AIMS Mathematics, 10(9): 22127-22149.
DOI: 10.3934/math.2025985
AIMS Mathematics Received: 05 July 2025

Revised: 05 September 2025

Accepted: 08 September 2025
http://www.aimspress.com/journal/Math Published: 24 September 2025

Research article

Fuzzy concept cognitive learning based on knowledge space theory

Ju Huang'~, Yidong Lin'>*and Wen Sun'*

' School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, China

2 Fujian Key Laboratory of Granular Computing and Applications, Minnan Normal University,
Zhangzhou 363000, China

* Correspondence: Email: yidong_lin@yeah.net.

Abstract: Concept cognitive learning (CCL) constitutes a rigorous and current cognitive theory for
the representation and learning of concepts of the human brain. The well-established CCL models
pay close attention to construct a concept space, in which all the attributes are mastered concurrently.
However, few attempts have been made to combine CCL with cognitive logic in a fuzzy context due
to attribute precedence. For this case, this paper first develops a cognitive surmise relationship among
attributes, cognitive transitions, and discrimination of fuzzy concepts based on knowledge space theory.
Furthermore, utilizing the inherent information of concepts, the attributes are weighted to accurately
understand and apply fuzzy concepts. To better derive benefits from the fuzziness and uncertainty of
knowledge, an approach is provided to improve performance through the fusion of fuzzy concepts.
Empirical studies on twenty datasets reveal the effectiveness and efficiency of the proposed model.
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1. Introduction

Concept-cognitive learning (CCL) simulates human learning mechanisms to incorporate new data
into themselves to adapt the dynamic environments. It was first studied in [42] from an abstract
perspective. A concept is a key pillar of CCL systems and the base unit of cognition. It is identified by
its extent and intent along with a Galois from formal concept analysis (FCA) [28]. Accordingly, CCL
is a new learning theory based on FCA as its theoretical foundation. The learned societies strenuously
developed the fuzzy concept [37], three-way concept [24], multi-scale concept [4], approximate
concept [13], and AFS concept [30] to satisfy different situations. Generally speaking, the framework
of CCL [18] includes concept constructing and mapping it into different sub-concept spaces. Then, it
takes the concept space as a knowledge storage carrier. In addition, the concept space is collections of
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the granular concept or incomplete concept from a context. In general, the study of CCL includes three
different aspects: 1.1 Two-way concept learning; 1.2 Continual learning; and 1.3 Multi-level CCL.

1.1. Two-way concept learning

As we known, CCL was first studied from an abstract perspective in [42]. Then Xu et al. [12, 31,
32] launched detail analysis for carefully addressing the two-way translation of information granule
concepts, and a fuzzy-based CCL [33] system in a dynamic situation was further studied. From the
concept movement viewpoint, the three-way decision (3WD) was integrated with two-way learning
to delve deeper into the concept evolution [35]. Meanwhile, emphasizing the latent skills capable of
solving problems from knowledge space theory [8], Xie et al. [36] developed a novel two-way learning
technique semantically for attribute-oriented concepts.

1.2. Continual learning

Concept continual learning aims at continuously learning and adapting to new concepts in a
constantly changing environment. Li et al. [14] first integrated granular computing into a cognitive
concept lattice and established a cognitive computing system by integrating granular computing
into a cognitive concept lattice and axiomatic approaches for three-way CCL via multi-granularity
[15]. Then, Zhao et al. [43] explored an approximate cognitive computing system for incomplete
information. To address the large-scale datasets, a map reduction framework for granular CCL [19]
and a concurrent incremental learning technique [25] were respectively developed. In addition, to
tackle complex learning tasks and reduce uncertainty, a fuzzy-based CCL method [20], incremental
cognition of concepts [6, 16, 17,26], progressive fuzzy three-way CCL method [41], multi-attention
CCL method [34], and CCL for concept drift and decision making [22] have been well-established.

1.3. Multi-level CCL

Multi-level CCL emphasizes the establishment of deep concept networks within a cognitive process.
Yao [38] proposed a conceptual framework based on a layered model of knowledge discovery. Fan
and Tsang [11,27] constructed attribute-oriented and feature-oriented multi-level CCLs to recognize
certain objects and distinguish them rather than identifying all objects. Zhang et al. proposed attribute
topology [44] and the incremental concept tree [45], which clearly displayed the relationship between
new data and original data. Yan et al. [39,40] brought forward the construction of three-way attribute
partial order structure and the incremental CCL algorithm successively. Mi [23] pioneered the proposal
of concept neural networks grounded in the concept space.

To summarize, there are several shortcomings in the emerging mainstream CCLs. In particular, 1)
Lack of learning smoothness. When learning new knowledge or skills, it is best to organize the learning
content in increasing levels of difficulty and complexity. 2) Lack of reasonable weighting mechanism.
Different concepts play different roles in the learning process. 3) Acquire a major expenditure of
time and effort for CCL. In practice, the search space is filled with a large number of similar fuzzy
concepts or similar labeled fuzzy concepts, which can be fused as legitimately as possible. These are
the main challenges in our work and will be innovatively overcome. In this paper, a novel fuzzy-based
CCL is proposed for fuzzy formal (decision) contexts, including surmise relationships and transfers of
attributes, mechanisms of fuzzy concepts with weights and fusion.
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The remainder of this paper is organized as follows. Section 2 briefly reviews some basic notions
about fuzzy formal contexts and knowledge spaces. Section 3 presents the theory of cognitive logic,
such as the surmise relation and cognitive inference from a fuzzy formal context. Section 4 establishes
a novel cognition mechanism based on cognitive logic and concept fusion. The experimental results
on some real datasets are reported in Section 5. Finally, this paper is concluded with several challenges
for further research in Section 6.

2. Preliminaries

In this section, we briefly review some basic notions about fuzzy concepts and knowledge spaces.

The triple (U, A, I) is called a fuzzy formal context, in which U is the domain of the objects, A is
the collection of attributes, and 7 is the fuzzy relationship between U and A. For X C U and B € F(A),
F(A) is the fuzzy power set of A, and the concept operators f : P(U) - F(A)and g : F(A) - PU)
are respectively defined as follows:

F0@ = /\ I(x,a),a € A, @.1)
xeX
g(B)={xe U|Vace€A,B) < Ix,a))}. (2.2)

Then a pair (X, B) is called a fuzzy concept if f(X) = B and g(B) = X. The collection of all fuzzy
concepts L(U, A, ) forms a complete lattice that is called the fuzzy concept lattice of (U, A, I).

The quintuple (U,A,I,D,J) is called a fuzzy formal decision context where (U, A, Dis a fuzzy
formal context, J : U XD — {0,1},AND =0,and D = {d,,d>,--- ,d;} is a set of decision attributes.
If for any d,d» € D, H({d\}) N H({d>}) = @ holds, (U,A,I,D,J) is called a regular fuzzy formal
decision context. The partition of U by D is denoted as U/D = {U; | i = 1,2,---,1}. Furthermore,
(U, D, J) is termed a decision formal context. In CCL, according to decision classes, the regular fuzzy
formal decision context is usually split into several sub-contexts to generate the concept space for clue
cognition.

By Doignon and Falmagne [8], a knowledge structure is a pair (Q, K) (or K for short) in which
Q is a domain and K is a collection of subsets of O, containing at least the empty set () and domain
Q. When a knowledge structure (Q,K) is closed under union, we call (Q, K) a knowledge space.
Furthermore, a knowledge space closed under intersection is called a quasi ordinal space. There is a
one-to-one correspondence between the collection of all quasi ordinal spaces K on a domain Q, and
the collection of all quasi orders R on Q [1]. Such a correspondence is defined by, for x,y € Q,

xRy & VK e K, ye K = x € K). (2.3)

Accordingly, L(U, A, I) is a quasi ordinal space.
Let R C U x U. If R?> C R, then R is referred to as a transitive relation, where for any (x,y) e UXU,

R*(x,y) = (Ro R)(x,y) = \/ (R(x,2) AR(z,)). (2.4)
zelU

The transitive closure of R is the minimum transitive relation containing R, that is,

t(R) = U R, (2.5)
k=1
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3. Cognitive preference

An important part of this section focuses on analyzing possible ways to cognize the material within
cognitive concepts. This leads naturally to studying the “predecessor” of an attribute. Intuitively, an
attribute a is a predecessor of an attribute b if a is never mastered after b, either for logical or historical
reasons. However, we are looking for the logical or cognitive reasons for this among all the attributes.
To be more specific, the following formalizes the intuitive ideas in fuzzy scene.

Assumption 1. As the difficulty of knowledge increases, the number of learners gradually decreases.

Assumption 2. The cognitive level of a successor is not much higher than that of the predecessor in
the case of careless or lucky guesses.

Assumption 3. The current cognitive state is only related to the cognitive state of the previous moment.

Note the example from education where easy problems are easier to master than difficult ones. In
this case, the number of learners decreases with the increase in the difficulty of problems. In the case of
careless or lucky guesses, the scores for two questions with different levels of difficulty are kept within
a certain range. Cognitive learning also satisfies the Markov property.

Definition 1. Let (U, A, ) be a fuzzy formal context, and a predecessor function h : A X A — 2V is
defined by, for (a,b) € A X A,

h(a,b) = {x € U | I(x,a) > I(x, b)}. 3.1

Obviously, h(a,a) = U and h(a, b) # h(b, a) in normal circumstances.

Theorem 1. Let (U, A, ) be a fuzzy formal context with a predecessor function h : A x A — 2Y. For
a,b,c e A,

1. ha,a) =U,
2. h(a,b) N h(b,c) C h(a,c),
3. h(a,b) N h°(b, c) C h(a, c), where h‘(a, b) is the complement of h(a, b).

Proof. By definition, for x € h(a,b) N h(b,c) we have I(x,a) > I(x,b) and I(x,b) > I(x,c). Then
x € h(a, c), namely h(a,b) N h(b,c) C h(a,c). Fory € h‘(a,b) N h°(b, c), we have 1(y,a) < I(y,b) and
1(y,b) < I(y,c), and then y € h(a, ¢). That is, h°(a, b) N h°(b, c) C h'(a, c). O

With Assumption 1, fault tolerance is naturally considered when lucky guesses and careless errors
happen. Thus, in the following, we first propose a surmise degree of cognitive attributes to realize this
idea.

Definition 2. Let (U, A, I) be a fuzzy formal context. The surmise degree S : A x A — [0, 1] is defined
by, for a,b € A,
|h(a, D)|

S(a,b) = T

(3.2)

Theorem 2. Let (U, A, I) be a fuzzy formal context. For a,b,c € A, the following properties hold:
1. S(a,a) =1,
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2. §(a,b) = S(b,a) if and only if |h(a, b)| = |h(b, a)l,
3. ifS(a,b)>6,S(b,c) >0, 6€(0,1], then S(a,c) > 9.
Proof. Only item (3) is proved.
_ @@, 0l _ 1h(a,b) nh(b, o)l _ | 1h°(a,b) U k(b o)
ol |UI |UI
_ @b} _1h, o)l ,lha,b) Nk, o) _ |h(a, D) U h(b, )l
|UI U |UI |U| '
Since S (a,b) > 6 and S (b, c) > 9, then
|[7(a, b) U h(b, )]
|UI

S(a,c)

=1

<1l-o¢

In this case, .
lh(a, b) U h(b,0))|

1>0.
|UI

S(a,c) = S(a,b)+S(b,c)+
O

The collection of surmise degrees for any pair of attributes would form a surmise degree matrix,
denoted by Ms. Therefore, the element of the ith row crosses the jth column Ms(i, j) = S(a;, a;) for
a;,a; € A. With Assumption 2, we next consider a cognitive error tolerance as follows.

Definition 3. Let (U, A, I) be a fuzzy formal context, and a cognitive error tolerance T : AXA — [0, 1]
is defined for a,b € A by

max{f(x, b)—I(x,a) | x € h'(a, b)} , a#b

) 3.3
0 , a=b (3-3)

T(a,b) = {
Generally, T(a,b) # T(b,a) if a # b for a,b € A. Such a cognitive error tolerance can also be
presented as a matrix My, in which My (a, b) = T(a, b).

Example 1. Table 1 is a fuzzy formal context (U,A, D), in which U = {x|,X,X3,%4}, A =
{ay,ay,as,a4,as}. From Table 1, by Definitions 2 and 3, the surmise degree matrix is:

I 05 1 075 0.75
075 1 I 05 075
Mg=|075 025 1 05 0.5
05 05 05 1 1
025 05 05 O 1

The cognitive error tolerance is

0 01 0 0.7 0.1
02 O 0.6 0.1
07 05 0 0.7 06 |,
05 06 05 0 O
0.6 06 06 06 O

g
Il
(e

in which My(a;,a;) = T(a;,a;), i,j=1,2,3,4,5.
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Table 1. A formal fuzzy context (U, A, D).

1 a a as ay as
X1 0.9 0.7 0.2 0.9 0.8
X2 0.8 0.8 0.8 0.3 0.2
X3 0.1 0.2 0.1 0.8 0.2
X4 0.7 0.8 0.7 0.2 0.2

Theorem 3. For fuzzy formal context (U, A, D, T:AxA — [0,1] is the corresponded cognitive error
tolerance. For a,b,c € A, T(a,c) < T(a,b) Vv T(b,c).

Proof. As we know, T(a,b) = \/ ene(an) (f (x,b) — I(x, a)) with a # b for a,b € A. On the other hand,
h‘(a,c) € h(a,b) U h‘(b,c) by Theorem 1. Consequently, T'(a,c) < [\/xehc(a,b)(i(x, b) - I(x, a))] \%
|V e, ©) = Ix, bY)| = T(a. b) v T(b,c). O
Corollary 1. For a,b,c € A and parameter B, if T(a,b) < B and T(b,c) < 5, where T is a cognitive

error tolerance with respect to fuzzy formal context (U, A, I), then T(a,c) < .

Definition 4. Let (U, A, I) be a fuzzy formal context, and let R C A X A be a relation on A defined for
a,beAby

(a,b) e R & S(a,b) > 6 and T(a,b) <, (3.4
where 6 € (0.5, 1] and B € [0, 0.5] are control parameters. R is called a (9, 5)-surmise relation on A.

Theorem 4. Let (U, A, I) be a fuzzy formal context and R be a (8, B)-surmise relation on A. For a,b,c €
A,

1. (a,a) €R,
2. if(a,b) € R, (b,c) € R, then (a,c) € R.

Proof. Since S (a,a) = 1 and T (a, a) = 0 by Definitions 2 and 3 for a € A, then (a,a) € R. If (a,b) € R
and (b,c) € R, then S(a,b) > 9, S(b,c) > 6, T(a,b) < B, and T(b,c) < B. According to item (3) of
Theorem 2 and Theorem 3, S (a,c) > ¢ and T'(a, c) < 8 obviously hold. Fusing these two conclusions,

we have (a,c) € R. |
Thus, R is reflexive and transitive, and a quasi order relation naturally. Note that we denote
.. 1, Ms(@i,j)=>0
0 _ s S\t
Ms (. j) = { 0, otherwise
. 1, Mr(i, ) <p
B _ ) T 7]
MG ) = { 0, otherwise
Comparatively, Mj and M’ generate a (6,[8)-surmise relation matrix My” = M A M’ For

convenience, we call Mg, M'[T’], and M;f’ﬁ ) the S-surmise matrix, S-tolerance matrix and (9, 5)-

reachability matrix respectively.

Definition 5. Let R, and R, be two (0, 8)-surmise relations on A loaded from fuzzy formal concept
(U,A,I). We say that R, < R, iff for all (a, b) € R, implies (a,b) € R, for a,b € A.
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Theorem 5. Let (U, A, ) be a fuzzy formal context. Let R, and R, be a (8,,8))-surmise relation and
(02, Bo)-surmise relation, respectively. If 51 < 6, and B, < 81, then R, < R;.

Proof. If (a,b) € R,, then S(a,b) > 6, > 6; and T(a,b) < B, < B;. This means (a,b) € R,. Hence,

R, < R;. O

Definition 6. For a (6, 8)-surmise relation R on A in (U, A, I), the (6, 8)-adjacency relation R* on A is

defined by, for a,b,c € A, (a,b) € R ifand only if (a,b) € RA(a # b)A[(a,c) € RA(c,b) e R= b = c].
We denote Ml(i’ﬁ ) as the corresponding (9, 5)-adjacency matrix of R*, which is usually sparse.

Example 2. Take 6 = 0.75 and B = 0.5. The (0.75,0.5)-surmise relation matrix and (0.75,0.5)-
adjacency matrix are

10101 00101
11101 10000
MY =100 100 MI*=100000
00011 00001
00001 00000

Theorem 6. Let R and R* be the (3, §)-surmise relation and (6, B)-adjacency relation on A with respect
to (U, A, 1), and let E be an |A| x |A| identity matrix. Then

MPP = (MRP + E). (3.5)
Proof. Suppose M(‘S’ﬁ) (7ij)1a1x14) and M( P4 E = (riDaiar- For i, j=1,2,---,|Al, we clearly have

O

{3 _ v(fh 1(rljlfln rm)

3k *
ri = Vim Vo g, A5 AT,

'*(k> AL AL\ Al oA
° \/11 1 \/12 1 \/]k 1= 1( ij1 1112 A A rjk—lj)'

Apparently, a repetition will rise from such indexes ji, jo,- - , ji-1,j With respect to r ® whenever
k > |Al. In such a case, there exists p < |A| such that

Al |A] |A]

*(k) x| L. i *(p) 7P
A V A rip s = <\
J1=1 o= Ji-1=1 p=1

k
Namely, (Ml(i’ﬁ )+ E) U'Al (Mg:ﬁ )+ E)p for any k > |A|. Then

(o8]

