Applications of occupancy urn models to epidemiology

  • Received: 01 February 2008 Accepted: 29 June 2018 Published: 01 June 2009
  • MSC : Primary: 62P10; Secondary: 92B05.

  • This paper shows how occupancy urn models can be used to derive useful results in epidemiology. First we show how simple epidemic models can be re-interpreted in terms of occupancy problems. We use this reformulation to derive an expression for the expected epidemic size, that is, the total number of infected at the end of an outbreak. We also use this approach to derive point and interval estimates of the Basic Reproduction Ratio, R0. We show that this construction does not require that the underlying SIR model be a homogeneous Poisson process, leading to a geometric distribution for the number of contacts before removal, but instead it supports a general distribution. The urn model construction is easy to handle and represents a rich field for further exploitation.

    Citation: Carlos M. Hernández-Suárez, Oliver Mendoza-Cano. Applications of occupancy urn models to epidemiology[J]. Mathematical Biosciences and Engineering, 2009, 6(3): 509-520. doi: 10.3934/mbe.2009.6.509

    Related Papers:

    [1] Tianfang Hou, Guijie Lan, Sanling Yuan, Tonghua Zhang . Threshold dynamics of a stochastic SIHR epidemic model of COVID-19 with general population-size dependent contact rate. Mathematical Biosciences and Engineering, 2022, 19(4): 4217-4236. doi: 10.3934/mbe.2022195
    [2] Shanjing Ren . Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1337-1360. doi: 10.3934/mbe.2017069
    [3] Zhen Jin, Guiquan Sun, Huaiping Zhu . Epidemic models for complex networks with demographics. Mathematical Biosciences and Engineering, 2014, 11(6): 1295-1317. doi: 10.3934/mbe.2014.11.1295
    [4] Lizhong Qiang, Ren-Hu Wang, Ruofan An, Zhi-Cheng Wang . A stage-structured SEIR model with time-dependent delays in an almost periodic environment. Mathematical Biosciences and Engineering, 2020, 17(6): 7732-7750. doi: 10.3934/mbe.2020393
    [5] Maoxing Liu, Yuhang Li . Dynamics analysis of an SVEIR epidemic model in a patchy environment. Mathematical Biosciences and Engineering, 2023, 20(9): 16962-16977. doi: 10.3934/mbe.2023756
    [6] Shuang-Hong Ma, Hai-Feng Huo . Global dynamics for a multi-group alcoholism model with public health education and alcoholism age. Mathematical Biosciences and Engineering, 2019, 16(3): 1683-1708. doi: 10.3934/mbe.2019080
    [7] Fang Wang, Juping Zhang, Maoxing Liu . Dynamical analysis of a network-based SIR model with saturated incidence rate and nonlinear recovery rate: an edge-compartmental approach. Mathematical Biosciences and Engineering, 2024, 21(4): 5430-5445. doi: 10.3934/mbe.2024239
    [8] Abulajiang Aili, Zhidong Teng, Long Zhang . Dynamical behavior of a coupling SEIR epidemic model with transmission in body and vitro, incubation and environmental effects. Mathematical Biosciences and Engineering, 2023, 20(1): 505-533. doi: 10.3934/mbe.2023023
    [9] Xinli Hu . Threshold dynamics for a Tuberculosis model with seasonality. Mathematical Biosciences and Engineering, 2012, 9(1): 111-122. doi: 10.3934/mbe.2012.9.111
    [10] Hai-Feng Huo, Shuang-Lin Jing, Xun-Yang Wang, Hong Xiang . Modelling and analysis of an alcoholism model with treatment and effect of Twitter. Mathematical Biosciences and Engineering, 2019, 16(5): 3561-3622. doi: 10.3934/mbe.2019179
  • This paper shows how occupancy urn models can be used to derive useful results in epidemiology. First we show how simple epidemic models can be re-interpreted in terms of occupancy problems. We use this reformulation to derive an expression for the expected epidemic size, that is, the total number of infected at the end of an outbreak. We also use this approach to derive point and interval estimates of the Basic Reproduction Ratio, R0. We show that this construction does not require that the underlying SIR model be a homogeneous Poisson process, leading to a geometric distribution for the number of contacts before removal, but instead it supports a general distribution. The urn model construction is easy to handle and represents a rich field for further exploitation.


  • This article has been cited by:

    1. Carlos M. Hernandez-Suarez, David Hiebeler, Modeling species dispersal with occupancy urn models, 2012, 5, 1874-1738, 555, 10.1007/s12080-011-0147-8
    2. N. Zoroa, E. Lesigne, M. J. Fernández-Sáez, P. Zoroa, J. Casas, The coupon collector urn model with unequal probabilities in ecology and evolution, 2017, 14, 1742-5689, 20160643, 10.1098/rsif.2016.0643
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2854) PDF downloads(590) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog