In this study, the generalized $ A\mp $ equation is explored, with symmetry generators addressing the criteria for Lie invariance. The proposed approach yields the Lie algebra, where translation symmetries in space and time correspond to mass conservation and energy conservation, respectively. By employing Lie group methods, the generalized $ A \mp $ equation is transformed through suitable similarity transformations into a system of highly nonlinear ordinary differential equations. The modified F-expansion approach is then applied to derive soliton solutions. The behavior of these solutions is visualized in three and two dimensions (3D and 2D), with contour plots, and the effect of wave speed is studied for specific values of the physical components in the equation. These results contribute significantly to advancing the field by enhancing the depth and impact of research. Subsequently, the dynamic behavior of the model was thoroughly investigated, with particular emphasis on the chaos analysis. The incorporation of an external periodic force led to the emergence of chaotic and quasi-periodic phenomena. These complex dynamics were illustrated using time series plots, 2D and 3D phase portraits, return maps, bifurcation diagrams, chaotic attractors, fractal dimensions, Poincaré maps, and Lyapunov exponent analysis. This comprehensive approach not only provides deeper insight into the system's stability and sensitivity but also offers a valuable framework for identifying and controlling complex behaviors in nonlinear dynamic models.
Citation: Beenish, Fehaid Salem Alshammari. Exploring chaotic behavior, conservation laws, Lie symmetry, and soliton dynamics in the generalized $ A \mp $ equation[J]. AIMS Mathematics, 2025, 10(9): 22150-22179. doi: 10.3934/math.2025986
In this study, the generalized $ A\mp $ equation is explored, with symmetry generators addressing the criteria for Lie invariance. The proposed approach yields the Lie algebra, where translation symmetries in space and time correspond to mass conservation and energy conservation, respectively. By employing Lie group methods, the generalized $ A \mp $ equation is transformed through suitable similarity transformations into a system of highly nonlinear ordinary differential equations. The modified F-expansion approach is then applied to derive soliton solutions. The behavior of these solutions is visualized in three and two dimensions (3D and 2D), with contour plots, and the effect of wave speed is studied for specific values of the physical components in the equation. These results contribute significantly to advancing the field by enhancing the depth and impact of research. Subsequently, the dynamic behavior of the model was thoroughly investigated, with particular emphasis on the chaos analysis. The incorporation of an external periodic force led to the emergence of chaotic and quasi-periodic phenomena. These complex dynamics were illustrated using time series plots, 2D and 3D phase portraits, return maps, bifurcation diagrams, chaotic attractors, fractal dimensions, Poincaré maps, and Lyapunov exponent analysis. This comprehensive approach not only provides deeper insight into the system's stability and sensitivity but also offers a valuable framework for identifying and controlling complex behaviors in nonlinear dynamic models.
| [1] |
I. Alazman, M. N. Mishra, B. S. Alkahtani, M. U. Rahman, Comparative study of novel solitary wave solutions with unveiling bifurcation and chaotic structure modelled by stochastic dynamical system, Z. Naturforsch. A, 80 (2025), 285–311. https://doi.org/10.1515/zna-2024-0164 doi: 10.1515/zna-2024-0164
|
| [2] |
T. Han, H. Rezazadeh, M. U. Rahman, High-order solitary waves, fission, hybrid waves and interaction solutions in the nonlinear dissipative (2+1)-dimensional Zabolotskaya-Khokhlov model, Phys. Scripta, 99 (2024), 115212. https://doi.org/10.1088/1402-4896/ad7f04 doi: 10.1088/1402-4896/ad7f04
|
| [3] |
T. Alzahrani, M. U. Rahman, Lump, breathing inelastic collision phenomena and rogue wave solutions for a extended KP hierarchy-type equation by neural network-based method, Ain Shams Eng. J., 16 (2025), 103657. https://doi.org/10.1016/j.asej.2025.103657 doi: 10.1016/j.asej.2025.103657
|
| [4] |
K. Dehingia, S. A. Alharbi, A. J. Alqarni, M. Areshi, M. Alsulami, R. D. Alsemiry, et al., Exploring the combined effect of optimally controlled chemo-stem cell therapy on a fractional-order cancer model, PloS One, 20 (2025), e0311822. https://doi.org/10.1371/journal.pone.0311822 doi: 10.1371/journal.pone.0311822
|
| [5] |
J. Xu, L. Fan, C. Chen, G. Lu, B. Li, T. Tu, Study on fuel injection stability improvement in marine low-speed dual-fuel engines, Appl. Therm. Eng., 253 (2024), 123729. https://doi.org/10.1016/j.applthermaleng.2024.123729 doi: 10.1016/j.applthermaleng.2024.123729
|
| [6] |
D. Zhang, B. Li, Y. Wei, H. Zhang, G. Lu, L. Fan, et al., Investigation of injection and flow characteristics in an electronic injector featuring a novel control valve, Energ. Convers. Manage., 327 (2025), 119609. https://doi.org/10.1016/j.enconman.2025.119609 doi: 10.1016/j.enconman.2025.119609
|
| [7] |
Z. Chen, Q. Pu, L. Zhu, W. Zhou, Creep behaviour between resilient wheels and rails in a metro system, Vehicle Syst. Dyn., 22 (2025), 1–21. https://doi.org/10.1080/00423114.2025.2494861 doi: 10.1080/00423114.2025.2494861
|
| [8] |
B. Kopçasız, F. N. K. Sağlam, Exploration of soliton solutions for the Kaup–Newell model using two integration schemes in mathematical physics, Math. Method. Appl. Sci., 48 (2025), 6477–648. https://doi.org/10.1002/mma.10684 doi: 10.1002/mma.10684
|
| [9] | Beenish, M. Samreen, Bifurcation, multistability, and soliton dynamics in the stochastic potential Korteweg-de vries equation, Int. J. Theor. Phys., 64 (2025), 1–22. |
| [10] |
M. U. Rahman, L. A. Essa, Explorating the solition solutions of fractional Chen–Lee–Liu equation with birefringent fibers arising in optics and their sensitive analysis, Opt. Quant. Electron., 56 (2024), 1041. https://doi.org/10.1007/s11082-024-06876-9 doi: 10.1007/s11082-024-06876-9
|
| [11] |
J. Muhammad, U. Younas, E. Hussain, Q. Ali, M. Sediqmal, K. Kedzia, et al., Analysis of fractional solitary wave propagation with parametric effects and qualitative analysis of the modified Korteweg-de Vries-Kadomtsev-Petviashvili equation, Sci. Rep., 14 (2024), 19736. https://doi.org/10.1038/s41598-024-68265-2 doi: 10.1038/s41598-024-68265-2
|
| [12] |
F. N. Sağlam, B. Kopçasız, K. U. Tariq, Optical solitons and dynamical structures for the zig-zag optical lattices in quantum physics, Int. J. Theor. Phys., 64 (2025), 1–20. https://doi.org/10.1007/s10773-025-05902-0 doi: 10.1007/s10773-025-05902-0
|
| [13] |
Beenish, E. Hussain, U. Younas, R. Tapdigoglu, M. Garayev, Exploring bifurcation, quasi-periodic patterns, and wave dynamics in an extended Calogero-Bogoyavlenskii-Schiff model with sensitivity analysis, Int. J. Theor. Phys., 65 (2025), 146. https://doi.org/10.1007/s10773-025-06008-3 doi: 10.1007/s10773-025-06008-3
|
| [14] |
A. Jhangeer, Beenish, Ferroelectric frontiers: Navigating phase portraits, chaos, multistability and sensitivity in thin-film dynamics, Chaos Soliton. Fract., 188 (2024), 115540. https://doi.org/10.1016/j.chaos.2024.115540 doi: 10.1016/j.chaos.2024.115540
|
| [15] |
A. Jhangeer, Beenish, L. Riha, Symmetry analysis, dynamical behavior, and conservation laws of the dual-mode nonlinear fluid model, Ain Shams Eng. J., 16 (2025), 103178. https://doi.org/10.1016/j.asej.2024.103178 doi: 10.1016/j.asej.2024.103178
|
| [16] |
Beenish, M. Samreen, Exploring quasi-periodic behavior, bifurcation, and traveling wave solutions in the double-chain DNA model, Chaos Soliton. Fract., 192 (2025), 116052. https://doi.org/10.1016/j.chaos.2025.116052 doi: 10.1016/j.chaos.2025.116052
|
| [17] |
Y. Zhou, J. Zhuang, J. Li, Bifurcations and exact traveling wave solutions for the generalized Alexeyev's A$\mp$ equation, Qual. Theor. Dyn. Syst., 24 (2025), 20. https://doi.org/10.1007/s12346-024-01165-y doi: 10.1007/s12346-024-01165-y
|
| [18] | P. E. Hydon, Symmetry methods for differential equations: A beginner's guide, Cambridge University Press, 2000. https://doi.org/10.1017/CBO9780511623967 |
| [19] |
D. O. Yali, High-temperature deformation measurement using optical imaging digital image correlation: Status, challenge and future, Chinese J. Aeronaut., 10 (2025), 103472. https://doi.org/10.1016/j.cja.2025.103472 doi: 10.1016/j.cja.2025.103472
|
| [20] |
S. Yu, Y. Wang, T. Chen, M. Li, X. Zhang, B. Huang, et al., An inclined groove and its optimization design method for improving the energy performance at the saddle zone of axial flow pumps, Energy, 10 (2025), 136527. https://doi.org/10.1016/j.energy.2025.136527 doi: 10.1016/j.energy.2025.136527
|
| [21] |
X. Yin, Y. Lai, X. Zhang, T. Zhang, J. Tian, Y. Du, et al., Targeted sonodynamic therapy platform for holistic integrative Helicobacter pylori therapy, Adv. Sci., 12 (2025), 2408583. https://doi.org/10.1002/advs.202408583 doi: 10.1002/advs.202408583
|
| [22] |
W. Bao, H. Liu, F. Wang, J. Du, Y. Wang, H. Li, et al., Keyhole critical failure criteria and variation rule under different thicknesses and multiple materials in K-TIG welding, J. Manuf. Process., 126 (2024), 48–59. https://doi.org/10.1016/j.jmapro.2024.07.093 doi: 10.1016/j.jmapro.2024.07.093
|
| [23] |
G. Feng, X. Huang, E. Zheng, F. Jiang, Q. Yang, W. Jin, et al., Non-solvent displacement nonaqueous precipitation fabrication of novel foldable HAp ceramic paper without fiber and its performance, Ceram. Int., 50 (2024), 29819–29830. https://doi.org/10.1016/j.ceramint.2024.05.277 doi: 10.1016/j.ceramint.2024.05.277
|
| [24] | E. Noether, Invariante variationsprobleme, In: Gesammelte Abhandlungen-Collected Papers, Heidelberg, Berlin: Springer, 1983,231–239. https://doi.org/10.3390/catal15050477 |
| [25] | E. Noether, Invariant variation problems, Transport Theor. Stat., 1 (1971), 186–207. https://doi.org/10.1080/00411457108231446 |
| [26] |
M. Ruggieri, M. P. Speciale, On the construction of conservation laws: A mixed approach, J. Math. Phys., 58 (2017), 023510. https://doi.org/10.1063/1.4976189 doi: 10.1063/1.4976189
|
| [27] | J. S. Russell, Report on waves, In: Report of the fourteenth meeting of the British Association for the Advancement of Science, 25 (1844). |
| [28] |
H. H. Zhang, G. G. Yu, Y. Liu, Y. X. Fang, G. Shi, S. Wang, Design of low-SAR mobile phone antenna: Theory and applications, IEEE T. Antenn. Propag., 69 (2020), 698–707. https://doi.org/10.1109/TAP.2020.3016420 doi: 10.1109/TAP.2020.3016420
|
| [29] |
H. H. Zhang, H. M. Yao, L. Jiang, M. Ng, Enhanced two-step deep-learning approach for electromagnetic-inverse-scattering problems: Frequency extrapolation and scatterer reconstruction, IEEE T. Antenn. Propag., 71 (2022), 1662–1672. https://doi.org/10.1109/TAP.2022.3225532 doi: 10.1109/TAP.2022.3225532
|
| [30] |
H. H. Zhang, J. B. Chao, Y. W. Wang, Y. Liu, Y. X. Xu, H. Yao, et al., Electromagnetic-thermal co-design of base station antennas with all-metal EBG structures, IEEE Antenn. Wirel. Pr., 22 (2023), 3008–3012. https://doi.org/10.1109/LAWP.2023.3308585 doi: 10.1109/LAWP.2023.3308585
|
| [31] | Y. Y. Li, Z. W. Zhao, H. H. Zhang, Out-of-core solver based DDM for solving large airborne array, Appl. Comput. Electrom., 31 (2016), 509–515. |
| [32] |
G. Feng, E. Zheng, F. Jiang, Z. Hu, H. Fu, Y. Li, et al., Group Replacement–Rearrangement-Triggered linear-assembly nonaqueous precipitation synthesis of hydroxyapatite fibers, ACS Biomater. Sci. Eng., 9 (2023), 4597–4606. https://doi.org/10.1021/acsbiomaterials.3c00286 doi: 10.1021/acsbiomaterials.3c00286
|
| [33] |
B. Li, X. Wang, A. Khurshid, S. F. Saleem, Environmental governance, green finance, and mitigation technologies: Pathways to carbon neutrality in European industrial economies, Int. J. Environ. Sci. Te., 25 (2025), 1–4. https://doi.org/10.1007/s13762-025-06608-w doi: 10.1007/s13762-025-06608-w
|
| [34] |
G. Feng, W. Jiang, J. Liu, C. Li, Q. Zhang, L. Miao, et al., Novel nonaqueous precipitation synthesis of alumina powders, Ceram. Int., 243 (2017), 13461–13468. https://doi.org/10.1016/j.ceramint.2017.07.050 doi: 10.1016/j.ceramint.2017.07.050
|
| [35] |
A. Tian, W. Zhang, J. Hei, Y. Hua, X. Liu, J. Wang, et al., Resistance reduction method for building transmission and distribution systems based on an improved random forest model: A tee case study, Build. Environ., 3 (2025), 113256. https://doi.org/10.1016/j.buildenv.2025.113256 doi: 10.1016/j.buildenv.2025.113256
|
| [36] |
X. Sha, X. Si, Y. Zhu, S. Wang, Y. Zhao, Automatic three-dimensional reconstruction of transparent objects with multiple optimization strategies under limited constraints, Image Vision Comput., 24 (2025), 105580. https://doi.org/10.1016/j.imavis.2025.105580 doi: 10.1016/j.imavis.2025.105580
|
| [37] |
S. Lv, H. Liu, F. Wang, X. Liu, M. Peng, Y. Wei, et al., Effect of axial misalignment on the microstructure, mechanical, and corrosion properties of magnetically impelled arc butt welding joint, Mater. Today Commun., 40 (2024), 109866. https://doi.org/10.1016/j.mtcomm.2024.109866 doi: 10.1016/j.mtcomm.2024.109866
|
| [38] |
J. Fan, X. Zhang, N. He, F. Song, X. Wang, Investigation on novel deep eutectic solvents with high carbon dioxide adsorption performance, J. Environ. Chem. Eng., 3 (2025), 117870. https://doi.org/10.1016/j.jece.2025.117870 doi: 10.1016/j.jece.2025.117870
|
| [39] |
R. Liu, W. Shen, Data acquisition of exercise and fitness pressure measurement based on artificial intelligence technology, SLAS Technol., 4 (2025), 100328. https://doi.org/10.1016/j.slast.2025.100328 doi: 10.1016/j.slast.2025.100328
|
| [40] | W. H. Jiang, Z. Hu, J. M. Liu, Study on low-tanperature synthesis of iron-stabilized aluminium titanate via non-hydrolytic sol-gel method, J. Syn. Cryst., 40 (2011), 465–469. |
| [41] |
G. Feng, E. Zheng, F. Jiang, Z. Hu, H. Fu, Y. Li, et al., Preparation of novel porous hydroxyapatite sheets with high Pb2+ adsorption properties by self-assembly non-aqueous precipitation method, Ceram. Int., 49 (2023), 30603–20612. https://doi.org/10.1016/j.ceramint.2023.07.013 doi: 10.1016/j.ceramint.2023.07.013
|
| [42] |
G. Feng, W. Xie, E. Zheng, F. Jiang, Q. Yang, W. Jin, et al., Nonaqueous precipitation combined with intermolecular polycondensation synthesis of novel HAp porous skeleton material and its Pb2+ ions removal performance, Ceram. Int., 50 (2024), 19757–19768. https://doi.org/10.1016/j.ceramint.2024.03.099 doi: 10.1016/j.ceramint.2024.03.099
|
| [43] |
G. Feng, W. Jiang, J. Liu, Q. Zhang, Q. Wu, L. Miao, A novel green nonaqueous sol-gel process for preparation of partially stabilized zirconia nanopowder, Process. Appl. Ceram., 11 (2017), 220–224. https://doi.org/10.2298/PAC1703220F doi: 10.2298/PAC1703220F
|
| [44] |
G. Feng, F. Jiang, W. Jiang, J. Liu, Q. Zhang, Q. Wu, et al., Low-temperature preparation of novel stabilized aluminum titanate ceramic fibers via nonhydrolytic sol-gel method through linear self-assembly of precursors, Ceram. Int., 45 (2019), 18704–18709. https://doi.org/10.1016/j.ceramint.2019.06.096 doi: 10.1016/j.ceramint.2019.06.096
|
| [45] |
X. Zhang, X. Yang, Q. He, Multi-scale systemic risk and spillover networks of commodity markets in the bullish and bearish regimes, N. Am. J. Econ. Financ., 62 (2022), 101766. https://doi.org/10.1016/j.najef.2022.101766 doi: 10.1016/j.najef.2022.101766
|
| [46] |
X. Zhu, P. Xia, Q. He, Z. Ni, L. Ni, Ensemble classifier design based on perturbation binary salp swarm algorithm for classification, CMES-Comp. Model. Eng., 135 (2023), 653–671. https://doi.org/10.32604/cmes.2022.022985 doi: 10.32604/cmes.2022.022985
|
| [47] |
B. Li, H. Liang, Q. He, Multiple and generic bifurcation analysis of a discrete Hindmarsh-Rose model, Chaos Soliton. Fract., 146 (2021), 110856. https://doi.org/10.1016/j.chaos.2021.110856 doi: 10.1016/j.chaos.2021.110856
|
| [48] |
B. Li, Y. Zhang, X. Li, Z. Eskandari, Q. He, Bifurcation analysis and complex dynamics of a Kopel triopoly model, J. Comput. Appl. Math., 426 (2023), 115089. https://doi.org/10.1016/j.cam.2023.115089 doi: 10.1016/j.cam.2023.115089
|
| [49] |
Beenish, M. Samreen, Analytical solutions and dynamical insights of the modified Benjamin–Bona–Mahony equation with applications in nonlinear optics, J. Appl. Math. Comput., 71 (2025), 699–723. https://doi.org/10.1007/s12190-025-02484-2 doi: 10.1007/s12190-025-02484-2
|
| [50] |
F. Ali, A. Jhangeer, M. Muddassar, Comprehensive classification of multistability and Lyapunov exponent with multiple dynamics of nonlinear Schrödinger equation, Nonlinear Dynam., 113 (2025), 10335–10364. https://doi.org/10.1007/s11071-024-10781-x doi: 10.1007/s11071-024-10781-x
|
| [51] |
Y. Gu, L. Peng, Z. Huang, Y. Lai, Soliton, breather, lump, interaction solutions and chaotic behavior for the (2+1)-dimensional KPSKR equation, Chaos Soliton. Fract., 187 (2024), 115351. https://doi.org/10.1016/j.chaos.2024.115351 doi: 10.1016/j.chaos.2024.115351
|
| [52] |
Beenish, M. Asim, S. Boulaaras, M. U. Rahman, Dynamical behaviour and solutions in the fractional Gross–Pitaevskii model, Math. Comp. Model. Dyn., 31 (2025), 2529190. https://doi.org/10.1080/13873954.2025.2529190 doi: 10.1080/13873954.2025.2529190
|
| [53] |
Y. Gu, Y. Lai. Analytical investigation of the fractional Klein–Gordon equation along with analysis of bifurcation, sensitivity and chaotic behaviors, Mod. Phys. Lett. B, 39 (2025), 2550124. https://doi.org/10.1142/S0217984925501246 doi: 10.1142/S0217984925501246
|
| [54] | W. H. Jiang, G. Feng, J. M. Liu, S. Y. Tan, Y. Yu, Preparation of aluminum titanate film by sol-gel method and its fused salt corrosion resistance, J. Synth. Cryst., 39 (2010), 917–921. |
| [55] |
Q. Fang, Q. Sun, J. Ge, H. Wang, J. Qi, Multidimensional engineering of nanoconfined catalysis: Frontiers in carbon-based energy conversion and utilization, Catalysts, 15 (2025), 477. https://doi.org/10.3390/catal15050477 doi: 10.3390/catal15050477
|
| [56] |
A. Khan, F. S. Alshammari, S. Yasin, Beenish, Exact solitary wave solutions and sensitivity analysis of the fractional (3+1)D KdV–ZK equation, Fractal Fract., 9 (2025), 476. https://doi.org/10.3390/fractalfract9070476 doi: 10.3390/fractalfract9070476
|