Research article Special Issues

Global dynamics of a multi-stage brucellosis model with distributed delays and indirect transmission

  • Received: 23 January 2019 Accepted: 19 March 2019 Published: 10 April 2019
  • The mechanisms of brucellosis transmission are diverse and complex, especially the role of young animals in the spread of brucellosis has not been well studied. In this article, a new deterministic system that incorporates various stages of susceptible individuals and time delay of infection is proposed. Under general biological assumptions, the qualitative properties and stability of the system are studied, the results illustrate that the global dynamics of equilibrium points depend on the basic reproduction number R0: If R01, animal brucellosis will eventually die out; and if R0>1, animal brucellosis is persistent and eventually tends to the endemic steady state. These results suggest that distributed time delay is harmless for the dynamics of the spread of brucellosis when R0 is greater than one or less than or equal to one. Finally, periodic phenomena are found by numerical analysis if the assumptions are not true.

    Citation: Qiang Hou, Haiyan Qin. Global dynamics of a multi-stage brucellosis model with distributed delays and indirect transmission[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 3111-3129. doi: 10.3934/mbe.2019154

    Related Papers:

    [1] Guy Bouchitté, Ben Schweizer . Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings. Networks and Heterogeneous Media, 2013, 8(4): 857-878. doi: 10.3934/nhm.2013.8.857
    [2] Grégoire Allaire, Tuhin Ghosh, Muthusamy Vanninathan . Homogenization of stokes system using bloch waves. Networks and Heterogeneous Media, 2017, 12(4): 525-550. doi: 10.3934/nhm.2017022
    [3] Vivek Tewary . Combined effects of homogenization and singular perturbations: A bloch wave approach. Networks and Heterogeneous Media, 2021, 16(3): 427-458. doi: 10.3934/nhm.2021012
    [4] Mohamed Belhadj, Eric Cancès, Jean-Frédéric Gerbeau, Andro Mikelić . Homogenization approach to filtration through a fibrous medium. Networks and Heterogeneous Media, 2007, 2(3): 529-550. doi: 10.3934/nhm.2007.2.529
    [5] Luca Placidi, Julia de Castro Motta, Rana Nazifi Charandabi, Fernando Fraternali . A continuum model for the tensegrity Maxwell chain. Networks and Heterogeneous Media, 2024, 19(2): 597-610. doi: 10.3934/nhm.2024026
    [6] Mengjun Yu, Kun Li . A data-driven reduced-order modeling approach for parameterized time-domain Maxwell's equations. Networks and Heterogeneous Media, 2024, 19(3): 1309-1335. doi: 10.3934/nhm.2024056
    [7] Maksym Berezhnyi, Evgen Khruslov . Non-standard dynamics of elastic composites. Networks and Heterogeneous Media, 2011, 6(1): 89-109. doi: 10.3934/nhm.2011.6.89
    [8] Tom Freudenberg, Michael Eden . Homogenization and simulation of heat transfer through a thin grain layer. Networks and Heterogeneous Media, 2024, 19(2): 569-596. doi: 10.3934/nhm.2024025
    [9] Hiroshi Matano, Ken-Ichi Nakamura, Bendong Lou . Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit. Networks and Heterogeneous Media, 2006, 1(4): 537-568. doi: 10.3934/nhm.2006.1.537
    [10] Hirofumi Notsu, Masato Kimura . Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks and Heterogeneous Media, 2014, 9(4): 617-634. doi: 10.3934/nhm.2014.9.617
  • The mechanisms of brucellosis transmission are diverse and complex, especially the role of young animals in the spread of brucellosis has not been well studied. In this article, a new deterministic system that incorporates various stages of susceptible individuals and time delay of infection is proposed. Under general biological assumptions, the qualitative properties and stability of the system are studied, the results illustrate that the global dynamics of equilibrium points depend on the basic reproduction number R0: If R01, animal brucellosis will eventually die out; and if R0>1, animal brucellosis is persistent and eventually tends to the endemic steady state. These results suggest that distributed time delay is harmless for the dynamics of the spread of brucellosis when R0 is greater than one or less than or equal to one. Finally, periodic phenomena are found by numerical analysis if the assumptions are not true.




