Concept cognitive learning (CCL) constitutes a rigorous and current cognitive theory for the representation and learning of concepts of the human brain. The well-established CCL models pay close attention to construct a concept space, in which all the attributes are mastered concurrently. However, few attempts have been made to combine CCL with cognitive logic in a fuzzy context due to attribute precedence. For this case, this paper first develops a cognitive surmise relationship among attributes, cognitive transitions, and discrimination of fuzzy concepts based on knowledge space theory. Furthermore, utilizing the inherent information of concepts, the attributes are weighted to accurately understand and apply fuzzy concepts. To better derive benefits from the fuzziness and uncertainty of knowledge, an approach is provided to improve performance through the fusion of fuzzy concepts. Empirical studies on twenty datasets reveal the effectiveness and efficiency of the proposed model.
Citation: Ju Huang, Yidong Lin, Wen Sun. Fuzzy concept cognitive learning based on knowledge space theory[J]. AIMS Mathematics, 2025, 10(9): 22127-22149. doi: 10.3934/math.2025985
Concept cognitive learning (CCL) constitutes a rigorous and current cognitive theory for the representation and learning of concepts of the human brain. The well-established CCL models pay close attention to construct a concept space, in which all the attributes are mastered concurrently. However, few attempts have been made to combine CCL with cognitive logic in a fuzzy context due to attribute precedence. For this case, this paper first develops a cognitive surmise relationship among attributes, cognitive transitions, and discrimination of fuzzy concepts based on knowledge space theory. Furthermore, utilizing the inherent information of concepts, the attributes are weighted to accurately understand and apply fuzzy concepts. To better derive benefits from the fuzziness and uncertainty of knowledge, an approach is provided to improve performance through the fusion of fuzzy concepts. Empirical studies on twenty datasets reveal the effectiveness and efficiency of the proposed model.
| [1] |
G. Birkhoff, Rings of sets, Duke Math. J., 3 (1937), 443–454. https://doi.org/10.1215/S0012-7094-37-00334-X doi: 10.1215/S0012-7094-37-00334-X
|
| [2] |
L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone, Classification and regression trees, Wadsworth, 40 (1984), 358–361. https://doi.org/10.2307/2530946 doi: 10.2307/2530946
|
| [3] |
T. M. Cover, P. E. Hart, Nearest neighbor pattern classification, IEEE T. Inform. Theory, 13 (1967), 21–27. https://doi.org/10.1109/TIT.1967.1053964 doi: 10.1109/TIT.1967.1053964
|
| [4] |
D. X. Chen, J. J. Li, R. D. Lin, Formal concept analysis of multi-scale formal context, J. Ambient Intell. Humaniz. Comput., 11 (2020), 5315–5327. https://doi.org/10.1007/s12652-020-01867-6 doi: 10.1007/s12652-020-01867-6
|
| [5] |
O. J. Dunn, Multiple comparisons among means, J. Am. Stat. Assoc., 56 (1961), 52–64. https://doi.org/10.1080/01621459.1961.10482090 doi: 10.1080/01621459.1961.10482090
|
| [6] |
X. Y. Deng, J. H. Li, Y. H. Qian, J. M. Liu, Junmin, An emerging incremental fuzzy concept-cognitive learning model based on granular computing and conceptual knowledge clustering, IEEE Trans. Emerg. Top. Comput. Intell., 8 (2024), 2417–2432. https://doi.org/10.1109/TETCI.2024.3360336 doi: 10.1109/TETCI.2024.3360336
|
| [7] |
A. Elhadad, A. Ghareeb, S. Abbas, A blind and high-capacity data hiding of DICOM medical images based on fuzzification concepts, Alex. Eng. J., 60 (2021), 2471–2482. https://doi.org/10.1016/j.aej.2020.12.050 doi: 10.1016/j.aej.2020.12.050
|
| [8] | J. C. Falmagne, J. P. Doignon, Learning spaces: interdisciplinary applied mathematics, Springer-Verlag Berlin Heidelberg, 2011. https://doi.org/10.1007/978-3-642-01039-2 |
| [9] |
M. Friedman, A comparison of alternative tests of significance for the problem of $m$ rankings, Annals Math. Stat., 11 (1940), 86–92. https://doi.org/10.1214/aoms/1177731944 doi: 10.1214/aoms/1177731944
|
| [10] |
N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers, Mach. Learn., 29 (1997), 131–163. https://doi.org/10.1023/A:1007465528199 doi: 10.1023/A:1007465528199
|
| [11] |
B. J. Fan, E. C. C. Tsang, W. H. Xu, D. G. Cheng, W. T. Li, Attribute-oriented cognitive concept learning strategy: A multi-level method, Int. J. Mach. Learn. Cybern., 10 (2019), 2421–2437. https://doi.org/10.1007/s13042-018-0879-5 doi: 10.1007/s13042-018-0879-5
|
| [12] |
M. Hu, E. C. C. Tsang, Y. T. Guo, Q. S. Zhang, D. G. Chen, W. H. Xu, A novel approach to concept-cognitive learning in interval-valued formal contexts: a granular computing viewpoint, Int. J. Mach. Learn. Cybern., 13 (2022), 1049–1064. https://doi.org/10.1007/s13042-021-01434-1 doi: 10.1007/s13042-021-01434-1
|
| [13] |
J. H. Li, C. L. Mei, Y. J. Lv, Incomplete decision contexts: Approximate concept construction, rule acquisition and knowledge reduction, Int. J. Approx. Reason., 54 (2013), 149–165. https://doi.org/10.1016/j.ijar.2012.07.005 doi: 10.1016/j.ijar.2012.07.005
|
| [14] |
J. H. Li, C. L. Mei, W. H. Xu, Y. H. Qian, Concept learning via granular computing: a cognitive viewpoint, Inf. Sci., 298 (2015), 447–467. https://doi.org/10.1016/j.ins.2014.12.010 doi: 10.1016/j.ins.2014.12.010
|
| [15] |
J. H. Li, C. C. Huang, J. J. Qi, Y. H. Qian, W. Q. Liu, Three-way cognitive concept learning via multi-granularity, Inf. Sci., 378 (2017), 244–263. https://doi.org/10.1016/j.ins.2016.04.051 doi: 10.1016/j.ins.2016.04.051
|
| [16] |
J. H. Li, Y. L. Mi, W. Q. Liu, Incremental cognition of concepts: theoreis and methods, Chinese J. Comp., 42 (2019), 2233–2250. https://doi.org/10.11897/SP.J.1016.2019.02233 doi: 10.11897/SP.J.1016.2019.02233
|
| [17] |
Z. M. Liu, J. H. Li, X. Zhang, X. Z. Wang, Incremental incomplete concept-cognitive learning model: A stochastic strategy, IEEE T. Neur. Net. Lear., 36 (2025), 390–406. https://doi.org/10.1109/TNNLS.2023.3333537 doi: 10.1109/TNNLS.2023.3333537
|
| [18] | Y. L. Mi, Concept-cognitive computing theory and model, Beijing: University of Chinese Academy of Sciences, 2018. |
| [19] |
Y. L. Mi, J. H. Li, W. Q. Liu, J. Lin, Research on granular concept cognitive learning system under mapReduce framework, Acta Electronica Sinica, 46 (2018), 289–297. https://doi.org/10.3969/j.issn.0372-2112.2018.02.005 doi: 10.3969/j.issn.0372-2112.2018.02.005
|
| [20] |
Y. L. Mi, Y. Shi, J. H. Li, W. Q. Liu, M. Y. Yan, Fuzzy-based concept learning method: Exploiting data with fuzzy conceptual clustering, IEEE T. Cybernetics, 52 (2022), 582–593. https://doi.org/10.1109/TCYB.2020.2980794 doi: 10.1109/TCYB.2020.2980794
|
| [21] |
Y. L. Mi, W. Q. Liu, Y. Shi, J. H. Li, Semi-supervised concept learning by concept-cognitive learning and concept space, IEEE T. Knowl. Data En., 34 (2020), 2429–2442. https://doi.org/10.1109/TKDE.2020.3010918 doi: 10.1109/TKDE.2020.3010918
|
| [22] |
Y. L. Mi, Z. R. Wang, H. Liu, Y. Qu, G. F. Yu, Y. Shi, Divide and conquer: A granular concept-cognitive computing system for dynamic classification decision making, Eur. J. Oper. Res., 308 (2023), 255–273. https://doi.org/10.1016/j.ejor.2022.12.018 doi: 10.1016/j.ejor.2022.12.018
|
| [23] |
Y. L. Mi, Concept neural network based on time-delay regret for dynamic stream learning, IEEE T. Pattern Anal., 47 (2025), 3796–3814. https://doi.org/10.1109/TPAMI.2025.3535636 doi: 10.1109/TPAMI.2025.3535636
|
| [24] |
J. J. Qi, L. Wei, Y. Y. Yao, Three-way formal concept analysis, Rough Sets and Knowledge Technology - 9th International Conference, Springer, 8818 (2014), 732–741. https://doi.org/10.1007/978-3-319-11740-9_67 doi: 10.1007/978-3-319-11740-9_67
|
| [25] |
Y. Shi, Y. L. Mi, J. H. Li, W. Q. Liu, Concurrent concept-cognitive learning model for classification, Inf. Sci., 496 (2019), 65–81. https://doi.org/10.1016/j.ins.2019.05.009 doi: 10.1016/j.ins.2019.05.009
|
| [26] |
Y. Shi, Y. L. Mi, J. H. Li, W. Q. Liu, Concept-cognitive learning model for incremental concept learning, IEEE T. Syst. Man Cy-S., 51 (2021), 809–821. https://doi.org/10.1109/TSMC.2018.2882090 doi: 10.1109/TSMC.2018.2882090
|
| [27] |
E. C. C. Tsang, B. J. Fan, D. G. Chen, W. H. Xu, W. T. Li, Multi-level cognitive concept learning method oriented to data sets with fuzziness: a perspective from features, Soft Comput., 24 (2020), 3753–3770. https://doi.org/10.1007/s00500-019-04144-7 doi: 10.1007/s00500-019-04144-7
|
| [28] |
R. Wille, Restructuring lattice theory: an approach based on hierarchies of concepts, Restructuring lattice theory: an approach based on hierarchies of concepts, In Ordered Sets, Ⅰ. Rival, Ed. Dordrecht, The Netherlands: Reidel, 5584 (2009), 314–339. https://doi.org/10.1007/978-3-642-01815-2_23 doi: 10.1007/978-3-642-01815-2_23
|
| [29] |
I. H. Witten, E. Frank, M. A. Hall, Data mining: Practical machine learning tools and techniques, SIGMOD Rec., 31 (2002), 76–77. https://doi.org/10.1145/507338.507355 doi: 10.1145/507338.507355
|
| [30] |
L. D. Wang, X. D. Liu, Concept analysis via rough set and AFS algebra, Inf. Sci., 178 (2008), 4125–4137. https://doi.org/10.1016/j.ins.2008.07.004 doi: 10.1016/j.ins.2008.07.004
|
| [31] |
W. H. Xu, J. Z. Pang, S. Q. Luo, A novel cognitive system model and approach to transformation of information granule, Int. J. Approx. Reason., 55 (2014), 853–866. https://doi.org/10.1016/j.ijar.2013.10.002 doi: 10.1016/j.ijar.2013.10.002
|
| [32] |
W. H. Xu, W. T. Li, Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets, IEEE T. Cybernetics, 46 (2016), 366–379. https://doi.org/10.1109/TCYB.2014.2361772 doi: 10.1109/TCYB.2014.2361772
|
| [33] |
W. H. Xu, D. D. Guo, Y. H. Qian, W. P. Ding, Two-way concept-cognitive learning method: A fuzzy-based progressive learning, IEEE T. Fuzzy Syst., 31 (2023), 1885–1899. https://doi.org/10.1109/TFUZZ.2022.3216110 doi: 10.1109/TFUZZ.2022.3216110
|
| [34] |
W. H. Xu, Y. Q. Chen, Multi-attention concept-cognitive learning model: A perspective from conceptual clustering, Knowl. Based Syst., 252 (2022), 109472. https://doi.org/10.1016/j.knosys.2022.109472 doi: 10.1016/j.knosys.2022.109472
|
| [35] |
W. H. Xu, D. D. Guo, J. S. Mi, Y. H. Qian, K. Y. Zheng, W. P. Ding, Two-way concept-cognitive learning via concept movement viewpoint, IEEE T. Neural Net. Lear., 34 (2023), 6798–6812. https://doi.org/10.1109/TNNLS.2023.3235800 doi: 10.1109/TNNLS.2023.3235800
|
| [36] |
X. X. Xie, W. H. Xu, J. J. Li, A novel concept-cognitive learning method: A perspective from competences, Knowl. Based Syst., 265 (2023), 110382. https://doi.org/10.1016/j.knosys.2023.110382 doi: 10.1016/j.knosys.2023.110382
|
| [37] | S. Ben. Yahia, K. Arour, A. Slimani, A. Jaoua, Discovery of compact rules in relational databases, Inf. Sci. J., 3 (2000), 497–511. |
| [38] |
Y. Y. Yao, Interpreting concept learning in cognitive informatics and granular computing, IEEE T. Syst. Man Cy. Part B, 39 (2009), 855–866. https://doi.org/10.1109/TSMCB.2009.2013334 doi: 10.1109/TSMCB.2009.2013334
|
| [39] |
E. L. Yan, J. L. Song, C. F. Zheng, B. H. Mi, W. X. Hong, Construction of three-way attribute partial order structure via cognitive science and granular computing, Knowl. Based Syst., 197 (2020), 105859. https://doi.org/10.1016/j.knosys.2020.105859 doi: 10.1016/j.knosys.2020.105859
|
| [40] |
E. L. Yan, C. G. Yu, L. M. Lu, W. X. Hong, C. Z. Tang, Incremental concept cognitive learning based on three-way partial order structure, Knowl. Based Syst., 220 (2021), 106898. https://doi.org/10.1016/j.knosys.2021.106898 doi: 10.1016/j.knosys.2021.106898
|
| [41] |
K. H. Yuan, W. H. Xu, W. T. Li, W. P. Ding, An incremental learning mechanism for object classification based on progressive fuzzy three-way concept, Inf. Sci., 584 (2022), 127–147. https://doi.org/10.1016/j.ins.2021.10.058 doi: 10.1016/j.ins.2021.10.058
|
| [42] |
W. X. Zhang, W. H. Xu, Cognitive model based on granular computing, Chinese J. Eng. Math., 24 (2007), 957–971. https://doi.org/10.1016/S1005-8885(07)60159-9 doi: 10.1016/S1005-8885(07)60159-9
|
| [43] |
Y. X. Zhao, J. H. Li, W. Q. Liu, W. H. Xu, Cognitive concept learning from incomplete information, Int. J. Mach. Learn. Cyb., 8 (2017), 159–170. https://doi.org/10.1007/s13042-016-0553-8 doi: 10.1007/s13042-016-0553-8
|
| [44] |
T. Zhang, H. H. Li, M. Q. Liu, M. Rong, Incremental concept-cognitive learning based on attribute topology, Int. J. Approx. Reason., 118 (2020), 173–189. https://doi.org/10.1016/j.ijar.2019.12.010 doi: 10.1016/j.ijar.2019.12.010
|
| [45] |
T. Zhang, M. Rong, H. R. Shan, M. X. Liu, Stability analysis of incremental concept tree for concept cognitive learning, Int. J. Mach. Learn. Cybern., 13 (2022), 11–28. https://doi.org/10.1007/s13042-021-01332-6 doi: 10.1007/s13042-021-01332-6
|
| [46] |
C. L. Zhang, E. C. C. Tsang, W. H. Xu, Y. D. Lin, L. Z. Yang, Incremental concept-cognitive learning approach for concept classification oriented to weighted fuzzy concepts, Knowl. Based Syst., 260 (2023), 110093. https://doi.org/10.1016/j.knosys.2022.110093 doi: 10.1016/j.knosys.2022.110093
|