The computation of nonclassical shock waves with a heterogeneous multiscale method. Networks and Heterogeneous Media, 2010, 5(3): 661-674. doi: 10.3934/nhm.2010.5.661 |
[4] | Shyam Sundar Ghoshal . BV regularity near the interface for nonuniform convex discontinuous flux. Networks and Heterogeneous Media, 2016, 11(2): 331-348. doi: 10.3934/nhm.2016.11.331 |
[5] | Christophe Chalons, Paola Goatin, Nicolas Seguin . General constrained conservation laws. Application to pedestrian flow modeling. Networks and Heterogeneous Media, 2013, 8(2): 433-463. doi: 10.3934/nhm.2013.8.433 |
[6] | Felisia Angela Chiarello, Giuseppe Maria Coclite . Nonlocal scalar conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2023, 18(1): 380-398. doi: 10.3934/nhm.2023015 |
[7] | Raimund Bürger, Stefan Diehl, María Carmen Martí . A conservation law with multiply discontinuous flux modelling a flotation column. Networks and Heterogeneous Media, 2018, 13(2): 339-371. doi: 10.3934/nhm.2018015 |
[8] | Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina . Conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2007, 2(1): 159-179. doi: 10.3934/nhm.2007.2.159 |
[9] | Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada . A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks and Heterogeneous Media, 2021, 16(2): 187-219. doi: 10.3934/nhm.2021004 |
[10] | Darko Mitrovic . Existence and stability of a multidimensional scalar conservation law with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(1): 163-188. doi: 10.3934/nhm.2010.5.163 |
[1] | W. Cao, X. Wang, Z. Ming, et al., A review on neural networks with random weights, Neurocomputing, (2017), S0925231217314613. |
[2] | G. Camps-Valls, D. Tuia, L. Bruzzone, et al., Advances in hyperspectral image classification: earth monitoring with statistical learning methods, IEEE Signal Proc. Mag., 31 (2013), 45–54. |
[3] | L. Wang, Y. Zeng and T. Chen, Back propagation neural network with adaptive differential evolution algorithm for time series forecasting, Expert Syst. Appl., 42 (2015), 855–863. |
[4] | E. Maggiori, Y. Tarabalka, G. Charpiat, et al., Convolutional neural networks for large-scale remote sensing image classification, IEEE T. Geosci. Remote, 55 (2016), 645–657. |
[5] | G. B. Huang, Q. Y. Zhu and C. K. Siew, Extreme learning machine: theory and applications, Neurocomputing, 70 (2006), 489–501. |
[6] | J. Zhang, Y. F. Lu, B. Q. Zhang, et al., Device-free localization using empirical wavelet transform-based extreme learning machine, Proceedings of the 30th Chinese Control and Decision Conference, (2018), 2585–2590. |
[7] | Y. J. Li, S. Zhang, Y. X. Yin, et al., A soft sensing scheme of gas utilization prediction for blast furnace via improved extreme learning machine, Neural Process. Lett. (2018), 10.1007/s11063-018-9888-3. |
[8] | J. Zhang, Y. F. Xu, J. Q. Xue, et al., Real-time prediction of solar radiation based on online sequential extreme learning machine, Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications, (2018), 53–57. |
[9] | R. Z. Song, W. D. Xiao, Q. L. Wei, et al., Neural-network-based approach to finite-time optimal control for a class of unknown nonlinear systems, Soft Comput., 18 (2014), 1645–1653. |
[10] | J. Zhang, W. D. Xiao, Y. J. Li, et al., Multilayer probability extreme learning machine for device-free localization. Neurocomputing, (2019), 10.1016/j.neucom.2018.11.106. |
[11] | Y. Park, and H. S. Yang, Convolutional neural network based on an extreme learning machine for image classification, Neurocomputing, 339 (2019), 66–76. |
[12] | G. B. Huang, H. Zhou, X. Ding, et al., Extreme learning machine for regression and multiclass classification, IEEE T. Syst. Man Cy. B., 42 (2012), 513–529. |
[13] | F. Han, H. F. Yao and Q. H. Ling, An improved evolutionary extreme learning machine based on particle swarm optimization, Neurocomputing, 116 (2013), 87–93. |
[14] | A. Rashno, B. Nazari, S. Sadri, et al., Effective pixel classification of mars images based on ant colony optimization feature selection and extreme learning machine, Neurocomputing, 226 (2017), 66–79. |
[15] | G. Li, P. Niu, Y. Ma, et al., Tuning extreme learning machine by an improved artificial bee colony to model and optimize the boiler efficiency, Knowl-Based Syst., 67 (2014), 278–289. |
[16] | İ. B. Ş, and S. Fang, An electromagnetism-like mechanism for global optimization, J. Global Optim., 25 (2003), 263–282. |
[17] | C. J. Zhang, X. Y. Li, L. Gao, et al., An improved electromagnetism-like mechanism algorithm for constrained optimization, Expert Syst. Appl., 40 (2013), 5621–5634. |
[18] | C. T. Tseng, C. H. Lee, Y. S. P. Chiu, et al., A discrete electromagnetism-like mechanism for parallel machine scheduling under a grade of service provision, Int. J. Prod. Res., 55 (2017), 3149–3163. |
[19] | X. Y. Li, L. Gao, Q. K. Pan, et al., An effective hybrid genetic algorithm and variable neighborhood search for integrated process planning and scheduling in a packaging machine workshop, IEEE T. Syst. Man Cy. Syst., (2018), 10.1109/TSMC.2018.2881686. |
[20] | X. Y. Li, C. Lu, L. Gao, et al., An Effective Multi-Objective Algorithm for Energy Efficient Scheduling in a Real-Life Welding Shop, IEEE T. Ind. Inform., 14 (2018), 5400–5409. |
[21] | X. Y. Li, S. Q. Xiao, C. Y. Wang, et al., Mathematical Modeling and a Discrete Artificial Bee Colony Algorithm for the Welding Shop Scheduling Problem, Memetic Comp., (2019), 10.1007/s12293-019-00283-4. |
[22] | Q. Wu, L. Gao, X. Y. Li, et al., Applying an electromagnetism-like mechanism algorithm on parameter optimisation of a multi-pass milling process, Int. J. Prod. Res., 51 (2013), 1777–1788. |
[23] | K. J. Wang, A. M. Adrian, K. H. Chen, et al., An improved electromagnetism-like mechanism algorithm and its application to the prediction of diabetes mellitus, J. Biomed. Inform., 54 (2015), 220–229. |
[24] | S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Comput. Appl., 27 (2016), 1053–1073. |
[25] | G. Huang, G. B. Huang, S. Song, et al., Trends in extreme learning machines: a review, Neural Networks, 61 (2015), 32–48. |
[26] | P. L. Bartlett, The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network, IEEE T. Inform. Theory, 44 (2002), 525–536. |
[27] | Q. Y. Zhu, A. K. Qin, P. N. Suganthan, et al., Evolutionary extreme learning machine, Pattern Recogn., 38 (2005), 1759–1763. |
[28] | D. Dua, and E. K. Taniskidou, UCI Machine Learning Repository Irvine, CA: University of California, School of Information and Computer Science, 2017. Available from: http://archive.ics.uci.edu/ml. |
[29] | Y. Wang, A. Wang, Q. Ai, et al., A novel artificial bee colony optimization strategy-based extreme learning machine algorithm, Prog. Artif. Intell., 6 (2016), 1–12. |
1. | Boris Andreianov, Clément Cancès, A phase-by-phase upstream scheme that converges to the vanishing capillarity solution for countercurrent two-phase flow in two-rock media, 2014, 18, 1420-0597, 211, 10.1007/s10596-014-9403-5 | |
2. | Eduardo Abreu, Mathilde Colombeau, Eugeny Panov, Weak asymptotic methods for scalar equations and systems, 2016, 444, 0022247X, 1203, 10.1016/j.jmaa.2016.06.047 | |
3. | Boris Andreianov, Clément Cancès, On interface transmission conditions for conservation laws with discontinuous flux of general shape, 2015, 12, 0219-8916, 343, 10.1142/S0219891615500101 | |
4. | Elyes Ahmed, Caroline Japhet, Michel Kern, Space–time domain decomposition for two-phase flow between different rock types, 2020, 371, 00457825, 113294, 10.1016/j.cma.2020.113294 | |
5. | Clément Cancès, Michel Pierre, An Existence Result for Multidimensional Immiscible Two-Phase Flows with Discontinuous Capillary Pressure Field, 2012, 44, 0036-1410, 966, 10.1137/11082943X | |
6. | Cynthia Michalkowski, Kilian Weishaupt, Veronika Schleper, Rainer Helmig, Modeling of Two Phase Flow in a Hydrophobic Porous Medium Interacting with a Hydrophilic Structure, 2022, 144, 0169-3913, 481, 10.1007/s11242-022-01816-1 | |
7. | Boris Andreianov, Kenneth Hvistendahl Karlsen, Nils Henrik Risebro, A Theory of L 1-Dissipative Solvers for Scalar Conservation Laws with Discontinuous Flux, 2011, 201, 0003-9527, 27, 10.1007/s00205-010-0389-4 | |
8. | Boris Andreianov, Clément Cancès, Vanishing capillarity solutions of Buckley–Leverett equation with gravity in two-rocks’ medium, 2013, 17, 1420-0597, 551, 10.1007/s10596-012-9329-8 | |
9. | B. Andreianov, K. Brenner, C. Cancès, Approximating the vanishing capillarity limit of two-phase flow in multi-dimensional heterogeneous porous medium, 2014, 94, 00442267, 655, 10.1002/zamm.201200218 | |
10. | Tufan Ghosh, Carina Bringedal, Rainer Helmig, G.P. Raja Sekhar, Upscaled equations for two-phase flow in highly heterogeneous porous media: Varying permeability and porosity, 2020, 145, 03091708, 103716, 10.1016/j.advwatres.2020.103716 | |
11. | Clément Cancès, David Maltese, A Gravity Current Model with Capillary Trapping for Oil Migration in Multilayer Geological Basins, 2021, 81, 0036-1399, 454, 10.1137/19M1284233 | |
12. | Brahim Amaziane, Mikhail Panfilov, Leonid Pankratov, Homogenized Model of Two-Phase Flow with Local Nonequilibrium in Double Porosity Media, 2016, 2016, 1687-9120, 1, 10.1155/2016/3058710 | |
13. | MIROSLAV BULÍČEK, PIOTR GWIAZDA, AGNIESZKA ŚWIERCZEWSKA-GWIAZDA, MULTI-DIMENSIONAL SCALAR CONSERVATION LAWS WITH FLUXES DISCONTINUOUS IN THE UNKNOWN AND THE SPATIAL VARIABLE, 2013, 23, 0218-2025, 407, 10.1142/S0218202512500510 | |
14. | Konstantin Brenner, Clément Cancès, Danielle Hilhorst, Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure, 2013, 17, 1420-0597, 573, 10.1007/s10596-013-9345-3 | |
15. | PATRICK HENNING, MARIO OHLBERGER, BEN SCHWEIZER, HOMOGENIZATION OF THE DEGENERATE TWO-PHASE FLOW EQUATIONS, 2013, 23, 0218-2025, 2323, 10.1142/S0218202513500334 | |
16. | Boris Andreianov, Abraham Sylla, Finite volume approximation and well-posedness of conservation laws with moving interfaces under abstract coupling conditions, 2023, 30, 1021-9722, 10.1007/s00030-023-00857-9 | |
17. | F. Claret, N. I. Prasianakis, A. Baksay, D. Lukin, G. Pepin, E. Ahusborde, B. Amaziane, G. Bátor, D. Becker, A. Bednár, M. Béreš, S. Bérešová, Z. Böthi, V. Brendler, K. Brenner, J. Březina, F. Chave, S. V. Churakov, M. Hokr, D. Horák, D. Jacques, F. Jankovský, C. Kazymyrenko, T. Koudelka, T. Kovács, T. Krejčí, J. Kruis, E. Laloy, J. Landa, T. Ligurský, T. Lipping, C. López-Vázquez, R. Masson, J. C. L. Meeussen, M. Mollaali, A. Mon, L. Montenegro, B. Pisani, J. Poonoosamy, S. I. Pospiech, Z. Saâdi, J. Samper, A.-C. Samper-Pilar, G. Scaringi, S. Sysala, K. Yoshioka, Y. Yang, M. Zuna, O. Kolditz, EURAD state-of-the-art report: development and improvement of numerical methods and tools for modeling coupled processes in the field of nuclear waste disposal, 2024, 3, 2813-3412, 10.3389/fnuen.2024.1437714 |