) g? + B

k=p+1

p
= J(m? + E)
k=1

p
= [ Jg? + Bt

((MEP + ) = | J(MSP + E)
k=1 k=1

Therefore, t(M(éﬁ )+ E) = U'Al Ml(i’ﬂ )+ E)*. Next, we elaborate thoroughly that t(Mgi’ﬁ )+ E) =
(M,(i’ﬁ )+ E) for k > |A|. Obviously, Ml(i’ﬂ ) + E is reflexive and so ri; = 1for 1 <i < |A|. This indicates

|A]
*(2) * *
\/( rpj) >r; A r =1}
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2
that is, Mgi’ﬁ )+ EC (Ml(i’ﬁ )+ E) . More normally, we have

(MeP 1 B = (M0 + Y o (M8 + E) < (MO + B o (MEP + E) = (M2 + E)

for p > 1. That is to say, Ml(i’ﬁ) +EC (M](f;'[’)) + E)2 C... C (Ml(g;ﬂ) + E)lAl C...C (M;‘i’ﬁ) " E)k c...

Thus, t(MI(i’ﬁ) + E) = U'If:'l (M,(i’ﬁ) + E)p C (Ml(i’ﬁ) + E)k. On the other hand, we have (M;f;ﬁ) + E)k -
U';‘:'l (Mﬁf;ﬁ) + E)p = t(M,(i"B) + E) Then t(M,(i’ﬁ) + E) = (Mgi’ﬁ) + E)k for k > |A|. Last, we only
have to proof M{? = (M + E)4I. The reachability matrix My” having significant reflexivity and
transitivity implies t(Mgs’ﬁ )) = M;f’ﬁ ). We can check that ngﬁ "+ E C Mg’ﬁ ) ie., ri; < njfori,je
{1,2,---,]A|}, which indicates t(Mgi’B )+ E) C M;f’ﬂ ). In what follows, r;";” ) > ; will be authenticated
against the (6,8)-adjacency relation. If r;; = 0, then r;.k;p ) > r;; evidently, a,a; € A. If rj = 1,

(a;,a;) € R. Next, two cases need to be analyzed. The first case is (a;,a;) € R*. Then r;.k;p ) = rij. The

another case is (a;, a;) ¢ R*. Then there exists a sequence {a;,,a;,, - ,a;,} C A such that (g;,a;,) € R",
(aj,a;) € R*,---, (a;,,a;) € R*. Accordingly, r;‘jl =1, rjkiljk =1,2 <k < p,and r;fpj = 1. These
indicate r:fj(p ) = 1, p < |A|. Then it follows that r;.k;p ) = 1 no matter if p < |A| or p > |A|. Therefore
t(MRP + E) = Mg® holds. O

With Assumption 3, the attribute cognition in current time only relates legitimately to the previous
one, a Markov process.

Definition 7. Let (U, A, ) be a fuzzy formal context with a (6, B)-surmise relation R, 6 € (0.5, 1] and
B € [0,0.5]. The inner fringe and outer fringe of a cognitive attribute a € A are respectively defined as

a’ ={beA|(b,a)eR}, a®={beA|(ab)eR"}.
Definition 8. When (a,b) € R* for a, b € A, the cognitive transfer measure is defined by
1 - -
Ctla > b)=—-—— Z B(b)logB(a). (3.6)
Gl G

Beyond question, this cross entropy is useful information to characterize the transition probability
between a pair of attributes.

Example 3. According to Example 2, the cognitive transitions depicted in Figure 1, we see that
Ct(ar, — ay) = 0.186, Ct(a; — a3) = 0.139, Ct(a; — as) = 0.145, and Ct(as — as) = 0.202.

as

0.139]
0.145

ay——=4das

0.186] 0.202]

ay ag

Figure 1. Hasse diagram of (0.75, 0.5)-surmise relation R with cognitive transitions.
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Definition 9. Let R be a (6, 8)-surmise relation related to a fuzzy formal context (U,A,I). For any
b € A, if b° = 0 and there is a finite sequence of attributes a = po, p1,--- , px = b such that a* = 0,
pi € pgl, 1 < i <k, we call the sequence of sets a tight cognitive path from a to b and denote it as
P(a — b).

Corollary 2. If (a,b) € Rwitha’ = b° = 0 for a,b € A, then there is a tight cognitive path from a to b.

Predictably, there may be multiple cognitive paths from a to b if a’ = b° = 0 and (a,b) € R.
This depends in part on the significance of cognitive attributes. Thus, the significance of attributes is
clarified by the following definition.

Definition 10. Let (U, A, ) be a fuzzy formal context and R be the related (6, )-surmise relationship.
For a € A, define
Sig(a) = Z Ct(a — b) + Z Ct(b = a) (3.7)
bea® beal

as the significance of a.

Then from Figure 1, Sig(a;) = 0.47, Sig(ay) = 0.186, Sig(az) = 0.139, Sig(as) = 0.202, and
Sig(as) = 0.347.

4. Concept learning for classification

In concept cognition and recognition, the global discrimination of concepts is first explored to fuse
concepts by means of concept weighting to reduce the size of the concept space. Then there is only
needed to learn the related knowledge for clues according to the new fuzzy concept space. We use
Euclidean distance to depict the discrimination among distinct concepts, that is, for (X, B),Y,C) e G,

1/2
dis((X, B), (¥, €)) = Z(B(a>—c"<a>>2] : 4.1)

acA

Definition 11. Let G be a concept space. For (X,B) € G,

Z(y,c“)eg’ diS(E, C)
Gl

is referred to as the discrimination of concept (X, B), in which G = {(Y,C) € Gldis(B, C) < 6} and 0 is

a parameter. We denote it as Dis(B) for short without confusion.

Dis((X, B)) =

4.2)

Obviously, the higher di s(B, C) is, the greater the difference between them and less correlation there
is between them. Dis(B) depicts the global discrimination of (X, B), which actually reflects the degree
of dispersion of concepts in the neighborhood centered on (X, B).

Definition 12. Let G be a concept space. For a clue (x, B), we call
LA(x,(Y,C)) = dis(C « Sig. B+ Sig) - r(G) (4.3)
the learning accuracy of x with respect to (Y, C) € G, where

Sig = (Siglar), Siglaz), - -, Sigla)),
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G ={@ K eGldisC.B)<rG)},

’ 1 ~ 1 ~
nGg)=— dis|O=Sig, — K=x*Sig|,
G Z &g Z 8
(P,O)EG (ZK)eG

in which “x” means the Hadamard product of matrices.

Thus, learning accuracy is positively correlated with discrimination and negatively correlated with
the radius of the neighborhood. Then the learning objective for a given clue is minimizing

LA (x, Y, C))

CL(x, (Y,0) = —— —
DlS (@ Z(Z’f()eg’ K * Slg)

4.4)

and the parameter 6 in Definition 12 is now the sphere radius of G .

Let (U,A,1I,D,J) be a regular fuzzy formal decision context, where U/J = {D,,D»,---,D,} is a
partition of D, and J C U X D. For x € D; (1 < i < 1), its neighborhood [41] is constructed in the
following:

N, ={yeD;ldxy) <a}, (4.5)

in which d(-) denotes the Euclidean distance and « is a control parameter. [41] gives the following
definition of degraded version of the fuzzy concept space.

Definition 13. (U,A,I,D, J)isa regular fuzzy formal decision context, where U/J = {D,, D;,--- , D,}.
For D; € U/ J, the fuzzy concept space S; related to D; is

Si={(go f(No), f(N)) | x € Dj}. (4.6)

Then the collection S of all S;, 1 < i < t, is called a fuzzy concept space, where S; is said to be a
subspace of S.

Let Sig = (Sig(ay),Sig(ay), -, Sig(aj)) be the weight of attributes. Then the fusion mechanism
with respect to S; is 3
Lzkes, K+ Sig

C= , 4.7
S 7
s dis(K = Sig, C
S, = LzReES; llSS(| «Sig,C) 48

In this case, C is the description (equivalent in intention) of the fusion center, and r(S;) is the radius.
Afterward, the global discrimination of subspace S; is built up on the fusion as below.

Z(Z,f()esi dlS(é, f{)

DZS(S,) = |S|

4.9)

Subsequently, for a given clue (x, B), the learning accuracy of x with respect to S; is regularized by the
following equation:
LA(x,S)) = dis (C « Sig, Bx Sig) - r(S)). (4.10)
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€, 9

where “+” is the Hadamard product of matrices. Then an algorithm CCDS for concept classification
on regular fuzzy formal decision contexts with the given clue is available as follows.

Algorithm 1 Concept classification based on discrimination and significance (CCDS)

Input: A regular fuzzy formal decision context (U, A, I, D, J) and clue (x, B).

Output: The decision label of x.

1: Compute the significance of a € A and fuzzy concept space S.

2: Compute the fusion center, radius, and discrimination of S; € S.

3: Compute LA(x, S;).

4: Find 8’ = arcmaxs,csLA(x, S)).

5: If |S'| = 1, output the corresponding decision label.

6: Else if |S'| > 1, then output the decision label related to the subspace satisfying arcmin s.cs Dis(S)).

The actual expense of Algorithm 1 is far less than O(ZIIZ{J' ID;| + |A]* + |A|) and usually close
to O(le.l:]{j‘ |D;| + |A]) since the adjacency matrix is sparse. However, S2CL [21] needs O(E X
[.Z{"(|D,»| + |D;*)), in which E means the step size of incremental learning. ILMPFTC [41] has a
time consumption of O(|A] x 31/ z'j@'{@ +2(IDi| — |g © f(N,)) N g° o f°(N,,)]))) and DMPWFC [46]
takes O(Z(U/JNID + wSi) + Z2HIAIL + (U| = x7))), where g° and f< denote the negative
cognitive operators [41], wS; is the weighted concept space, and x;" is a collection of objects that

dissatisfy with wS; [46]. We can prove that CCDS has the smallest time complexity.
5. Experiments

In this section, we empirically evaluate the effectiveness of CCDS on concept classification.
Specifically, CCDS is compared with several mainstream CCL methods and traditional machine
learning classification algorithms through implementation on various datasets from the UCI*
repository. The experiments are independently implemented 10 times with random data partitions in
MATLAB 2020a and carried out on a personal computer with an Intel Core(TM) 17-9700 @3.00GHz
CPU and 8.00GB main memory, and organized through the following three aspects: (1) parametric
analysis of CCDS; (2) the classification performance and efficiency of CCDS; and (3) the statistical
significance test of CCDS.

5.1. Experimental design

To verify the performance of the proposed model (CCDS), three well-established models in CCL
are selected for comparison: S2CL [21], ILMPFTC [41], and DMPWEC [46]. Additionally. several
classic models from machine learning are also included in the comparative experiments: K-nearest
neighbors (KNN) [3], decision tree (DT) [29], naive bayes (NB) [10], classification and regression
tree (CART) [2], SVM', and neural networks (NN¥). There is a common parameter a as the radius of
the neighborhood in CCDS, ILMPFTC, and DMPWFC. Therefore, a is optimally selected to classify

*http://archive.ics.uci.edu/datasets
Thttps://ww2.mathworks.cn/help/stats/fitcsvm.html
ihttps ://ww2.mathworks.cn/help/stats/fitcnet.html
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accuracy and ranged in [0, 1] with step 0.05. The parameter of KNN is set as k = 3. In CCDS, ¢
is chosen from 0.5,0.55, ..., 1 and B on 0,0.05, ..., 0.5 with step 0.05. In the experiments, 20 datasets
are selected and presented in Table 2. Each dataset is randomly split into two parts—-training data
and testing data—which account for 70% and 30% of the data, respectively. In the preprocessing stage,
the dataset is fuzzified to get the membership degree belonging to the interval [0,1]. Therefore, these
datasets are first fuzzified by utilizing [7],

Sf(xi, aj) - min(f(aj))
max(f(a;)) — min(f(a;))’

where f(x;, a;) denotes the value of x; with respect to attribute a;, and max(f(a;)) and min(f(a;)) are
the maximum and minimum of all objects with respect to a;, respectively. The fuzzy value of R(x, a)
means the membership degree of (x,a) to R in the fuzzy formal decision context. The fuzzy set R
can be understood as the degree of membership of objects to attributes. Thus the greater R(x, a) is,
the greater the degree to which x owns a, and Eq 5.1 as a method of fuzzification could convert the
experimental data into a fuzzy formal decision context.

R(xi,a)) = (5.1)

Table 2. Detailed information on experimental data.

ID Dataset Training Testing Feature Class
1 Soy 33 14 21 4
2 Iris 105 45 4 3
3 Thyroid 151 64 5 3
4 Heart 189 81 13 2
5 Ionosphere 246 105 34 2
6 Derm 257 109 34 6
7 Wdbc 398 171 30 2
8 Balance 438 187 4 3
9 Crx 483 207 15 2
10 Austrlian Credit 483 207 14 2
11 Wiscon 489 210 2
12 Pima 538 230 8 2
13 German 700 300 20 2
14 Sick 1960 840 29 2
15 Ablone 2924 1253 8 3
16 Spam 3221 1380 57 2
17 Wilt 3387 1452 5 2
18 Waveform 3500 1500 21 3
19 Mushroom 5687 2437 22 2
20 Gamma 13314 5706 10 2

5.2. Parametric analysis of CCDS

We analyze three parameters «, 8, and 6 on 20 datasets depicted in Table 2, and show the
experimental results in Figures 2—-5. Figure 2 shows the average classification accuracy influenced by
a, from which we observe that the experiments achieve the optimal effect for most datasets when « is
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employed in [0.0,0.3]. In addition, the accuracy changes dramatically in some cases. When a = 0.525,
the upward fluctuations of the results of several datasets are more obvious. Thus, our method is
extremely sensitive to a. Figures 3 and 4 respectively show the accuracy trends of parameters g and
0. It can be seen that CCDS performs well on most datasets in Figure 3 when g is selected in [0,0.3].
Furthermore, for most datasets, we can also identify that the accuracy gradually deteriorates when 8
changes from 0.35 to 0.5 in several cases. Figure 4 reflects that the performance remains relatively
stable on most of the datasets affected by 6. In other words, our method has better generalization
performance with respect to é.
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Figure 4. The influence of .

To further evaluate the performance influenced by each pair of parameters in CCDS, as
representatives, we analyze these parameter pairs on the Austrlian Credit, Wdbc, Wilt, Waveform, Iris,

AIMS Mathematics Volume 10, Issue 9, 22127-22149.



22140

Thyroid, Ionosphere and Derm datasets. There is a similar phenomenon with the remaining datasets.
Figure 5 shows the average classification result by comparing the pairwise combinations of parameters
a, B, and 6. Figure 5(a)—(h) visualize the trend of accuracy with («, ), while Figure 5(i)—(p) and
(q)—(x) visualize that of accuracy with (@, 0), and (B, 0), respectively. It is clear that most datasets are
insensitive to B and ¢ in Figure 5(a)—(x). However, the accuracy decreases when « increases. As an
example, from Figure 5(a)—(g), (1)—(0), and (r), we can see that an insufficient influence of 8 as well
as 0 on the classification results exists. More specifically, when 8 < 0.4 is employed, the slope of the
accuracy plane remains constant along the direction of S in Figure 5(b)—(h), (q), (s), and (u)—(x). In
conclusion, the proposed model is sensitive to @, and unresponsive to 5 and 6.
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Figure 5. The accuracy by comparing «, 8, and ¢ pairwise.

6. Classification performance and efficiency of CCDS

To evaluate the performance and efficiency, we focus on four key metrics for each method: accuracy,
standard deviation, F1-score, and running time. We record the average results across 20 datasets for
comparison, as shown in Tables 3 to 7.

From Tables 3 to 5, we can draw a couple of observations. (1) Compared with the concept cognitive
methods, CCDS achieves better performance on 15 out of 20 datasets with respect to accuracy, while
on datasets 5 and 14, both of them rank second and their gaps with the corresponding champions are
both very small. (2) On all 20 datasets, CCDS is superior to other cognitive algorithms with respect
to the average accuracy. This suggests that exploiting the attribute surmise relationship is conducive
to performance improvement. (3) These comparative methods achieve the best performance on up to
5 out of 20 datasets. (4) On running time, our method (CCDS) outperforms all others. Particularly
on datasets 14 to 19, its time consumption does not exceed one second, which is about 30 times less
than that of S2CL, the best comparative method. While processing on large scale data (e.g., Dataset
20), the consumption gap has been further widened. According to Fl-score, CCDS wins on 11 out
of 20 datasets, while on Dataset 5, it ranks second with a small gap between itself and the champion.
Accordingly, CCDS is significantly superior to the others. This demonstrates that reducing search
space sensibly contributes to the efficiency and performance improvement. Thus, we conclude that the
proposed method is effective for CCL, and has advantages compared with some other well-established
CCLs.

To further demonstrate the performance of our method, we conduct six traditional classifications
including KNN, CART, DT, NB, SVM, and NN on all datasets, as shown in Tables 6 and 7. In Table
6, CCDS achieves better performance on 7 out of 20 datasets, while KNN, CART, DT, NB, SVM, and
NN achieve better performance on 0, 4, 2, 3, 2, and 4 out of 20 datasets, respectively. Table 7 reports
that CCDS performs better on 7 out of 20 datasets, while the compared methods perform better on only
1, 3, 3, 2, 3, and 4 out of 20 datasets respectively in terms of F1-score. Meanwhile, only CCDS did not
have the classification errors on all datasets. This shows that our method is among the best.
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Table 3. Comparison results of CCL methods (mean+standard deviation%) in terms of

accuracy.

Table 4. Comparison results of CCL
methods (mean deviation%) in terms

D CCDS ILMPFTC S2CL DMPWEC
1 100.00+0.00  100+0.00  100.00+0.00  100.00+0.00
2 97.78+4.56  94.29+2.13 95244292  76.19+3.37
3 98.43+1.77  97.10£1.35  97.10+2.65  95.97+3.42
4 88.89+3.61  75.59+2.23  73.67+3.40  77.85+9.85
5 88.57+7.48  86.54+3.26  89.23+2.67  87.98+3.40
6 96.33+3.22  95.28+1.33  96.23+1.33  94.81+3.34
7 97.06+1.78  94.59+1.34  96.00+0.77  91.47+0.42
8 89.84+4.16  65.59+1.78  71.72+3.93  75.05+0.20
9 86.95+2.40  81.36+1.70  79.90+3.59  77.91+0.34
10 90.82+2.19  80.49+3.35  80.78+2.13  82.77+1.03
11 99.04+1.19  95.89+0.80  96.27+0.40  95.22+0.68
12 76.95+4.05  68.91+1.70  70.66+2.65  66.59+5.25
13 71.67+2.09  68.76+1.92  69.23+2.62  68.06+0.24
14 95.24+0.79  95.92+0.62  94.92+0.47  87.60+2.70
15 54.35+1.44  5121+0.72 35304432  27.16+14.68
16 76.88+10.93  87.90+0.50  90.40+0.70  39.38+0.00
17 95.31+0.40  94.90+0.34  79.27+136 51.07+25.34
18 87.40+1.46  76.92+0.74  77.25+1.03  77.22+1.18
19 90.85+6.95  100.00+0.00 99.91+0.05  51.77+0.00
20 75.88+0.36  51.79+1.07  80.72+0.55  80.39+0.20

Avg. Acc. 87.91 82.27 83.69 74.41
Table 5.

of Fl-score.

ID CCDS ILMPFTC S2CL DMPWEC
1 100.00 100 100.00  100.00
2 98.08 92.92 90.72 80.51
3 97.96 98.09 100.00 91.70
4 88.68 81.29 78.09 70.42
5 85.59 86.90 84.52 84.24
6 91.42 96.45 95.50 91.53
7  96.95 93.67 94.94 91.23
8 60.00 52.88 57.60 45.85
9 86.60 80.41 83.35 78.92
10 90.41 81.49 84.29 84.46
11 98.96 95.22 96.28 95.57
12 73.84 62.88 70.58 63.87
13 41.75 59.47 65.34 62.60
14 48.62 76.88 76.87 59.70
15 55.54 51.63 39.10 -
16 74.31 87.39 90.06 -
17 48.55 69.08 60.44 54.83
18 87.66 75.96 77.71 76.36
19 90.85 100.00 99.96 -
20 72.27 59.30 79.50 77.64

I3}
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means that this algorithm has all of the classification
errors in a class.

Running time(s) of the
concept cognitive algorithms.

ID |Ul CCDS ILMPFTC S2CL DMPWEC
1 47  0.01 0.01 0.01 0.02
2 150 0.01 0.03 0.02 0.13
3 215 0.01 0.05 0.05 0.18
4 270 0.01 0.16 0.11 0.20
5 351  0.02 0.13 0.11 0.50
6 366 0.03 0.12 0.09 0.26
7 569  0.03 0.62 0.36 0.92
8 690 0.02 0.64 0.57 1.95
9 69 0.03 0.79 0.45 1.16
10 699  0.03 0.78 0.50 1.36
11 768  0.04 1.04 0.56 4.35
12 869  0.03 0.70 0.37 2.00
13 1000 0.04 0.71 0.68 222
14 2800 0.30 13.07 10.03 54.18
15 4177  0.33 27.87 9.07 246.01
16 4601 0.65 43.03 17.63  648.39
17 4839 0.87 73.13 38.53  408.57
18 5000 0.59 12.87 11.00 616.19
19 8124 0.93 50.22 42.10 45951

20 19020 4.24  1546.59 977.90 173291
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Table 6. Comparison with machine learning algorithms (meantstandard deviation%) in
terms of accuracy.

ID CCDS KNN CART DT NB SVM NN

1 100.00+£0.00 95.50+3.19 98.00+2.11  98.00+2.11 88.00+10.52 95.50+3.19  98.00+2.11

2 97.78+4.56  90.00+1.89 93.33x1.81 94.67+2.30 10.67+1.78 94.67+1.41  94.67+1.75

3 98.43+1.77  95.35+2.09 97.19+1.53 96.75+1.03  95.35+1.79  97.71+£1.08  96.32+1.20
4 88.89+3.61 78.52+2.96 74.81+3.23 74.81+2.31 82.96+1.67 80.74+3.48  78.15+2.43

5 88.57+7.48 86.31+1.79 87.74+1.57 91.74+1.52 83.21+1.74 84.63x1.73  89.17+1.95

6 96.33+3.32  94.82+1.08 99.45+0.39 95.08+1.13  97.52+1.11  98.63+0.65  98.08+0.61

7 97.06+£1.78  90.41+1.47 96.69+0.59 93.28+0.83  89.28+1.43  91.53+1.03  96.79+1.18
8 89.83+4.16 76.67+1.68 81.01+1.50 81.88+1.78  86.23+1.07  85.80+0.85 84.78+1.23

9 86.95+2.40 77.97+1.20 79.28+2.09 82.46x1.79  85.65+1.13  84.93+1.27  83.77+0.78
10 90.82+2.19  90.27+1.17 91.99+1.29 91.41+1.15 93.41+0.94 92.85+0.92  89.83+0.98
11 99.04+1.19  98.44+0.34  99.61+0.21 98.70+0.46  95.44+0.87 99.09+0.36  98.96+0.34
12 76.95+4.05 98.24+0.48 99.82+0.18 98.94+0.50 99.30+0.30  99.82+0.18  99.65+0.25

13 71.67£2.09  72.00+1.18 67.90+1.84 66.90+0.87 74.70+1.56 73.70+0.96  69.60+1.18
14 95.24+0.79  95.39+0.46 95.36+0.35 97.61+0.29  96.36+0.31  93.89+0.34  96.07+0.43

15 54.35+1.44  48.86+0.53 48.46+1.30 48.48+0.72  55.74+0.91 52.53+0.58  55.50+1.03

16 76.88+10.93  93.83+0.51 93.65+0.20 94.72+0.37  94.04+0.39  94.87+0.28  95.96+0.32
17 95.31+0.40 95.27+0.34 97.48+0.23 96.71+0.18  94.71+0.24  94.61+0.35  97.89+0.22
18 87.40+1.46 97.06+0.22 96.92+0.28 97.28+0.25 96.10+0.30  98.60+0.17  98.50+0.13

19 90.85+6.95  99.99+0.01  99.99+0.01 99.99+0.01  99.79+0.16  98.33+0.16  99.99+0.01
20 75.88+0.36  99.89+0.02  99.99+0.01 99.93+0.02  99.77+0.04  99.99+0.01  100.00+0.00

Avg.Acc. 87.91 88.74 89.95 89.97 85.91 90.62 91.08

Table 7. Comparison with machine learning algorithms (mean deviation%) in terms of F1-

Score.

ID CCDS KNN CART DT NB SVM NN
1 100.00 - 98.75 - - - -

2 98.08 90.82 94.07 94.11 - 9540 95.05
3 97.96 - 96.79 9581 9330 97.50 -

4 88.68 79.11 7345 73.11 82.74 81.33 78.00
5 8559 8572 87.14 9117 81.69 82.65 88.29
6 9142 - 99.38 9525 9736 98.90 -

7 9695 79.12 9287 86.73 - - 94.32
8 6000 77.86 80.80 81.82 86.25 8636 84.61
9 86.60 77.87 79.17 8249 8557 8527 83.58
10 90.41 89.00 9099 90.66 92.79 92.16 88.71
11 9896 9831 99.56 98.60 9493 99.01 98.85
12 7384 98.16 99.79 9884 99.25 99.81 99.64
13 4175 6229 6228 6125 6644 06430 63.36
14 48.62 7480 7847 89.19 82.62 - -
15 5554 4997 4873 4891 55.35 - 55.25
16 7431 93.76 9333 9447 9374 94.63 95.75
17 4855 80.79 87.65 8292 6645 - 89.49
18 87.66 97.11 97.01 9730 96.09 98.60 9851
19  90.85 9999 99.99 99.99 - 98.33  99.99
20 7227  99.88 9999 9992 99.75 99.99 100.00

IRt

means that this algorithm has all of the classification errors in a class.

Statistical significance test of CCDS

To further analyze the performance among all of the methods, the Friedman test [9] and Bonferroni-
Dunn test [5] are used as the favorable statistical significance tests for the method comparison on the
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20 datasets. For the Friedman test, a Fisher distribution Fr is denoted as follows:

(N - )Xz
p=— F (6.1)
Nk —-1) - X5
where X% = k(llfivl) ( < R? - W), N is the cardinal number of the datasets, k is the number of

experimental models, and R; means the average rank of the algorithms on all datasets. Fr is a Friedman
statistic with k — 1 and (k — 1)(N — 1) degrees of freedom. If Fr > F(k — 1,(k — 1)(N — 1)), then
the null hypothesis is rejected. In fact, the null hypothesis, which follows the principle that all the
methods have equal performance, is clearly rejected in terms of Fr = 8.4494 and the critical value of
F(9,171) = 1.668 at significance level @ = 0.1. Thus, the classification performance of ten models is
remarkably different.

Furthermore, the post-hoc Bonferroni-Dunn test is utilized to complete the performance analysis.
Here, CCDS is regarded as the control method whose average rank difference from the compared
methods is calibrated with the critical difference (CD) via the following equation:

CDy = gur k("; b 6.2)

where ¢, is denoted as the critical value in the test. Accordingly, CCDS is deemed to have significantly
different performance to one compared model if their average ranks differ by at least one CD, where
CD, =2.4039,a =0.1.

Figure 6 shows the CD diagram for accuracy. Specifically, all compared models whose average
rank is within one CD of that of CCDS are connected. Otherwise, the model, which is not connected
to CCDS, is perceived as having significantly different performance from the control approach. From
Figure 6, we can see that the CCDS ranks 3rd among all the approaches, which performs significantly
better than DMPWEFC. However, compared with machine learning methods, it does not significantly
outperform in terms of accuracy. However, ILMPFTC and S2CL significantly outperform SVM and
NN in terms of accuracy. Thus, the proposed model (namely CCDS) can achieve highly competitive
performance against the selected compared CCL methods, and has tied with the performance of the
selected machine learning classification methods.

I — |
9 8 7 6 5 4 3 2 1
[ | I | I | I | I | I | I | | |
| L | N T O I | A I
DMPWFC tL—— NN
s cL——mMmMmMmMm ™™™ SVM
ILMPFTIC ——Mm— CCDS
KNN CART
NB DT

Figure 6. Comparison of the control model against other approaches with the Bonferroni-
Dunn test (CD = 2.4039 at 0.1 significance level).

7. Conclusions

This paper discussed an attribute precedence concept-cognitive learning model based on knowledge
space theory. Specifically, a d-surmise function on attributes was first proposed. To provide
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enlightenment about the cognitive logic, the predecessor function, surmise degree, and cognitive
error tolerance were introduced to develop the (6, 8)-surmise relation on attributes, by which a sparse
adjacency relation was well-established to construct a granular-based cognitive transition mechanism.
Then the cognitive transfer measure was naturally defined to make the significance of attributes
available. Furthermore, considering the powerful node of concepts, such as the hub of communication,
we also explored the discrimination of concepts to measure the nonconformity, which accompanied
conceptual fusion. Moreover, an algorithm CCDS was designed and thoroughly performed on 20
datasets. Experimental results showed that CCDS’s classification performance is better than that of the
emerging mainstream CCL algorithms. In addition, the proposed model had no significant difference
when compared with the traditional classification approaches of machine learning.

In summary, the proposed approach addresses an interesting and challenging field, providing new
perspectives for CCL. Nevertheless, it needs to be further presented as a rationalized axiom system of
the surmise system for fuzzy environments, which has not been further explored in this paper. The
proposed model also fails to handle multi-decision scenarios. Consequently, the next tasks are to focus
on the above crux matters.
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