In this paper, a moment-based modification of the classical Bernstein operators is introduced. The proposed operators incorporate both a domain transformation and an adjustment by the second central moment to improve the approximation properties. We investigate their convergence behavior using tools such as the Lipschitz class and Peetre's $ \kappa- $functional. Quantitative estimates are established based on the classical and second-order modulus of continuity. Furthermore, a Voronovskaja-type theorem is provided to analyze the asymptotic behavior. Theoretical results are supported by numerical examples and graphical illustrations that demonstrate the effectiveness of the operators.
Citation: Şule Yüksel Güngör. Approximation properties of a moment-based modification of Bernstein operators[J]. AIMS Mathematics, 2025, 10(9): 21820-21834. doi: 10.3934/math.2025970
In this paper, a moment-based modification of the classical Bernstein operators is introduced. The proposed operators incorporate both a domain transformation and an adjustment by the second central moment to improve the approximation properties. We investigate their convergence behavior using tools such as the Lipschitz class and Peetre's $ \kappa- $functional. Quantitative estimates are established based on the classical and second-order modulus of continuity. Furthermore, a Voronovskaja-type theorem is provided to analyze the asymptotic behavior. Theoretical results are supported by numerical examples and graphical illustrations that demonstrate the effectiveness of the operators.
| [1] | S. N. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités, Commun. Kharkov Math. Soc., 13 (1912), 1-2. |
| [2] | D. D. Stancu, Asupra unei generalizări a polinoamelor lui Bernstein, Stud. Univ. Babes-Bolyai Ser. Math.-Phys., 14 (1969), 31–45. |
| [3] | L. V. Kantorovich, Sur certains développements suivant les polynômes de la forme de S. Bernstein I, C. R. Acad. Sci. U.R.S.S., 20 (1930), 563–568, 595–600. |
| [4] | J. L. Durrmeyer, Une formule d'inversion de la transformée de Laplace: application à la théorie des moments, Thése de 3e cycle, Faculté des Sciences de l’Université de Paris, 1967. |
| [5] | F. Schurer, Linear positive operators in approximation theory, Mathematical Institute of the Technological University Delft, Report, 1962. |
| [6] | I. Chlodowsky, Sur le développement des fonctions définies dans un intervalle infini en séries de polynomes de M. S. Bernstein, Compositio Math., 4 (1937), 380–393. |
| [7] | G. M. Phillips, Bernstein polynomials based on the $q$-integers, Ann. Numer. Math., 4 (1997), 511–518. |
| [8] | A. Çilo, In $[-1, 1]$ ranges Bernstein polynomials approach properties and approach speed, MS. Thesis, Harran University, 2012. |
| [9] |
F. Usta, On new modification of Bernstein operators: theory and applications, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 1119–1124. https://doi.org/10.1007/s40995-020-00919-y doi: 10.1007/s40995-020-00919-y
|
| [10] |
A. Senapati, A. Kumar, T. Som, Convergence analysis of modified Bernstein–Kantorovich type operators, Rend. Circ. Mat. Palermo, II. Ser., 72 (2023), 3749–3764. https://doi.org/10.1007/s12215-022-00860-6 doi: 10.1007/s12215-022-00860-6
|
| [11] |
M. Sofyalıoğlu, K. Kanat, B. Çekim, Parametric generalization of the modified Bernstein operators, Filomat, 36 (2022), 1699–1709. https://doi.org/10.2298/FIL2205699S doi: 10.2298/FIL2205699S
|
| [12] |
W. T. Cheng, S. A. Mohiuddine, Construction of a new modification of Baskakov operators on $(0, \infty)$, Filomat, 37 (2023), 139–154. https://doi.org/10.2298/FIL2301139C doi: 10.2298/FIL2301139C
|
| [13] |
Q. B. Cai, M. Sofyalıoğlu, K. Kanat, B. Çekim, Some approximation results for the new modification of Bernstein-Beta operators, AIMS Math., 7 (2022), 1831–1844. https://doi.org/10.3934/math.2022105 doi: 10.3934/math.2022105
|
| [14] |
N. I. Mahmudov, M. Kara, Generalization of Szász–Mirakjan operators and their approximation properties, J. Anal., 33 (2025), 1687–1710. https://doi.org/10.1007/s41478-025-00890-0 doi: 10.1007/s41478-025-00890-0
|
| [15] |
Y. S. Wu, W. T. Cheng, F. L. Chen, Y. H. Zhou, Approximation theorem for new modification of $q$-Bernstein operators on $(0, 1)$, J. Funct. Spaces, 4 (2021), 6694032. https://doi.org/10.1155/2021/6694032 doi: 10.1155/2021/6694032
|
| [16] |
N. Rao, M. Shahzad, N. K. Jha, Study of two dimensional $\alpha$-modified Bernstein bi-variate operators, Filomat, 39 (2025), 1509–1522. https://doi.org/10.2298/FIL2505509R doi: 10.2298/FIL2505509R
|
| [17] | P. P. Korovkin, On convergence of linear positive operators in the space of continuous functions (Russian), Dokl. Akad. Nauk SSSR (NS), 90 (1953), 961–964. |
| [18] | Z. Ditzian, V. Totik, Moduli of smoothness, 1 Ed., Springer-Verlag, 1987. https://doi.org/10.1007/978-1-4612-4778-4 |
| [19] | R. A. DeVore, G. G. Lorentz, Constructive approximation, Vol. 303, Springer, 1993. |