    [1] M. Madsen and E.C. Anderson, Serologic survey of Zimbabwean wildlife for brucellosis, J. Zoo Wildlife Med., 26 (1995), 240–245.
    [2] M.E. Meyer and M. Meagher, Brucellosis in freeranging bison (Bison bison) in Yellowstone, Grand Teton, and Wood Bu alo National Parks: A review, J. Wildlife Dis., 31 (1995), 579–598.
    [3] M. Mustafa and P. Nicoletti, Proceedings of the Workshop on Guidelines for a Regional Brucellosis Control Program for the Middle East 14-17 February, Amman, Jordan, FAO, WHO and OIE, 1993.
    [4] M. Darwish and A. Benkirane, Field investigations of brucellosis in cattle and small ruminants in Syria, 1990–1996, Rev. Sci. Tech. OIE, 20(3) (2001), 769–775.
    [5] J.R. Ebright, T. Altantsetseg and R. Oyungerel, Emerging infectious diseases in Mongolia, Emerg. Infect. Dis., 9(12) (2003), 1509–1515.
    [6] G. Pappas, P. Papadimitriou, N. Akritidis, et al., The new global map of human brucellosis, Lancet Infect. Dis., 6 (2006), 91–99.
    [7] M. Corbel, Brucellosis: An overview, Emerg. Infect. Dis., 3 (1997), 213–221.
    [8] J. McDermott, D. Grace and J. Zinsstag, Economics of brucellosis impact and control in lowincome countries, Rev. Sci. Tech., 32 (2013), 249–261.
    [9] M.J. Corbel, Brucellosis in humans and animals, WHO, FAO and OIE, 2006.
    [10] J. Parnas, W. Krüger and E. Tüppich, Die Brucellose des Menschen (Human Brucellosis), VEB VErlag Volk und Gesundheit, Berlin, 1966.
    [11] H. Krauss, A. Weber, B. Enders, et al., Zoonotic diseases, infection diseases transmitted from animals to human (Zoonosen, von Tier auf den Menschen übertragbare Infek-tionskrankheiten), Deutscher Ärzte-Verlag Köln, Cologne, 1996.
    [12] SCAHAW, Brucellosis in sheep and goats, Scientific Committee on Animal Health and Animal Welfare, 2001.
    [13] E.D. Ebel, M.S. Williams and S.M. Tomlinson, Estimating herd prevalence of bovine brucellosis in 46 U.S.A. states using slaughter surveillance, Prev. Vet. Med., 85 (2008), 295–316.
    [14] H.S. Lee, M. Her, M. Levine, et al. Time series analysis of human and bovine brucellosis in South Korea from 2005 to 2010, Prev. Vet. Med., 110 (2013), 190–197.
    [15] R.D. Jones, L. Kelly, T. England, et al., A quantitative risk assessment for the importation of brucellosis-infected breeding cattle into Great Britain from selected European countries, Prev. Vet. Med., 63 (2004), 51–61.
    [16] A.M. Al-Majali and M. Shorman, Childhood brucellosis in Jordan: Prevalence and analysis of risk factors, Int. J. Infect. Dis., 13 (2009), 196–200.
    [17] P. Jia and A. Joyner, Human brucellosis occurrences in inner mongolia, China: A spatio-temporal distribution and ecological niche modeling approach, BMC Infect. Dis., 13(36) (2015).
    [18] J. González-Guzmán and R. Naulin, Analysis of a model of bovine brucellosis using singular perturbations, J. Math. Biol., 33 (1994), 211–234.
    [19] J.Zinsstag, F. Roth, D. Orkhon, et al., A model of animal-human brucellosis transmission in Mongolia, Prev. Vet. Med., 69 (2005), 77–95.
    [20] D. Andrew and M. Mary, The Population Dynamics of Brucellosis in the Yellowstone National Park, Ecology, 77(4) (1996), 1026–1036.
    [21] F. Xie and R.D. Horan, Disease and Behavioral Dynamics for Brucellosis Control in Elk and Cattle in the Greater Yellowstone Area, J. Agr. Resour. Econ., 34 (2009), 11–33.
    [22] D. Shabb, N. Chitnis, Z. Baljinnyam, et al., A mathematical model of the dynamics of Mongolian livestock populations, Livest. Sci., 157 (2013), 280–288.
    [23] B. AÏnseba, C. Benosman and P. Magal, A model for ovine brucellosis incorporating direct and indirect transmission, J. Biol. Dyn., 4(1) (2010), 2–11.
    [24] M.T. Li, G.Q. Sun, J. Zhang, et al., Transmission dynamics and control for a brucellosis model In Hinggan League of Inner Mongolia, China, Math. Biosci. Eng., 11 (2014), 1115–1137.
    [25] Q. Hou, X.D Sun, J. Zhang, et al., Modeling the Transmission Dynamics of Sheep Brucellosis in Inner Mongolia Autonomous Region, China, Math. Biosci., 242 (2013), 51–58.
    [26] Q. Hou, X.D. Sun, Y.M. Wang, et al., Global properties of a general dynamic model for animal diseases: A case study of brucellosis and tuberculosis transmission, J. Math. Anal. Appl., 414(1) (2014), 424–433.
    [27] P.O. Lolika, C. Modnak and S. Mushayabasa, On the dynamics of brucellosis infection in bison population with vertical transmission and culling, Math. Biosci., 305 (2018), 42–54.
    [28] W.M. Liu, S.A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187–204.
    [29] H. McCallum, N. Barlow and J. Hone, How should pathogen transmission be modelled ?, Trends Ecol. Evol., 16(6) (2001), 295–300.
    [30] R. Breban, J.M Drake, D.E. Stallknecht, et al., The role of environmental transmission in recurrent avian influenza epidemics, PLoS Comput. Biol., 5(4) (2009), e1000346.
    [31] Z. Mukandavire, S. Liao, J. Wang, et al., Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe, Proc. Natl. Acad. Sci. USA, 108 (2011), 8767–8772.
    [32] H.B. Guo, M.Y. Li and Z.S. Shuai, Global dynamics of a general class of multistage models for infectious diseases, SIAM J. Appl. Math., 72(1) (2012), 261–279. 33. J.P. LaSalle, Stability of Dynamical Systems, SIAM, Philadelphia, 1976.
    [33] 34. J.K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal., 20 (1989), 388–395.
    [34] 35. Y. Yang, L. Zou and S. Ruan, Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions, Math. Biosci., 270 (2015), 183–191.
    [35] 36. O.P. Lolika and S. Mushayabasa, Dynamics and stability analysis of a brucellosis model with two discrete delays, Discrete Dyn. Nat. Soc., 2 (2018), 1–20.
  • This article has been cited by:

    1. Daniel Peterseim, Barbara Verfürth, Computational high frequency scattering from high-contrast heterogeneous media, 2020, 89, 0025-5718, 2649, 10.1090/mcom/3529
    2. Mario Ohlberger, Barbara Verfürth, Localized Orthogonal Decomposition for two-scale Helmholtz-typeproblems, 2017, 2, 2473-6988, 458, 10.3934/Math.2017.2.458
    3. Klaas Hendrik Poelstra, Ben Schweizer, Maik Urban, The geometric average of curl-free fields in periodic geometries, 2021, 41, 2196-6753, 179, 10.1515/anly-2020-0053
    4. Junshan Lin, Hai Zhang, Scattering by a Periodic Array of Subwavelength Slits II: Surface Bound States, Total Transmission, and Field Enhancement in Homogenization Regimes, 2018, 16, 1540-3459, 954, 10.1137/17M1133786
    5. Patrizia Donato, Agnes Lamacz, Ben Schweizer, Sound absorption by perforated walls along boundaries, 2022, 101, 0003-6811, 4397, 10.1080/00036811.2020.1855329
    6. Agnes Lamacz, Ben Schweizer, Effective acoustic properties of a meta-material consisting of small Helmholtz resonators, 2017, 10, 1937-1179, 815, 10.3934/dcdss.2017041
    7. Mario Ohlberger, Barbara Verfurth, A New Heterogeneous Multiscale Method for the Helmholtz Equation with High Contrast, 2018, 16, 1540-3459, 385, 10.1137/16M1108820
    8. B. Schweizer, M. Urban, Effective Maxwell’s equations in general periodic microstructures, 2018, 97, 0003-6811, 2210, 10.1080/00036811.2017.1359563
    9. B. Schweizer, The low-frequency spectrum of small Helmholtz resonators, 2015, 471, 1364-5021, 20140339, 10.1098/rspa.2014.0339
    10. Hari Shankar Mahato, Upscaling of Helmholtz Equation Originating in Transmission through Metallic Gratings in Metamaterials, 2016, 2016, 2356-6140, 1, 10.1155/2016/7436136
    11. A. Lamacz, B. Schweizer, A Negative Index Meta-Material for Maxwell's Equations, 2016, 48, 0036-1410, 4155, 10.1137/16M1064246
    12. Ben Schweizer, Resonance Meets Homogenization, 2017, 119, 0012-0456, 31, 10.1365/s13291-016-0153-2
    13. Robert Lipton, Ben Schweizer, Effective Maxwell’s Equations for Perfectly Conducting Split Ring Resonators, 2018, 229, 0003-9527, 1197, 10.1007/s00205-018-1237-1
    14. Barbara Verfürth, Numerical Multiscale Methods for Waves in High-Contrast Media, 2024, 126, 0012-0456, 37, 10.1365/s13291-023-00273-z
    15. A. Kirsch, B. Schweizer, Time-Harmonic Maxwell’s Equations in Periodic Waveguides, 2025, 249, 0003-9527, 10.1007/s00205-025-02099-8
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4574) PDF downloads(739) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog