Citation: Georgi Kapitanov. A double age-structured model of the co-infection of tuberculosis and HIV[J]. Mathematical Biosciences and Engineering, 2015, 12(1): 23-40. doi: 10.3934/mbe.2015.12.23
[1] | Churni Gupta, Necibe Tuncer, Maia Martcheva . A network immuno-epidemiological model of HIV and opioid epidemics. Mathematical Biosciences and Engineering, 2023, 20(2): 4040-4068. doi: 10.3934/mbe.2023189 |
[2] | Nawei Chen, Shenglong Chen, Xiaoyu Li, Zhiming Li . Modelling and analysis of the HIV/AIDS epidemic with fast and slow asymptomatic infections in China from 2008 to 2021. Mathematical Biosciences and Engineering, 2023, 20(12): 20770-20794. doi: 10.3934/mbe.2023919 |
[3] | Georgi Kapitanov, Christina Alvey, Katia Vogt-Geisse, Zhilan Feng . An age-structured model for the coupled dynamics of HIV and HSV-2. Mathematical Biosciences and Engineering, 2015, 12(4): 803-840. doi: 10.3934/mbe.2015.12.803 |
[4] | Churni Gupta, Necibe Tuncer, Maia Martcheva . Immuno-epidemiological co-affection model of HIV infection and opioid addiction. Mathematical Biosciences and Engineering, 2022, 19(4): 3636-3672. doi: 10.3934/mbe.2022168 |
[5] | Jinliang Wang, Xiu Dong . Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences and Engineering, 2018, 15(3): 569-594. doi: 10.3934/mbe.2018026 |
[6] | Shengqiang Liu, Lin Wang . Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences and Engineering, 2010, 7(3): 675-685. doi: 10.3934/mbe.2010.7.675 |
[7] | Oluwaseun Sharomi, Chandra N. Podder, Abba B. Gumel, Baojun Song . Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment. Mathematical Biosciences and Engineering, 2008, 5(1): 145-174. doi: 10.3934/mbe.2008.5.145 |
[8] | Shaoli Wang, Jianhong Wu, Libin Rong . A note on the global properties of an age-structured viral dynamic model with multiple target cell populations. Mathematical Biosciences and Engineering, 2017, 14(3): 805-820. doi: 10.3934/mbe.2017044 |
[9] | Xue-Zhi Li, Ji-Xuan Liu, Maia Martcheva . An age-structured two-strain epidemic model with super-infection. Mathematical Biosciences and Engineering, 2010, 7(1): 123-147. doi: 10.3934/mbe.2010.7.123 |
[10] | Lih-Ing W. Roeger, Z. Feng, Carlos Castillo-Chávez . Modeling TB and HIV co-infections. Mathematical Biosciences and Engineering, 2009, 6(4): 815-837. doi: 10.3934/mbe.2009.6.815 |
[1] | Math. Model. Nat. Phenom., 3 (2008), 229-266. |
[2] | AIDS, 17 (2003), 2501-2508. |
[3] | Infection and Immunity, 69 (2001), 4195-4201, URL http://iai.asm.org/content/69/7/4195.short. |
[4] | Journal of Infectious Diseases, 198 (2008), 687-693. |
[5] | Theor Popul Biol., 55 (1999), 94-109. |
[6] | BMC Medicine, 11 (2013), p231. |
[7] | Journal of Infectious Diseases, 196 (2007), S5-S14. |
[8] | Global tuberculosis report, 2013. |
[9] | PLoS Pathog, 8 (2012), e1002464. |
[10] | Math Biosci Eng, 6 (2009), 815-837. |
[11] | Math Biosci Eng., 5 (2008), 145-174. |
[12] | Journal of Applied Mathematics, 2013 (2013), Art. ID 429567, 13 pp. |
[13] | Monographs and Textbooks in Pure and Applied Mathematics Series 89. Marcel Dekker Inc., 1985. |
1. | Victor Moreno, Baltazar Espinoza, Kamal Barley, Marlio Paredes, Derdei Bichara, Anuj Mubayi, Carlos Castillo-Chavez, The role of mobility and health disparities on the transmission dynamics of Tuberculosis, 2017, 14, 1742-4682, 10.1186/s12976-017-0049-6 | |
2. | Quentin Richard, Samuel Alizon, Marc Choisy, Mircea T. Sofonea, Ramsès Djidjou-Demasse, Gabor Balazsi, Age-structured non-pharmaceutical interventions for optimal control of COVID-19 epidemic, 2021, 17, 1553-7358, e1008776, 10.1371/journal.pcbi.1008776 | |
3. | Hao Kang, Xi Huo, Shigui Ruan, On first-order hyperbolic partial differential equations with two internal variables modeling population dynamics of two physiological structures, 2021, 200, 0373-3114, 403, 10.1007/s10231-020-01001-5 | |
4. | Biao Tang, Yanni Xiao, Jianhong Wu, Implication of vaccination against dengue for Zika outbreak, 2016, 6, 2045-2322, 10.1038/srep35623 | |
5. | P. J. Dodd, C. Pretorius, B. G. Williams, 2019, Chapter 3, 978-3-030-29107-5, 25, 10.1007/978-3-030-29108-2_3 | |
6. | Sergey Kabanikhin, Olga Krivorotko, Victoriya Kashtanova, Varvara Latyshenko, 2017, Identification the mathematical model of the transmission TB/HIV co-infection in endemic areas, 978-1-5386-1596-6, 77, 10.1109/SIBIRCON.2017.8109841 | |
7. | Yu Mu, Tsz-Lik Chan, Hsiang-Yu Yuan, Wing-Cheong Lo, Transmission Dynamics of Tuberculosis with Age-specific Disease Progression, 2022, 84, 0092-8240, 10.1007/s11538-022-01032-4 | |
8. | Ai Lei, Gopal Chaudhary, Knowledge Transfer Analysis and Management of Virtual Enterprises Based on Structured Cognitive Computing, 2022, 2022, 1687-5273, 1, 10.1155/2022/4858434 | |
9. | Jingjing Lu, Qiaoling Chen, Zhidong Teng, Tingting Zheng, Dynamical analysis of an age‐structured SIRE epidemic model with two routes of infection in environment, 2022, 148, 0022-2526, 461, 10.1111/sapm.12447 | |
10. | Quentin Richard, Marc Choisy, Thierry Lefèvre, Ramsès Djidjou-Demasse, Human-vector malaria transmission model structured by age, time since infection and waning immunity, 2022, 63, 14681218, 103393, 10.1016/j.nonrwa.2021.103393 |