Effect of intraocular pressure on the hemodynamics of the central retinal artery: A mathematical model

  • Received: 01 May 2012 Accepted: 29 June 2018 Published: 01 January 2014
  • MSC : Primary: 76Z05, 74F10, 74L15; Secondary: 76Z05.

  • Retinal hemodynamics plays a crucial role in the pathophysiology of several ocular diseases.There are clear evidences that the hemodynamics of the central retinal artery (CRA) is strongly affected by the level of intraocular pressure (IOP), which is the pressure inside the eye globe. However, the mechanisms through which this occurs are still elusive. The main goal of this paper is to develop a mathematical model that combines the mechanical action of IOP and the blood flow in the CRA to elucidate the mechanisms through which IOP elevation affects the CRA hemodynamics. Our model suggests that the development of radial compressive regions in the lamina cribrosa (a collagen structure in the optic nerve pierced by the CRA approximately in its center) might be responsible for the clinically-observed blood velocity reduction in the CRA following IOP elevation. The predictions of the mathematical model are in very good agreement with experimental and clinical data. Our model also identifies radius and thickness of the lamina cribrosa as major factors affecting the IOP-CRA relationship, suggesting that anatomical differences among individuals might lead to different hemodynamic responses to IOP elevation.

    Citation: Giovanna Guidoboni, Alon Harris, Lucia Carichino, Yoel Arieli, Brent A. Siesky. Effect of intraocular pressure on the hemodynamics of the central retinal artery: A mathematical model[J]. Mathematical Biosciences and Engineering, 2014, 11(3): 523-546. doi: 10.3934/mbe.2014.11.523

    Related Papers:

    [1] Christophe Prud'homme, Lorenzo Sala, Marcela Szopos . Uncertainty propagation and sensitivity analysis: results from the Ocular Mathematical Virtual Simulator. Mathematical Biosciences and Engineering, 2021, 18(3): 2010-2032. doi: 10.3934/mbe.2021105
    [2] Fan He, Minru Li, Xinyu Wang, Lu Hua, Tingting Guo . Numerical investigation of quantitative pulmonary pressure ratio in different degrees of stenosis. Mathematical Biosciences and Engineering, 2024, 21(2): 1806-1818. doi: 10.3934/mbe.2024078
    [3] B. Wiwatanapataphee, D. Poltem, Yong Hong Wu, Y. Lenbury . Simulation of Pulsatile Flow of Blood in Stenosed Coronary Artery Bypass with Graft. Mathematical Biosciences and Engineering, 2006, 3(2): 371-383. doi: 10.3934/mbe.2006.3.371
    [4] Benchawan Wiwatanapataphee, Yong Hong Wu, Thanongchai Siriapisith, Buraskorn Nuntadilok . Effect of branchings on blood flow in the system of human coronary arteries. Mathematical Biosciences and Engineering, 2012, 9(1): 199-214. doi: 10.3934/mbe.2012.9.199
    [5] Li Cai, Qian Zhong, Juan Xu, Yuan Huang, Hao Gao . A lumped parameter model for evaluating coronary artery blood supply capacity. Mathematical Biosciences and Engineering, 2024, 21(4): 5838-5862. doi: 10.3934/mbe.2024258
    [6] Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen . Estimation and identification of parameters in a lumped cerebrovascular model. Mathematical Biosciences and Engineering, 2009, 6(1): 93-115. doi: 10.3934/mbe.2009.6.93
    [7] Panagiotes A. Voltairas, Antonios Charalambopoulos, Dimitrios I. Fotiadis, Lambros K. Michalis . A quasi-lumped model for the peripheral distortion of the arterial pulse. Mathematical Biosciences and Engineering, 2012, 9(1): 175-198. doi: 10.3934/mbe.2012.9.175
    [8] Lorenzo Civilla, Agnese Sbrollini, Laura Burattini, Micaela Morettini . An integrated lumped-parameter model of the cardiovascular system for the simulation of acute ischemic stroke: description of instantaneous changes in hemodynamics. Mathematical Biosciences and Engineering, 2021, 18(4): 3993-4010. doi: 10.3934/mbe.2021200
    [9] Nattawan Chuchalerm, Wannika Sawangtong, Benchawan Wiwatanapataphee, Thanongchai Siriapisith . Study of Non-Newtonian blood flow - heat transfer characteristics in the human coronary system with an external magnetic field. Mathematical Biosciences and Engineering, 2022, 19(9): 9550-9570. doi: 10.3934/mbe.2022444
    [10] Mette S. Olufsen, Ali Nadim . On deriving lumped models for blood flow and pressure in the systemic arteries. Mathematical Biosciences and Engineering, 2004, 1(1): 61-80. doi: 10.3934/mbe.2004.1.61
  • Retinal hemodynamics plays a crucial role in the pathophysiology of several ocular diseases.There are clear evidences that the hemodynamics of the central retinal artery (CRA) is strongly affected by the level of intraocular pressure (IOP), which is the pressure inside the eye globe. However, the mechanisms through which this occurs are still elusive. The main goal of this paper is to develop a mathematical model that combines the mechanical action of IOP and the blood flow in the CRA to elucidate the mechanisms through which IOP elevation affects the CRA hemodynamics. Our model suggests that the development of radial compressive regions in the lamina cribrosa (a collagen structure in the optic nerve pierced by the CRA approximately in its center) might be responsible for the clinically-observed blood velocity reduction in the CRA following IOP elevation. The predictions of the mathematical model are in very good agreement with experimental and clinical data. Our model also identifies radius and thickness of the lamina cribrosa as major factors affecting the IOP-CRA relationship, suggesting that anatomical differences among individuals might lead to different hemodynamic responses to IOP elevation.


    [1] Ophthalmology, 118 (2011), 52-59.
    [2] Circ. Res., 76 (1995), 468-478.
    [3] Invest. Ophthalmol. Vis. Sci., 50 (2009), 4351-4359.
    [4] Invest. Ophthalmol. Vis. Sci., 41 (2000), 40-48.
    [5] Prog. Retin. Eye Res., 24 (2005), 39-73.
    [6] Am. J. Ophthalmol., 149 (2010), 704-712.
    [7] Acta Ophthalmol. Scand., 82 (2004), 419-425.
    [8] Am. J. Ophthalmol., 144 (2007), 525-532.
    [9] J. Biomech., 32 (1999), 579-584.
    [10] Curr. Eye Res., 25 (2002), 341-345.
    [11] Curr. Eye Res., 23 (2001), 215-225.
    [12] Clin. Interv. Aging., 3 (2008), 473-482.
    [13] Curr. Eye Res., 16 (1997), 1024-1029.
    [14] Prog. Retin. Eye Res., 20 (2001), 319-349.
    [15] http://www.freefem.org/ff++/.
    [16] $2^{nd}$ edition, Springer-Verlag, New York, 1997.
    [17] $2^{nd}$ edition, Springer-Verlag, New York, 1993.
    [18] Ann. Biomed. Eng., 38 (2010), 1566-1585.
    [19] Microvasc. Res., 80 (2010), 99-109.
    [20] Comput. Methods Programs Biomed., 102 (2011), 35-46.
    [21] Med. Eng. Phys., 33 (2011), 810-823.
    [22] Invest. Ophthalmol. Vis. Sci., 44 (2003), 3382-3387.
    [23] Invest. Ophthalmol. Vis. Sci., 45 (2004), 2272-2278.
    [24] Ophthalmology, 112 (2005), 33-39.
    [25] Arch. Ophthalmol., 128 (2010), 541-550.
    [26] J. Coupled Syst. Multiscale Dyn., 1(1) (2013), 1-21.
    [27] Br. J. Ophthalmol., 80 (1996), 1055-1059.
    [28] Elsevier, Philadelphia, 2003.
    [29] Can. J. Ophthalmol., 43 (2008), 328-336.
    [30] Eur. J. Ophthalmol., 23(2) (2013), 139-146.
    [31] Prog. Retin. Eye Res., 20 (2001), 595-624.
    [32] Surv. Ophthalmol., 52 (2007), 32-49.
    [33] Eur. J. Ophthalmol., 19 (2009), 790-797.
    [34] Invest. Ophthalmol. Vis. Sci., 32 (1991), 401-405.
    [35] Invest. Ophthalmol. Vis. Sci., 46 (2005), 1275-1279.
    [36] Arc. Ophthalmol., 130 (2012), 312-318.
    [37] Arc. Ophthalmol., 112 (1994), 821-829.
    [38] Ophthalmic Epidemiol., 14 (2007), 166-172.
    [39] Ophthalmology, 114 (2007), 1965-1972.
    [40] Netw. Heterog. Media, 2 (2007), 397-423.
    [41] Clin. Ophthalmol., 2 (2008), 849-861.
    [42] Invest. Ophthalmol. Vis. Sci., 39 (1998), 3236-3242.
    [43] Invest. Ophthalmol. Vis. Sci., 43 (2002), 1419-1428.
    [44] Br. J. Ophthalmol., 88 (2004), 1299-1304.
    [45] J. Biomech. Eng., 128 (2006), 496-504.
    [46] Exp. Eye Res., 90 (2010), 277-284.
    [47] Can. J. Ophthalmol., 43 (2008), 295-301.
    [48] Br. J. Ophthalmol., 81 (1997), 350-354.
    [49] Prog. Retin. Eye Res., 27 (2008), 284-330.
    [50] Comput. Visual Sci., 2 (2000), 163-197.
    [51] Surv. Ophthalmol., 48 (2003), 295-313.
    [52] Arch. Ophthalmol., 123 (2005), 1547-1553.
    [53] Invest. Ophthalmol. Vis. Sci., 50 (2009), 2175-2184.
    [54] J. Glaucoma, 18 (2009), 595-600.
    [55] Invest. Ophthalmol. Vis. Sci., 45 (2004), 4378-4387.
    [56] Exp. Eye Res., 85 (2007), 312-322.
    [57] Biomech. Model. Mechanobiol., 8 (2009), 85-98.
    [58] Invest. Ophthalmol. Vis. Sci., 52 (2011), 9023-9032.
    [59] Invest. Ophthalmol. Vis. Sci., 53 (2012), 2658-2667.
    [60] Invest. Ophthalmol. Vis. Sci., 53(7) (2012), 4270-4278.
    [61] Invest. Ophthalmol. Vis. Sci., 53 (2012), 6870-6879.
    [62] N. Engl. J. Med., 325 (1991), 1412-1417.
    [63] Curr. Opin. Ophthalmol., 7 (1996), 93-98.
    [64] J. Biorheol., 23 (2009), 77-86.
    [65] JAMA, 266 (1991), 369-374.
    [66] Arch. Ophthalmol., 112 (1994), 1068-1076.
    [67] Exp. Eye Res., 14 (1972), 29-39.
    [68] J. Glaucoma, 15 (2006), 548-551.
  • This article has been cited by:

    1. A. Tatone, F. Recrosi, R. Repetto, G. Guidoboni, From species diffusion to poroelasticity and the modeling of lamina cribrosa, 2019, 124, 00225096, 849, 10.1016/j.jmps.2018.11.017
    2. Alon Harris, Giovanna Guidoboni, Brent Siesky, Sunu Mathew, Alice C. Verticchio Vercellin, Lucas Rowe, Julia Arciero, Ocular blood flow as a clinical observation: Value, limitations and data analysis, 2020, 78, 13509462, 100841, 10.1016/j.preteyeres.2020.100841
    3. Riccardo Sacco, Giovanna Guidoboni, Aurelio Giancarlo Mauri, 2019, 9780128125182, 295, 10.1016/B978-0-12-812518-2.00021-4
    4. Paola Causin, Giovanna Guidoboni, Francesca Malgaroli, Riccardo Sacco, Alon Harris, 2016, Chapter 41, 978-3-319-23412-0, 311, 10.1007/978-3-319-23413-7_41
    5. 贞丽 林, Relationship between Retinal Vein Occlusion and Carotid Artery Hemodynamic, 2016, 05, 2167-6542, 49, 10.12677/HJO.2016.53009
    6. Dmitry M. Shamaev, Petr V. Luzhnov, Elena N. Iomdina, 2018, Chapter 250, 978-981-10-5121-0, 1000, 10.1007/978-981-10-5122-7_250
    7. Lina Siaudvytyte, 2019, Chapter 5, 978-3-319-98197-0, 25, 10.1007/978-3-319-98198-7_5
    8. 2019, 9780128125182, 805, 10.1016/B978-0-12-812518-2.00047-0
    9. Jihene Malek, Ahmad Taher Azar, Rached Tourki, Impact of retinal vascular tortuosity on retinal circulation, 2015, 26, 0941-0643, 25, 10.1007/s00521-014-1657-2
    10. Paola Causin, Giovanna Guidoboni, Alon Harris, Daniele Prada, Riccardo Sacco, Samuele Terragni, A poroelastic model for the perfusion of the lamina cribrosa in the optic nerve head, 2014, 257, 00255564, 33, 10.1016/j.mbs.2014.08.002
    11. Fabrizia Salerni, Rodolfo Repetto, Alon Harris, Peter Pinsky, Christophe Prud’homme, Marcela Szopos, Giovanna Guidoboni, Sakamuri V. Reddy, Biofluid modeling of the coupled eye-brain system and insights into simulated microgravity conditions, 2019, 14, 1932-6203, e0216012, 10.1371/journal.pone.0216012
    12. Min Hee Suh, Linda M. Zangwill, Patricia Isabel C. Manalastas, Akram Belghith, Adeleh Yarmohammadi, Felipe A. Medeiros, Alberto Diniz-Filho, Luke J. Saunders, Siamak Yousefi, Robert N. Weinreb, Optical Coherence Tomography Angiography Vessel Density in Glaucomatous Eyes with Focal Lamina Cribrosa Defects, 2016, 123, 01616420, 2309, 10.1016/j.ophtha.2016.07.023
    13. Josh C Gross, Alon Harris, Brent A Siesky, Riccardo Sacco, Aaditya Shah, Giovanna Guidoboni, Mathematical modeling for novel treatment approaches to open-angle glaucoma, 2017, 12, 1746-9899, 443, 10.1080/17469899.2017.1383896
    14. Paola Causin, Giovanna Guidoboni, Francesca Malgaroli, Riccardo Sacco, Alon Harris, Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: multiscale mathematical modeling and numerical simulation, 2016, 15, 1617-7959, 525, 10.1007/s10237-015-0708-7
    15. Hanjing Tian, Long Li, Fan Song, Study on the deformations of the lamina cribrosa during glaucoma, 2017, 55, 17427061, 340, 10.1016/j.actbio.2017.03.028
    16. Julia C. Arciero, Paola Causin, Francesca Malgaroli, Mathematical methods for modeling the microcirculation, 2017, 4, 2377-9098, 362, 10.3934/biophy.2017.3.362
    17. Alon Harris, Josh Gross, Daniele Prada, Brent Siesky, Alice C. Verticchio Vercellin, Lauren Saint, Giovanna Guidoboni, 2019, Chapter 33, 978-981-13-2136-8, 225, 10.1007/978-981-13-2137-5_33
    18. Giovanna Guidoboni, Riccardo Sacco, Marcela Szopos, Lorenzo Sala, Alice Chandra Verticchio Vercellin, Brent Siesky, Alon Harris, Neurodegenerative Disorders of the Eye and of the Brain: A Perspective on Their Fluid-Dynamical Connections and the Potential of Mechanism-Driven Modeling, 2020, 14, 1662-453X, 10.3389/fnins.2020.566428
    19. Jihene Malek, Ahmad Taher Azar, Boutheina Nasralli, Mehdi Tekari, Heykel Kamoun, Rached Tourki, Computational analysis of blood flow in the retinal arteries and veins using fundus image, 2015, 69, 08981221, 101, 10.1016/j.camwa.2014.11.017
    20. Daniele Prada, Alon Harris, Giovanna Guidoboni, Lucas Rowe, Alice Chandra Verticchio-Vercellin, Sunu Mathew, 2019, Chapter 2, 978-3-030-25885-6, 23, 10.1007/978-3-030-25886-3_2
    21. Julia Arciero, Lucia Carichino, Simone Cassani, Giovanna Guidoboni, 2019, Chapter 5, 978-3-030-25885-6, 101, 10.1007/978-3-030-25886-3_5
    22. Konstantinos Pappelis, Lars Choritz, Nomdo M. Jansonius, Microcirculatory model predicts blood flow and autoregulation range in the human retina: in vivo investigation with laser speckle flowgraphy, 2020, 319, 0363-6135, H1253, 10.1152/ajpheart.00404.2020
    23. Yoon Kyung Kim, Undarmaa Tumurbaatar, Young-Hoon Ohn, Seung Joo Ha, Ka Hee Park, Cerebrospinal Fluid Pressure and Trans-lamina Cribrosa Pressure Difference in Open-angle Glaucoma: KNHANES V, 2016, 57, 0378-6471, 1392, 10.3341/jkos.2016.57.9.1392
    24. Min Hee Suh, Linda M. Zangwill, Patricia Isabel C. Manalastas, Akram Belghith, Adeleh Yarmohammadi, Felipe A. Medeiros, Alberto Diniz-Filho, Luke J. Saunders, Robert N. Weinreb, Deep Retinal Layer Microvasculature Dropout Detected by the Optical Coherence Tomography Angiography in Glaucoma, 2016, 123, 01616420, 2509, 10.1016/j.ophtha.2016.09.002
    25. Emily Nelson, Lealem Mulugeta, Jerry Myers, Microgravity-Induced Fluid Shift and Ophthalmic Changes, 2014, 4, 2075-1729, 621, 10.3390/life4040621
    26. Christophe Prud'homme, Lorenzo Sala, Marcela Szopos, Uncertainty propagation and sensitivity analysis: results from the Ocular Mathematical Virtual Simulator, 2021, 18, 1551-0018, 2010, 10.3934/mbe.2021105
    27. Lorena Bociu, Sarah Strikwerda, Optimal control in poroelasticity, 2022, 101, 0003-6811, 1774, 10.1080/00036811.2021.2008372
    28. Marie Ørskov, Henrik Vorum, Torben Bjerregaard Larsen, Gregory Y. H. Lip, Toke Bek, Flemming Skjøth, Similarities and differences in systemic risk factors for retinal artery occlusion and retinal vein occlusion: A nationwide case–control study, 2022, 1573-2630, 10.1007/s10792-022-02483-3
    29. Lorena Bociu, Sarah Strikwerda, 2022, Chapter 5, 978-3-031-04495-3, 103, 10.1007/978-3-031-04496-0_5
    30. Marie Ørskov, Henrik Vorum, Torben Bjerregaard Larsen, Gregory Y.H. Lip, Toke Bek, Flemming Skjøth, Similarities and Differences in Systemic Risk Factors for Retinal Artery Occlusion and Stroke: A Nationwide Case-Control Study, 2022, 31, 10523057, 106610, 10.1016/j.jstrokecerebrovasdis.2022.106610
    31. Marie Ørskov, Henrik Vorum, Torben Bjerregaard Larsen, Gregory Y. H. Lip, Toke Bek, Flemming Skjøth, Clinical risk factors for retinal artery occlusions: a nationwide case–control study, 2022, 42, 1573-2630, 2483, 10.1007/s10792-022-02247-z
    32. H. Banks, K. Bekele-Maxwell, L. Bociu, M. Noorman, G. Guidoboni, Sensitivity analysis in poro-elastic and poro-visco-elastic models with respect to boundary data, 2017, 75, 0033-569X, 697, 10.1090/qam/1475
    33. Lorena Bociu, Boris Muha, Justin T. Webster, Weak solutions in nonlinear poroelasticity with incompressible constituents, 2022, 67, 14681218, 103563, 10.1016/j.nonrwa.2022.103563
    34. Greta Chiaravalli, Giovanna Guidoboni, Riccardo Sacco, Jake Radell, Alon Harris, A multi-scale/multi-physics model for the theoretical study of the vascular configuration of retinal capillary plexuses based on OCTA data, 2022, 39, 1477-8599, 77, 10.1093/imammb/dqab018
    35. Rémi J Hernandez, Paul A Roberts, Wahbi K El-Bouri, Advancing treatment of retinal disease through in silico trials, 2023, 5, 2516-1091, 022002, 10.1088/2516-1091/acc8a9
    36. Lorenzo Sala, Christophe Prud'homme, Giovanna Guidoboni, Marcela Szopos, Alon Harris, The ocular mathematical virtual simulator: A validated multiscale model for hemodynamics and biomechanics in the human eye, 2023, 2040-7939, 10.1002/cnm.3791
    37. Lorenzo Sala, Kendall Lyons, Giovanna Guidoboni, Alon Harris, Marcela Szopos, Sergey Lapin, Analysis of Waveform Parameters in the Retinal Vasculature via Mathematical Modeling and Data Analytics Methods, 2024, 2730-9657, 10.1007/s44007-024-00137-7
    38. Yifei Peng, Lu Xiong, Haokun Qu, Yang Liu, Zheng Wang, Analysis of the correlations between changes in posterior segment and anterior chamber segment after implantable collamer lens implantation in highly myopic patients, 2025, 25, 1471-2415, 10.1186/s12886-025-03863-w
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4125) PDF downloads(778) Cited by(38)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog