Citation: Sanyi Tang, Wenhong Pang. On the continuity of the function describing the times of meeting impulsive set and its application[J]. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1399-1406. doi: 10.3934/mbe.2017072
[1] | [ E. M. Bonotto,M. Federson, Limit sets and the Poincare Bendixson theorem in impulsive semidynamical systems, J. Differ. Equ., 244 (2008): 2334-2349. |
[2] | [ K. Ciesielski, On semicontinuity in impulsive dynamical systems, Bulletin of The Polish Academy of Sciences Mathematics, 52 (2004): 71-80. |
[3] | [ G. B. Ermentrout,N. Kopell, Multiple pulse interactions and averaging in systems of coupled neural oscillators, J. Math. Biol., 29 (1991): 195-217. |
[4] | [ R. A. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961): 445-466. |
[5] | [ G. Gabor, The existence of viable trajectories in the state-dependent impusive systems, Nonlinear Anal. TMA, 72 (2010): 3828-3836. |
[6] | [ G. Gabor, Viable periodic solutions in state-dependent impulsive problems, Collect. Math., 66 (2015): 351-365. |
[7] | [ P. Goel,B. Ermentrout, Synchrony, stability, and firing patterns in pulse-coupled oscillators, Physica D, 163 (2002): 191-216. |
[8] | [ M. Z. Huang,J. X. Li,X. Y. Song,H. J. Guo, Modeling impulsive injections of insulin: Towards aritificial pancreas, SIAM J. Appl. Math., 72 (2012): 1524-1548. |
[9] | [ S. K. Kaul, On impulsive semidynamical systems, J. Math. Anal. Appl., 150 (1990): 120-128. |
[10] | [ J. H. Liang,S. Y. Tang,J. J. Nieto,R. A. Cheke, Analytical methods for detecting pesticide switches with evolution of pesticide resistance, Math. Biosci., 245 (2013): 249-257. |
[11] | [ B. Liu, Y. Tian and B. L. Kang, Dynamics on a Holling Ⅱ predator-prey model with state-dependent impulsive control, International J. Biomath. , 5 (2012), 1260006, 18 pp. |
[12] | [ L. F. Nie,Z. D. Teng,L. Hu, The dynamics of a chemostat model with state dependent impulsive effects, Int. J. Bifurcat. Chaos, 21 (2011): 1311-1322. |
[13] | [ J. C. Panetta, A mathematical model of periodically pulsed chemotherapy: Tumor recurrence and metastasis in a competitive environment, Bull. Math. Biol., 58 (1996): 425-447. |
[14] | [ B. Shulgin,L. Stone,Z. Agur, Pulse vaccination strategy in the SIR epidemic model, Bull. Math. Biol., 60 (1998): 1123-1148. |
[15] | [ L. Stone,B. Shulgin,Z. Agur, Theoretical examination of the pulse vaccination policy in the SIR epidemic model, Math. Comput. Model., 31 (2000): 207-215. |
[16] | [ K. B. Sun,Y. Tian,L. S. Chen,A. Kasperski, Nonlinear modelling of a synchronized chemostat with impulsive state feedback control, Math. Comput. Modelling, 52 (2010): 227-240. |
[17] | [ S. Y. Tang,R. A. Cheke, State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences, J. Math. Biol., 50 (2005): 257-292. |
[18] | [ S. Y. Tang,R. A. Cheke, Models for integrated pest control and their biological implications, Math. Biosci., 215 (2008): 115-125. |
[19] | [ S. Y. Tang,L. S. Chen, Modelling and analysis of integrated pest management strategy, Discrete Contin. Dyn. Syst. B, 4 (2004): 759-768. |
[20] | [ S. Y. Tang,J. H. Liang,Y. S. Tan,R. A. Cheke, Threshold conditions for interated pest management models with pesticides that have residual effects, J. Math. Biol., 66 (2013): 1-35. |
[21] | [ S. Y. Tang, W. H. Pang, R. A. Cheke and J. H. Wu, Global dynamics of a state-dependent feedback control system, Advances in Difference Equations, 2015 (2015), 70pp. |
[22] | [ S. Y. Tang,G. Y. Tang,R. A. Cheke, Optimum timing for integrated pest management: Modeling rates of pesticide application and natural enemy releases, J. Theor. Biol., 264 (2010): 623-638. |
[23] | [ S. Y. Tang,B. Tang,A. L. Wang,Y. N. Xiao, Holling Ⅱ predator-prey impulsive semi-dynamic model with complex Poincare map, Nonlinear Dynamics, 81 (2015): 1575-1596. |
[24] | [ S. Y. Tang,Y. N. Xiao,L. S. Chen,R. A. Cheke, Integrated pest management models and their dynamical behaviour, Bull. Math. Biol., 67 (2005): 115-135. |