Loading [Contrib]/a11y/accessibility-menu.js

Sociological phenomena as multiple nonlinearities: MTBI's new metaphor for complex human interactions

  • Mathematical models are well-established as metaphors for biological and epidemiological systems. The framework of epidemic modeling has also been applied to sociological phenomena driven by peer pressure, notably in two dozen dynamical systems research projects developed through the Mathematical and Theoretical Biology Institute, and popularized by authors such as Gladwell (2000). This article reviews these studies and their common structures, and identifies a new mathematical metaphor which uses multiple nonlinearities to describe the multiple thresholds governing the persistence of hierarchical phenomena, including the situation termed a ``backward bifurcation'' in mathematical epidemiology, where established phenomena can persist in circumstances under which the phenomena could not initially emerge.

    Citation: Christopher M. Kribs-Zaleta. Sociological phenomena as multiple nonlinearities: MTBI's new metaphor for complex human interactions[J]. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1587-1607. doi: 10.3934/mbe.2013.10.1587

    Related Papers:

    [1] K.Pandey Raghvendra, A.Stapleto Williamn, Shamsuzzoha Mohammad, Sutanto Ivan . Voltage biased Varistor-Transistor Hybrid Devices: Properties and Applications. AIMS Materials Science, 2015, 2(3): 243-259. doi: 10.3934/matersci.2015.243
    [2] Yaorong Su, Weiguang Xie, Jianbin Xu . Towards low-voltage organic thin film transistors (OTFTs) with solution-processed high-k dielectric and interface engineering. AIMS Materials Science, 2015, 2(4): 510-529. doi: 10.3934/matersci.2015.4.510
    [3] Gennaro Gelao, Roberto Marani, Anna Gina Perri . Analysis and design of current mode logic based on CNTFET. AIMS Materials Science, 2023, 10(6): 965-980. doi: 10.3934/matersci.2023052
    [4] Felicia Ullstad, Jay R. Chan, Harry Warring, Natalie Plank, Ben Ruck, Joe Trodahl, Franck Natali . Ohmic contacts of Au and Ag metals to n-type GdN thin films. AIMS Materials Science, 2015, 2(2): 79-85. doi: 10.3934/matersci.2015.2.79
    [5] Abbas Hodroj, Lionel Teulé-Gay, Michel Lahaye, Jean-Pierre Manaud, Angeline Poulon-Quintin . Nanocrystalline diamond coatings: Effects of time modulation bias enhanced HFCVD parameters. AIMS Materials Science, 2018, 5(3): 519-532. doi: 10.3934/matersci.2018.3.519
    [6] Alberto Debernardi . Ab initio calculation of band alignment of epitaxial La2O3 on Si(111) substrate. AIMS Materials Science, 2015, 2(3): 279-293. doi: 10.3934/matersci.2015.3.279
    [7] Dong Geun Lee, Hwan Chul Yoo, Eun-Ki Hong, Won-Ju Cho, Jong Tae Park . Device performances and instabilities of the engineered active layer with different film thickness and composition ratios in amorphous InGaZnO thin film transistors. AIMS Materials Science, 2020, 7(5): 596-607. doi: 10.3934/matersci.2020.5.596
    [8] Wei-Chi Chen, Pin-Yao Chen, Sheng-Hsiung Yang . Solution-processed hybrid light emitting and photovoltaic devices comprising zinc oxide nanorod arrays and tungsten trioxide layers. AIMS Materials Science, 2017, 4(3): 551-560. doi: 10.3934/matersci.2017.3.551
    [9] Takuto Eguchi, Shinya Kato, Naoki Kishi, Tetsuo Soga . Effect of thickness on photovoltaic properties of amorphous carbon/fullerene junction. AIMS Materials Science, 2022, 9(3): 446-454. doi: 10.3934/matersci.2022026
    [10] Giovanna Di Pasquale, Salvatore Graziani, Chiara Gugliuzzo, Antonino Pollicino . Ionic polymer-metal composites (IPMCs) and ionic polymer-polymer composites (IP2Cs): Effects of electrode on mechanical, thermal and electromechanical behaviour. AIMS Materials Science, 2017, 4(5): 1062-1077. doi: 10.3934/matersci.2017.5.1062
  • Mathematical models are well-established as metaphors for biological and epidemiological systems. The framework of epidemic modeling has also been applied to sociological phenomena driven by peer pressure, notably in two dozen dynamical systems research projects developed through the Mathematical and Theoretical Biology Institute, and popularized by authors such as Gladwell (2000). This article reviews these studies and their common structures, and identifies a new mathematical metaphor which uses multiple nonlinearities to describe the multiple thresholds governing the persistence of hierarchical phenomena, including the situation termed a ``backward bifurcation'' in mathematical epidemiology, where established phenomena can persist in circumstances under which the phenomena could not initially emerge.


    [1] Biometrics Unit Technical Report BU-1525-M, Cornell University, 2000. Available from: http://mtbi.asu.edu/research/archive.
    [2] J. Political Economy, 58 (1950), 211-221.
    [3] MCMSC Technical Report MTBI-08-08M, Arizona State University, 2011. Available from: http://mtbi.asu.edu/research/archive.
    [4] Physica A, 364 (2006), 513-536.
    [5] Studies in Theoretical Biology: A Collection of Undergraduate Research, 1 (2000), 549-580; Biometrics Unit Technical Report BU-815, Cornell University. Available from: http://mtbi.asu.edu/research/archive.
    [6] Biometrics Unit Technical Report BU-1504-M, Cornell University, 1997. Available from: http://mtbi.asu.edu/research/archive.
    [7] Biometrics Unit Technical Report BU-1505-M, Cornell University, 1997. Available from: http://mtbi.asu.edu/research/archive.
    [8] Amer. J. Soc., 95 (1989), 1226-1259.
    [9] Discrete and Continuous Dynamical Systems, Series B, 14 (2010), 17-40.
    [10] Journal of Mathematical Biology, 28 (1990), 365-382.
    [11] Biometrics Unit Technical Report BU-1616-M, Cornell University, 2002. Available from: http://mtbi.asu.edu/research/archive.
    [12] MCMSC Technical Report MTBI-01-3M, Arizona State University, 2004. Available from: http://mtbi.asu.edu/research/archive.
    [13] Little, Brown & Co., New York, 2000.
    [14] J. Math. Soc., 17 (1993), 281-302.
    [15] Journal of Mathematical Psychology, 47 (2003), 515-526.
    [16] Am. J. Soc., 83 (1978), 1420-1443.
    [17] J. Math. Soc., 9 (1983), 165-179.
    [18] in "Creativity, Psychology and the History of Science'' (eds. Howard E. Gruber and Katja Bodeker), Springer, New York, (2005), 259-270.
    [19] Math. Biosciences, 128 (1995), 41-55.
    [20] Acta Biotheoretica, 50 (2002), 189-204.
    [21] Proc. Royal Soc. Edin. A, 115 (1927), 700-721; Reprinted in Bull. Math. Biol., 53 (1991), 33-55.
    [22] Proc. Royal Soc. Edin. A, 138 (1932), 55-83; Reprinted in Bull. Math. Biol., 53 (1991), 57-87.
    [23] Proc. Royal Soc. Edin. A, 141 (1933), 94-122; Reprinted in Bull. Math. Biol., 53 (1991), 89-118.
    [24] Math. Biosci. Eng., 7 (2010), 657-673.
    [25] Math. Biosciences, 164 (2000), 183-201.
    [26] Socio-Economic Planning Sciences, 43 (2010), 1-12.
    [27] Harvard Univ. Press, Cambridge, MA, 1982.
    [28] Amer. Economic Review, 42 (1952), 804-819.
    [29] Springer-Verlag, New York, 1992.
    [30] Discrete and Continuous Dynamical Systems, Series B, 15 (2011), 707-738.
    [31] Second edition, Murray, London, 1911.
    [32] in "Therapist's Guide to Evidence-Based Relapse Prevention'' (eds. Katie Witkiewitz and G. Alan Marlatt), Academic Press/Elsevier, (2007), 353-368.
    [33] J. Math. Soc., 1 (1971), 143-186.
    [34] MCMSC Technical Report MTBI-04-07M, Arizona State University, 2007. Available from: http://mtbi.asu.edu/research/archive.
    [35] Mathematical Biosciences and Engineering, 3 (2006), 249-266.
    [36] Mathematical Biosciences, 180 (2002), 29-48.
    [37] J. Math. Soc., 18 (1994), 267-291.
    [38] Harwood Academic Publishers, Amsterdam, 2000.
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2184) PDF downloads(445) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog