The existence of positive periodic solutions of a generalized

  • Received: 01 November 2007 Accepted: 29 June 2018 Published: 01 October 2008
  • MSC : Primary: 34A37; Secondary: 34K15

  • In this paper, the existence of positive periodic solutions of a class of periodic n-species Gilpin-Ayala impulsive competition systems is studied. By using the continuation theorem of coincidence degree theory, a set of easily verifiable sufficient conditions is obtained. Our results are general enough to include some known results in this area.

    Citation: Meili Li, Maoan Han, Chunhai Kou. The existence of positive periodic solutions of a generalized[J]. Mathematical Biosciences and Engineering, 2008, 5(4): 803-812. doi: 10.3934/mbe.2008.5.803

    Related Papers:

    [1] Meng Gao, Xiaohui Ai . A stochastic Gilpin-Ayala mutualism model driven by mean-reverting OU process with Lévy jumps. Mathematical Biosciences and Engineering, 2024, 21(3): 4117-4141. doi: 10.3934/mbe.2024182
    [2] Xizhuang Xie, Meixiang Chen . Global stability of a tridiagonal competition model with seasonal succession. Mathematical Biosciences and Engineering, 2023, 20(4): 6062-6083. doi: 10.3934/mbe.2023262
    [3] Qizhen Xiao, Binxiang Dai . Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences and Engineering, 2015, 12(5): 1065-1081. doi: 10.3934/mbe.2015.12.1065
    [4] Tingting Zhao, Robert J. Smith? . Global dynamical analysis of plant-disease models with nonlinear impulsive cultural control strategy. Mathematical Biosciences and Engineering, 2019, 16(6): 7022-7056. doi: 10.3934/mbe.2019353
    [5] Guirong Jiang, Qishao Lu, Linping Peng . Impulsive Ecological Control Of A Stage-Structured Pest Management System. Mathematical Biosciences and Engineering, 2005, 2(2): 329-344. doi: 10.3934/mbe.2005.2.329
    [6] Changyong Xu, Qiang Li, Tonghua Zhang, Sanling Yuan . Stability and Hopf bifurcation for a delayed diffusive competition model with saturation effect. Mathematical Biosciences and Engineering, 2020, 17(6): 8037-8051. doi: 10.3934/mbe.2020407
    [7] Haifeng Huo, Fanhong Zhang, Hong Xiang . Spatiotemporal dynamics for impulsive eco-epidemiological model with Crowley-Martin type functional response. Mathematical Biosciences and Engineering, 2022, 19(12): 12180-12211. doi: 10.3934/mbe.2022567
    [8] Jie Hu, Juan Liu, Peter Yuen, Fuzhong Li, Linqiang Deng . Modelling of a seasonally perturbed competitive three species impulsive system. Mathematical Biosciences and Engineering, 2022, 19(3): 3223-3241. doi: 10.3934/mbe.2022149
    [9] Ming Chen, Meng Fan, Xing Yuan, Huaiping Zhu . Effect of seasonal changing temperature on the growth of phytoplankton. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1091-1117. doi: 10.3934/mbe.2017057
    [10] Qian Li, Yanni Xiao . Analysis of a mathematical model with nonlinear susceptibles-guided interventions. Mathematical Biosciences and Engineering, 2019, 16(5): 5551-5583. doi: 10.3934/mbe.2019276
  • In this paper, the existence of positive periodic solutions of a class of periodic n-species Gilpin-Ayala impulsive competition systems is studied. By using the continuation theorem of coincidence degree theory, a set of easily verifiable sufficient conditions is obtained. Our results are general enough to include some known results in this area.


  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2590) PDF downloads(448) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog