[1]
|
[ A. Abakuks, Optimal immunisation policies for epidemics, Advances in Appl. Probability, 6 (1974): 494-511.
|
[2]
|
[ R. M. Anderson and R. M. May, Infectious Diseases of Humans Dynamics and Control, Oxford University Press, 1992.
|
[3]
|
[ J. Appleby, Getting a flu shot? it may be better to wait, CNN, September 15, http://edition.cnn.com/2016/09/26/health/wait-for-flu-shot/index.html, 2016.
|
[4]
|
[ N. Bacaër, A Short History of Mathematical Population Dynamics, Springer-Verlag London, Ltd., London, 2011.
|
[5]
|
[ Y. Bai,N. Shi,Q. Lu,L. Yang,Z. Wang,L. Li,H. Han,D. Zheng,F. Luo,Z. Zhang,X. Ai, Immunological persistence of a seasonal influenza vaccine in people more than 3 years old, Human Vaccines & Immunotherapeutics, 11 (2015): 1648-1653.
|
[6]
|
[ C. T. Bauch,D. J. D. Earn, Vaccination and the theory of games, Proc. Natl. Acad. Sci. USA, 101 (2004): 13391-13394 (electronic).
|
[7]
|
[ C. T. Bauch,A. P. Galvani,D. J. D. Earn, Group interest versus self-interest in smallpox vaccination policy, Proceedings of the National Academy of Sciences, 100 (2003): 10564-10567.
|
[8]
|
[ C. T. Bauch, Imitation dynamics predict vaccinating behaviour, Proc Biol Sci, 272 (2005): 1669-1675.
|
[9]
|
[ E. A. Belongia,M. E. Sundaram,D. L. McClure,J. K. Meece,J. Ferdinands,J. J. VanWormer, Waning vaccine protection against influenza a (h3n2) illness in children and older adults during a single season, Vaccine, 33 (2015): 246-251.
|
[10]
|
[ Adrien Blanchet and Guillaume Carlier, From Nash to Cournot-Nash equilibria via the Monge-Kantorovich problem Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130398, 11pp.
|
[11]
|
[ R. Breban, R. Vardavas and S. Blower, Mean-field analysis of an inductive reasoning game: Application to influenza vaccination Phys. Rev. E, 76 (2007), 031127.
|
[12]
|
[ D. L. Brito,E. Sheshinski,M. D. Intriligator, Externalities and compulsary vaccinations, Journal of Public Economics, 45 (1991): 69-90.
|
[13]
|
[ B. Buonomo,A. d'Onofrio,D. Lacitignola, Global stability of an {SIR} epidemic model with information dependent vaccination, Mathematical Biosciences, 216 (2008): 9-16.
|
[14]
|
[ P. Cardaliaguet,S. Hadikhanloo, Learning in mean field games: The fictitious play, ESAIM Control Optim. Calc. Var., 23 (2017): 569-591.
|
[15]
|
[ F. Carrat,A. Flahault, Influenza vaccine: The challenge of antigenic drift, Vaccine, 25 (2007): 6852-6862.
|
[16]
|
[ F. H. Chen, A susceptible-infected epidemic model with voluntary vaccinations, Journal of Mathematical Biology, 53 (2006): 253-272.
|
[17]
|
[ M. L. Clements,B. R. Murphy, Development and persistence of local and systemic antibody responses in adults given live attenuated or inactivated influenza a virus vaccine, Journal of Clinical Microbiology, 23 (1986): 66-72.
|
[18]
|
[ C. T. Codeço,P. M. Luz,F. Coelho,A. P Galvani,C. Struchiner, Vaccinating in disease-free regions: a vaccine model with application to yellow fever, Journal of The Royal Society Interface, 4 (2007): 1119-1125.
|
[19]
|
[ F. Coelho and C. T. Codeço, Dynamic modeling of vaccinating behavior as a function of individual beliefs PLoS Comput Biol, 5 (2009), e1000425, 10pp.
|
[20]
|
[ M.-G. Cojocaru, Dynamic equilibria of group vaccination strategies in a heterogeneous population, Journal of Global Optimization, 40 (2008): 51-63.
|
[21]
|
[ R. B. Couch,J. A. Kasel, Immunity to influenza in man, Annual Reviews in Microbiology, 37 (1983): 529-549.
|
[22]
|
[ N. Cox, Influenza seasonality: Timing and formulation of vaccines, Bulletin of the World Health Organization, 92 (2014): 311-311.
|
[23]
|
[ O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases. Model Building, Analysis and Interpretation, Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, Ltd., Chichester, 2000.
|
[24]
|
[ Josu Doncel, Nicolas Gast, and Bruno Gaujal, Mean-Field Games with Explicit Interactions, working paper or preprint, 2016.
|
[25]
|
[ A. d'Onofrio,P. Manfredi,E. Salinelli, Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases, Theoretical Population Biology, 71 (2007): 301-317.
|
[26]
|
[ A. d'Onofrio,P. Manfredi,E. Salinelli, Fatal SIR diseases and rational exemption to vaccination, Mathematical Medicine and Biology, 25 (2008): 337-357.
|
[27]
|
[ P. Doutor,P. Rodrigues,M. do Céu Soares,F. A. C. C. Chalub, Optimal vaccination strategies and rational behaviour in seasonal epidemics, Journal of Mathematical Biology, 73 (2016): 1437-1465.
|
[28]
|
[ J. Dushoff,J. B Plotkin,C. Viboud,D. J. D. Earn,L. Simonsen, Mortality due to influenza in the United States-an annualized regression approach using multiple-cause mortality data, American journal of epidemiology, 163 (2006): 181-187.
|
[29]
|
[ J. M. Ferdinands,A. M. Fry,S. Reynolds,J. G. Petrie,B. Flannery,M. L. Jackson,E. A. Belongia, Intraseason waning of influenza vaccine protection: Evidence from the us influenza vaccine effectiveness network, 2011-2012 through 2014-2015, Clinical Infectious Diseases, 64 (2017): p544.
|
[30]
|
[ P. E. M. Fine,J. A. Clarkson, Individual versus public priorities in the determination of optimal vaccination policies, American Journal of Epidemiology, 124 (1986): 1012-1020.
|
[31]
|
[ P. J. Francis, Optimal tax/subsidy combinations for the flu season, Journal of Economic Dynamics and Control, 28 (2004): 2037-2054.
|
[32]
|
[ D. Fudenberg and D. K. Levine, The Theory of Learning in Games volume 2 of MIT Press Series on Economic Learning and Social Evolution, MIT Press, Cambridge, MA, 1998.
|
[33]
|
[ S. Funk,M. Salathé,V. A. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: A review, Journal of The Royal Society Interface, 7 (2010): 1247-1256.
|
[34]
|
[ A. P. Galvani,T. C. Reluga,G. B. Chapman, Long-standing influenza vaccination policy is in accord with individual self-interest but not with the utilitarian optimum, Proceedings of the National Academy of Sciences, 104 (2007): 5692-5697.
|
[35]
|
[ P.-Y. Geoffard,T. Philipson, Disease eradication: Private versus public vaccination, The American Economic Review, 87 (1997): 222-230.
|
[36]
|
[ N. C. Grassly,C. Fraser, Seasonal infectious disease epidemiology, Proceedings of the Royal Society of London B: Biological Sciences, 273 (2006): 2541-2550.
|
[37]
|
[ S. Greenland and R. R. Frerichs, On measures and models for the effectiveness of vaccines and vaccination programmes, International Journal of Epidemiology, 17 (1988), p456.
|
[38]
|
[ M. E. Halloran, I. M. Longini and C. J. Struchiner, Design and Analysis of Vaccine Studies, Statistics for Biology and Health. Springer New York, 2009.
|
[39]
|
[ H. W. Hethcote,P. Waltman, Optimal vaccination schedules in a deterministic epidemic model, Mathematical Biosciences, 18 (1973): 365-381.
|
[40]
|
[ M. Huang,R. P. Malhamé,P. E. Caines, Nash equilibria for large-population linear stochastic systems of weakly coupled agents, In Elkébir Boukas and Roland P. Malhamé, editors,, Analysis, Control and Optimization of Complex Dynamic Systems, Springer US,, 4 (2005): 215-252.
|
[41]
|
[ M. Huang,R. P. Malhamé,P. E. Caines, Large population stochastic dynamic games: Closed-loop mckean-vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., 6 (2006): 221-252.
|
[42]
|
[ R. Jordan,D. Kinderlehrer,F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998): 1-17.
|
[43]
|
[ S. Kakutani, A generalization of Brouwer's fixed point theorem, Duke Math. J., 8 (1941): 457-459.
|
[44]
|
[ E. Kissling, B. Nunes, C. Robertson, M. Valenciano, A. Reuss, A. Larrauri, J. M. Cohen, B. Oroszi, C. Rizzo, A. Machado, D. Pitigoi, L. Domegan, I. Paradowska-Stankiewicz, U. Buchholz, A. Gherasim, I. Daviaud, J. K. Horvath, A. Bella, E. Lupulescu, J. O'Donnell, M. Korczynska, A. Moren and I.-MOVE case-control study team, I-move multicentre casecontrol study 2010/11 to 2014/15: Is there within-season waning of influenza type/subtype vaccine effectiveness with increasing time since vaccination?, Euro Surveill., 21 (2016), 30201.
|
[45]
|
[ A. Lachapelle,J. Salomon,G. Turinici, Computation of mean field equilibria in economics, Math. Models Methods Appl. Sci., 20 (2010): 567-588.
|
[46]
|
[ L. Laguzet,G. Turinici, Global optimal vaccination in the SIR model: Properties of the value function and application to cost-effectiveness analysis, Mathematical Biosciences, 263 (2015): 180-197.
|
[47]
|
[ L. Laguzet,G. Turinici, Individual vaccination as Nash equilibrium in a SIR model with application to the 2009-2010 influenza A (H1N1) epidemic in France, Bulletin of Mathematical Biology, 77 (2015): 1955-1984.
|
[48]
|
[ J.-M. Lasry,P.-L. Lions, Lions, Jeux à champ moyen. I: Le cas stationnaire,, C. R., Math., Acad. Sci. Paris, 343 (2006): 619-625.
|
[49]
|
[ J.-M. Lasry,P.-L. Lions, Lions, Jeux à champ moyen. II: Horizon fini et contrôle optimal,, C. R., Math., Acad. Sci. Paris, 343 (2006): 679-684.
|
[50]
|
[ J.-M. Lasry,P.-L. Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007): 229-260.
|
[51]
|
[ A. S. Monto,S. E. Ohmit,J. G. Petrie,E. Johnson,R. Truscon,E. Teich,J. Rotthoff,M. Boulton,J. C. Victor, Comparative efficacy of inactivated and live attenuated influenza vaccines, New England Journal of Medicine, 361 (2009): 1260-1267.
|
[52]
|
[ R. Morton,K. H. Wickwire, On the optimal control of a deterministic epidemic, Advances in Appl. Probability, 6 (1974): 622-635.
|
[53]
|
[ J. Müller, Optimal vaccination strategies-for whom?, Mathematical Biosciences, 139 (1997): 133-154.
|
[54]
|
[ S. Ng,V. J. Fang,D. K. M. Ip,K.-H. Chan,G. M. Leung,J. S. Malik Peiris,B. J. Cowling, Estimation of the association between antibody titers and protection against confirmed influenza virus infection in children, Journal of Infectious Diseases, 208 (2013): 1320-1324.
|
[55]
|
[ K. L. Nichol,A. Lind,K. L. Margolis,M. Murdoch,R. McFadden,M. Hauge,S. Magnan,M. Drake, The effectiveness of vaccination against influenza in healthy, working adults, New England Journal of Medicine, 333 (1995): 889-893.
|
[56]
|
[ M. T Osterholm,N. S. Kelley,A. Sommer,E. A. Belongia, Efficacy and effectiveness of influenza vaccines: A systematic review and meta-analysis, The Lancet Infectious Diseases, 12 (2012): 36-44.
|
[57]
|
[ T. C. Reluga,C. T. Bauch,A. P. Galvani, Evolving public perceptions and stability in vaccine uptake, Math. Biosci., 204 (2006): 185-198.
|
[58]
|
[ T. C. Reluga,A. P. Galvani, A general approach for population games with application to vaccination, Mathematical Biosciences, 230 (2011): 67-78.
|
[59]
|
[ S. P. Sethi,P. W. Staats, Optimal control of some simple deterministic epidemic models, J. Oper. Res. Soc., 29 (1978): 129-136.
|
[60]
|
[ E. Shim,G. B. Chapman,J. P. Townsend,A. P. Galvani, The influence of altruism on influenza vaccination decisions, Journal of The Royal Society Interface, 9 (2012): 2234-2243.
|
[61]
|
[ D. M. Skowronski,S. Aleina Tweed,S. Aleina Tweed,G. De Serres, Rapid decline of influenza vaccine-induced antibody in the elderly: Is it real, or is it relevant?, The Journal of Infectious Diseases, 197 (2008): 490-502.
|
[62]
|
[ N. M. Smith, J. S. Bresee, D. K. Shay, T. M. Uyeki, N. J. Cox and R. A. Strikas, Prevention and control of influenza: Recommendations of the advisory committee on immunization practices (acip), MMWRRecomm Rep, 55 (2006), 1-42. https://www.cdc.gov/mmwr/preview/mmwrhtml/rr5510a1.htm.
|
[63]
|
[ P. G. Smith, L. C. Rodrigues and P. E. M. Fine, Assessment of the protective efficacy of vaccines against common diseases using case-control and cohort studies, International Journal of Epidemiology, 13 (1984), 87-93.
|
[64]
|
[ C. J. Struchiner, M. E. Halloran, J. M. Robins and A. Spielman, The behaviour of common measures of association used to assess a vaccination programme under complex disease transmission patterns-a computer simulation study of malaria vaccines, International Journal of Epidemiology, 19 (1990), 187-196.
|
[65]
|
[ I. Swiecicki, T. Gobron and D. Ullmo, Schrödinger approach to mean field games, Phys. Rev. Lett., 116(2016), 128701.
|
[66]
|
[ J. D Tamerius, J. Shaman, W. J. Alonso, K. Bloom-Feshbach, C. K. Uejio, An. Comrie and C. Viboud, Environmental predictors of seasonal influenza epidemics across temperate and tropical climates, PLoS Pathog, 9 (2013), e1003194.
|
[67]
|
[ J. J. Treanor,H. K. Talbot,S. E. Ohmit,L. A. Coleman,M. G. Thompson,P.-Y. Cheng,J. G. Petrie,G. Lofthus,J. K. Meece,J. V. Williams,L. Berman,C. Breese Hall,A. S. Monto,M. R. Griffin,E. Belongia,D. K. Shay, Effectiveness of seasonal influenza vaccines in the United States during a season with circulation of all three vaccine strains, Clinical Infectious Diseases, 55 (2012): 951-959.
|
[68]
|
[ G. Turinici, Metric gradient flows with state dependent functionals: the Nash-MFG equilibrium flows and their numerical schemes, Nonlinear Analysis 165 (2017) 163-181.
|
[69]
|
[ R. Vardavas, R. Breban and S. Blower, Can influenza epidemics be prevented by voluntary vaccination?, PLoS Comput Biol, 3 (2007), e85.
|
[70]
|
[ G. A. Weinberg and P. G. Szilagyi, Vaccine epidemiology: Efficacy, effectiveness, and the translational research roadmap, Journal of Infectious Diseases, 201 (2010), 1607-1610
|
[71]
|
[ X. Zhao,V. J. Fang,S. E. Ohmit,A. S. Monto,A. R. Cook,B. J. Cowling, Quantifying protection against influenza virus infection measured by hemagglutination-inhibition assays in vaccine trials,, Epidemiology, 27 (2016): 143-151.
|