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1. Introduction

The theory of positive linear operators is fundamental to approximation theory, providing powerful
tools for investigating how functions can be approximated by simpler forms, such as polynomials.
Among these, the Bernstein operators, first introduced by Bernstein in 1912 [1], occupy a central
position. Their construction not only provided a constructive proof of the Weierstrass approximation
theorem but also laid the foundation for a vast field of research into operator-based approximation.
In addition to their theoretical importance in approximation theory, Bernstein-type operators and their
modifications have found applications in several practical contexts. For example, they are widely used
in computer-aided geometric design (CAGD) and computer graphics, where the classical Bernstein
basis underlies Bézier curves and surfaces. Their shape-preserving properties make them suitable for
image processing and curve fitting. Moreover, they often arise in probability theory and statistical
modeling, since they are connected with binomial distributions and moment estimations. They have
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also been applied in the analysis of differential equations, signal processing, and control theory, where
positive linear operators provide effective approximation procedures.

Bernstein operators are defined for m ∈ N as

Bm( f ; ξ) =

m∑
ν=0

(
m
ν

)
ξν(1 − ξ)m−ν f

(
ν

m

)
, (1.1)

which forms a sequence of positive linear operators converging uniformly to f on [0, 1]. Due to
their properties, such as positivity, linearity and shape-preserving properties, researchers have widely
studied and extended Bernstein operators in many directions. Various generalizations of Bernstein
operators have been proposed over the decades to address different approximation challenges,
including those on unbounded intervals and in weighted function spaces. Notable examples include the
Bernstein–Stancu [2], Bernstein–Kantorovich [3], Bernstein–Durrmeyer [4], Bernstein–Schurer [5],
Bernstein–Chlodowsky [6], and q-Bernstein operators [7]. Each variant introduces new parameters or
structural modifications to improve convergence properties or extend the domain of applicability.

One such modification is given by Çilo [8] as a natural linear transformation of the classical
Bernstein definition on the interval [0, 1], as follows:

Cm( f ; ξ) =
1

2m

m∑
ν=0

(
m
ν

)
(1 + ξ)ν(1 − ξ)m−ν f

(
2ν
m
− 1

)
, (1.2)

where ξ ∈ [−1, 1] and f ∈ C [−1, 1]. Cm operators modify the classical Bernstein operators by adapting
them to the symmetric interval [−1, 1] using a linear transformation of the argument. This adaptation
preserves positivity and linearity while ensuring convergence on [−1, 1].

Usta presented another modification that was obtained by using the second central moment of the
Bernstein operators, as follows [9]:

B∗m ( f ; ξ) =
1
m

m∑
ν=0

(
m
ν

)
(ν − mξ)2 ξν−1 (1 − ξ)m−ν−1 f

(
ν

m

)
, (1.3)

where ξ ∈ (0, 1). The operators B∗m given in (1.3) apply a second central moment structure to the
classical setting by incorporating the term (ν − mξ)2 into the basis. A number of studies have been
carried out following this study, with the focus being on new modification of Bernstein operators. For
instance, in [10], the Kantorovich variant of the operators B∗m is introduced; in [11], a parametric
generalization of B∗m is proposed; in [12], a new modification of Baskakov operators is defined
using B∗m; in [13], a beta-type modification of B∗m is obtained; in [14], a new generalization of the
Szász–Mirakjan operators based on B∗m is presented; in [15], the q-analogue of B∗m is studied; and
in [16], a sequence of bi-variate α-modified Bernstein operators is constructed via B∗m.

Inspired by the domain adaptation in (1.2) and the moment-based modification in (1.3), we introduce
a new sequence of operators that combines the symmetric interval approach with the moment-based
modification as

C∗m ( f ; ξ) =
1

m2m

m∑
ν=0

(
m
ν

)
(2ν − m − mξ)2 (1 + ξ)ν−1 (1 − ξ)m−ν−1 f

(
2ν
m
− 1

)
, (1.4)
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where m ∈ N, ξ ∈ (−1, 1), and f ∈ C [−1, 1]. More precisely, the second central moment-like
term (2ν − m − mξ)2 is incorporated into the definition of C∗m, along with the Bernstein basis and
transformation mapping ν → 2ν

m − 1, to obtain a sequence of modified positive linear operators acting
on (−1, 1).

The proposed modification has several advantages over the classical and previously modified
Bernstein-type operators. By combining a symmetric domain transformation with a moment-based
adjustment, the new operators achieve convergence rates that are at least as good as those established
previously, as demonstrated by the modulus of continuity and Lipschitz class. Furthermore, their
construction preserves positivity and linearity, ensuring that fundamental approximation properties
remain valid. However, these improvements also come with certain limitations. As the operators
are defined on the open interval (−1, 1), continuity at the endpoints cannot be guaranteed, which
restricts their applicability compared to classical Bernstein operators, which are defined on closed
intervals. Additionally, the moment-based modification increases the algebraic complexity of the
operators, resulting in more intricate expressions and potentially higher computational requirements in
practical applications. Despite these drawbacks, the enhanced approximation behavior and theoretical
contributions make the operators C∗m a valuable addition to the family of Bernstein-type modifications.

Remark 1. The definition (1.4) is given for ξ ∈ (−1, 1). It can be argued that the definition is also
valid for ξ ∈ {−1, 1}: The only singular terms in the sum are these for ν = 0 or ν = m. In both cases
we multiply by (1 + ξ)2 or (1 − ξ)2, respectively, removing the singularity. This extended definition
would always give C∗m ( f ;−1) = C∗m ( f ; 1) = 0, which might destroy the continuity of the function
ξ → C∗m ( f ; ξ); thus, the interval must remain open, namely (−1, 1).

Remark 2. The operators C∗m are linear and positive. Indeed, for ξ ∈ (−1, 1), all coefficients in the
representation of C∗m ( f ; ξ) are nonnegative. Hence, if f ≥ 0 on [−1, 1], then C∗m ( f ; ξ) ≥ 0.

The objective of this study is to examine the approximation properties of the operators C∗m. To
this end, some necessary lemmas are presented, and the approximation properties of these operators
are then analyzed using the classical and second-order modulus of continuity. Furthermore, a global
error estimation in the Lipschitz class is given, and the Voronovskaja-type theorem is obtained. Some
numerical examples and graphical illustrations are also provided.

2. Approximation properties of the operators C∗m

In order to obtain approximation properties, we give some lemmas.

Lemma 1. Let (C∗m) be the sequence of positive linear operators defined by (1.4). For all m ∈ N and
ξ ∈ (−1, 1), we have

C∗m (1; ξ) = 1, (2.1)

C∗m (t; ξ) = ξ −
1
m

2ξ, (2.2)

C∗m
(
t2; ξ

)
= ξ2 +

1
m2 (−7mξ2 + 3m + 6ξ2 − 2), (2.3)

C∗m
(
t3; ξ

)
= ξ3 +

1
m3

(
−15m2ξ3 + 9m2ξ + 38mξ3 − 26mξ − 24ξ3 + 16ξ

)
, (2.4)
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C∗m
(
t4; ξ

)
= ξ4 +

1
m4

(
−26m3ξ4 + 18m3ξ2 + 131m2ξ4 − 122m2ξ2

+15m2 − 226mξ4 + 224mξ2 − 30m + 120ξ4 − 120ξ2 + 16
)
. (2.5)

Proof. In the Bm operators, the nodes used inside f are ν
m for ν = 0, 1, 2, ...,m in the interval [0, 1];

whereas in the Cm operators, they are 2ν
m − 1 for ν = 0, 1, 2, ...,m in the interval [−1, 1]. In light of this

explanation, for k ∈ N, the recurrence relation between the Cm and Bm operators has been obtained as
follows:

Cm

(
tk; ξ

)
=

m∑
ν=0

(
m
ν

) (
1 + ξ

2

)ν (1 − ξ
2

)m−ν (2ν
m
− 1

)k

=

k∑
j=0

(
k
j

)
(−1) j 2k− jBm

(
tk− j;

1 + ξ

2

)
.

The following equations can be derived from this relationship:

Cm (1; ξ) = Bm

(
1;

1 + ξ

2

)
= 1,

Cm (t; ξ) = 2Bm

(
t;

1 + ξ

2

)
− 1 = 2

(
1 + ξ

2

)
− 1 = ξ,

Cm

(
t2; ξ

)
= 4Bm

(
t2;

1 + ξ

2

)
− 4Bn

(
t;

1 + ξ

2

)
+ 1

= 4

(1 + ξ

2

)2

+

(
1+ξ

2

) (
1 − 1+ξ

2

)
m

 − 4
(
1 + ξ

2

)
+ 1

= ξ2 +
1
m

(
1 − ξ2

)
.

Moreover, we obtain

Cm(t3; ξ) = ξ3 +

(
3m − 2

m2

)
ξ(1 − ξ2),

Cm(t4; ξ) = ξ4 +
1

m3

(
6m2ξ2 − 6m2ξ4 + 11mξ4 − 14mξ2 + 3m − 6ξ4 + 8ξ2 − 2

)
,

Cm(t5; ξ) = ξ5 +
1

m4 ξ
(
−10m3ξ4 + 10m3ξ2 + 35m2ξ4 − 50m2ξ2 + 15m2 − 50mξ4

+80mξ2 − 30m + 24ξ4 − 40ξ2 + 16
)
,

Cm(t6; ξ) = ξ6 +
1

m5

(
−15m4ξ6 + 15m4ξ4 + 85m3ξ6 − 130m3ξ4 + 45m3ξ2 − 225m2ξ6 + 405m2ξ4

−195m2ξ2 + 15m2 + 274mξ6 − 530mξ4 + 286mξ2 − 30m − 120ξ6 + 240ξ4 − 136ξ2 + 16
)
.

An important point to note is that the values of Cm(tk; ξ) can be obtained either by direct computation,
as given in [8] for k ∈ {0, 1, 2, 3, 4}, or by using the recurrence relation between the operators Cm and
Bm, as given above.
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Now, from the fact that

C∗m
(
tk; ξ

)
=

m
1 − ξ2

[
Cm

(
tk+2; ξ

)
− 2ξCm

(
tk+1; ξ

)
+ ξ2Cm

(
tk; ξ

)]
,

we can obtain the following equalities:
For f (t) = 1, we have

C∗m (1; ξ) =
1

m2m

m∑
ν=0

(
m
ν

)
(2ν − m − mξ)2 (1 + ξ)ν−1 (1 − ξ)m−ν−1

=
m

1 − ξ2

[
Cm

(
t2; ξ

)
− 2ξCm (t; ξ) + ξ2Cm (1; ξ)

]
=

m
1 − ξ2

[
ξ2 +

(1 − ξ)(1 + ξ)
m

− 2ξ2 + ξ2
]

= 1.

For f (t) = t, we have

C∗m (t; ξ) =
1

m2m

m∑
ν=0

(
m
ν

)
(2ν − m − mξ)2 (1 + ξ)ν−1 (1 − ξ)m−ν−1

(
2ν
m
− 1

)
=

m
1 − ξ2

[
Cm

(
t3; ξ

)
− 2ξCm

(
t2; ξ

)
+ ξ2Cm (t; ξ)

]
=

m
1 − ξ2

[
ξ3 +

3m − 2
m2 ξ(1 − ξ)(1 + ξ) − 2ξ

(
ξ2 +

(1 − ξ)(1 + ξ)
m

)
+ ξ3

]
= ξ −

1
m

2ξ.

Similarly, taking into account the values of the operators Cm at test functions, (2.3)–(2.5) can be
obtained through straightforward calculations. �

Lemma 2. For all m ∈ N and ξ ∈ (−1, 1), we have

C∗m (t − ξ; ξ) = −
1
m

2ξ,

and
C∗m

(
(t − ξ)2; ξ

)
=

1
m2 (−3ξ2m + 3m + 6ξ2 − 2).

Proof. The desired results can be obtained from the linearity of the operators C∗m and the above-given
lemma. �

Lemma 3. For all m ∈ N and ξ ∈ (−1, 1), we have the following limits:

lim
m→∞

mC∗m (t − ξ; ξ) = −2ξ,

lim
m→∞

mC∗m
(
(t − ξ)2; ξ

)
= −3ξ2 + 3,

lim
m→∞

m2C∗m
(
(t − ξ)4; ξ

)
= 15ξ4 − 30ξ2 + 15.
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Proof. From Lemma 1 and the linearity of the operators C∗m, we can obtain the above limits. �

Theorem 1. For every f ∈ C [−1, 1], C∗m( f ; ξ) converges uniformly to f on each compact subset of
(−1, 1) as m→ ∞.

Proof. To prove the theorem, it is helpful to consider the results of Lemma 1. As can clearly be seen,
C∗m (1; ξ), C∗m (t; ξ), and C∗m

(
t2; ξ

)
converge uniformly to 1, ξ, and ξ2, respectively, in the limit case on

(−1, 1). Therefore, by the well-known Korovkin theorem [17], the proof is completed. �

Remark 3. Although the classical Korovkin theorem is formulated for continuous functions on closed
intervals, it can be suitably extended to open intervals by considering local uniform convergence.
Since the operators C∗m are from C [−1, 1] to C (−1, 1), we apply a localized version of the Korovkin-
type theorem. Specifically, we verify the convergence of the operators on the test functions {1, t, t2}

and establish that limm→∞C∗m( f ; ξ) = f (ξ) holds uniformly on each compact subset of (−1, 1) for all
f ∈ C [−1, 1]. This validates the approximation properties of the sequence (C∗m) within the framework
of the Korovkin-type theorem adapted to open intervals.

The degree of local approximation for the operators C∗m will now be determined by the classical
modulus of continuity, as defined in [18], for a function f in C[−1, 1]:

ω1 ( f ; δ) = sup
|t−ξ|≤δ

t,ξ∈[−1,1]

| f (t) − f (ξ)| .

Recall that the modulus of continuity has the following property:

ω1 ( f ;α) = ω1

(
f ;
α

β
β

)
≤

(
1 +

α

β

)
ω1 ( f ; β) for α ≥ 0, β > 0.

Theorem 2. For each f ∈ C [−1, 1] and ξ ∈ (−1, 1), we have

|C∗m( f ; ξ) − f (ξ)| ≤ 2ω1( f ; δm(ξ)),

where

δm(ξ) =

√
−3ξ2m + 3m + 6ξ2 − 2

m2 .

Proof. Applying the property that C∗m(1; ξ) = 1, together with the linearity of the sequence
(
C∗m

)
and

the property of ω1( f ; δ), has led to the following result:

∣∣∣C∗m( f ; ξ) − f (ξ)
∣∣∣ =

∣∣∣∣∣∣∣ 1
m2m

m∑
ν=0

(
m
ν

)
(2ν − m − mξ)2 (1 + ξ)ν−1 (1 − ξ)m−ν−1 f

(
2ν
m
− 1

)
− f (ξ)

∣∣∣∣∣∣∣
≤

1
m2m

m∑
ν=0

(
m
ν

)
(2ν − m − mξ)2 (1 + ξ)ν−1 (1 − ξ)m−ν−1

∣∣∣∣∣∣ f
(
2ν
m
− 1

)
− f (ξ)

∣∣∣∣∣∣
≤

1
m2m

m∑
ν=0

(
m
ν

)
(2ν − m − mξ)2 (1 + ξ)ν−1 (1 − ξ)m−ν−1 ω1

(
f ,

∣∣∣∣∣2νm − 1 − ξ
∣∣∣∣∣)

≤
1

m2m

m∑
ν=0

(
m
ν

)
(2ν − m − mξ)2 (1 + ξ)ν−1 (1 − ξ)m−ν−1

(
1 +

1
δ2

(2ν−m−mξ)2

m2

)
ω1 ( f ; δ)
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=

(
1 +

1
δ2

−3ξ2m + 3m + 6ξ2 − 2
m2

)
ω1 ( f ; δ) .

The desired result is obtained by choosing

δm(ξ) =

√
−3ξ2m + 3m + 6ξ2 − 2

m2 ,

as demonstrated above. �

The focus of the next part of this study is to determine the rate of convergence of the sequence of
operators

(
C∗m

)
in a Lipschitz class defined as follows:

LipM (Θ) =
{
f : | f (y) − f (ξ)| ≤ M |y − ξ|Θ , ξ, y ∈ (−1, 1)

}
,

where M is a positive constant and 0 < Θ ≤ 1.

Theorem 3. Let f ∈ LipM (Θ) and Θ ∈ (0, 1]. Then for ξ ∈ (−1, 1) and m > 2, the following estimate
holds: ∣∣∣C∗m( f ; ξ) − f (ξ)

∣∣∣ ≤ M
(
3m − 2

m2

)Θ
2

.

Proof. Let f ∈ LipM (Θ), ξ ∈ (−1, 1), and 0 < Θ ≤ 1; then we have

∣∣∣C∗m( f ; ξ) − f (ξ)
∣∣∣ ≤ 1

m2m

m∑
ν=0

(
m
ν

)
(2ν − m − mξ)2 (1 + ξ)ν−1 (1 − ξ)m−ν−1

∣∣∣∣∣∣ f
(
2ν
m
− 1

)
− f (ξ)

∣∣∣∣∣∣
≤

M
m2m

m∑
ν=0

(
m
ν

)
(2ν − m − mξ)2 (1 + ξ)ν−1 (1 − ξ)m−ν−1

∣∣∣∣∣2νm − 1 − ξ
∣∣∣∣∣Θ .

Applying the Hölder’s inequality by taking p =
2
Θ

and q =
2

2 − Θ
, we have

∣∣∣C∗m( f ; ξ) − f (ξ)
∣∣∣ ≤ M

 1
m2m

m∑
ν=0

(
m
ν

)
(2ν − m − mξ)2 (1 + ξ)ν−1 (1 − ξ)m−ν−1

(
2ν
m
− 1 − ξ

)2


Θ
2

≤ M


√
−3ξ2m + 3m + 6ξ2 − 2

m2

Θ

.

Since √
−3ξ2m + 3m + 6ξ2 − 2

m2 ≤

√
3m − 2

m2 ,

the proof is completed. �

In what follows, a quantitative estimate of the operators C∗m is to be considered by means of the
second-order modulus of continuity of f , as defined in [18]. To establish this estimate, we first review
the definitions of the function spaces and concepts that will be employed.
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The Peetre’s κ-functional is defined by

κ( f ; δ) := inf
g∈C2[−1,1]

{
‖ f − g‖C[−1,1] + δ ‖g′′‖C[−1,1]

}
, (2.6)

where
C2 [−1, 1] = { f ∈ C [−1, 1] : f ′′ ∈ C [−1, 1]} ,

with the norm
‖ f ‖C2[−1,1] = ‖ f ‖C[−1,1] + ‖ f ′‖C[−1,1] + ‖ f ′′‖C[−1,1] , (2.7)

and C [−1, 1] = { f : [−1, 1]→ R : f is continuous}, with the sup-norm.
The second-order modulus of continuity of f ∈ C[−1, 1] is to be considered as well:

ω2 ( f ; δ) = sup
0<h<δ

sup
ξ,ξ+2h∈(−1,1)

| f (ξ + 2h) − 2 f (ξ + h) + f (ξ)| , (2.8)

where δ > 0. The following relationship exists between the second-order modulus of continuity and
the Peetre’s κ− functional:

κ( f ; δ) ≤ Bω2

(
f ;
√
δ
)
, (2.9)

where B is a positive constant [19].

Lemma 4. For ξ ∈ (−1, 1) and f ∈ C [−1, 1], we have

|C∗m( f ; ξ) ≤ ‖ f ‖C[−1,1].

Proof. For the operators C∗m, we have

∣∣∣C∗m( f ; ξ)
∣∣∣ =

∣∣∣∣∣∣∣ 1
m2m

m∑
ν=0

(
m
ν

)
(2ν − m − mξ)2 (1 + ξ)ν−1 (1 − ξ)m−ν−1 f

(
2ν
m
− 1

)∣∣∣∣∣∣∣
≤

1
m2m

m∑
ν=0

(
m
ν

)
(2ν − m − mξ)2 (1 + ξ)ν−1 (1 − ξ)m−ν−1

∣∣∣∣∣∣ f
(
2ν
m
− 1

)∣∣∣∣∣∣
≤ ‖ f ‖C[−1,1]C∗m(1; ξ)
= ‖ f ‖C[−1,1].

�

Theorem 4. Let f ∈ C [−1, 1] and ξ ∈ (−1, 1). Then for any m ∈ N there exists a positive constant B
such that ∣∣∣C∗m( f ; ξ) − f (ξ)

∣∣∣ ≤ Bω2( f ; ηm(ξ)) + 2ω1( f ; ρm(ξ))

where

ηm(ξ) =

√
−3ξ2m + 3m + 10ξ2 − 2

2m2

and ρm(ξ) =
∣∣∣−2ξ

m

∣∣∣.
AIMS Mathematics Volume 10, Issue 9, 21820–21834.
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Proof. Let us define the operators C∗∗m : C[−1, 1]→ C(−1, 1) by

C∗∗m (g; ξ) = C∗m(g; ξ) − g
(
(m − 2)ξ

m

)
+ g(ξ). (2.10)

From Lemma 1, we have

C∗∗m (1; ξ) = 1, (2.11)

C∗∗m (t − ξ; ξ) = C∗m(t − ξ; ξ) −
(
(m − 2)ξ

m
− ξ

)
+ ξ − ξ

=
−2ξ
m
−

(
(m − 2)ξ

m
− ξ

)
+ ξ − ξ

= 0. (2.12)

On the other hand, from the Taylor expansion of g ∈ C2[−1, 1], we can write

g(t) = g(ξ) + (t − ξ)g′(ξ) +

∫ t

ξ

(t − s)g′′(s)ds, t ∈ (−1, 1).

By applying the operators C∗∗m to the above equality, we obtain

C∗∗m (g; ξ) = C∗∗m

(
g(ξ) + (t − ξ)g′(ξ) +

∫ t

ξ

(t − s)g′′(s)ds; ξ
)

= g(ξ) + C∗∗m
(
(t − ξ)g′(ξ); ξ

)
+ C∗∗m

(∫ t

ξ

(t − s)g′′(s)ds; ξ
)
.

Thus, we have

C∗∗m (g; ξ) − g(ξ) = g′(ξ)C∗∗m (t − ξ; ξ) + C∗∗m

(∫ t

ξ

(t − s)g′′(s)ds; ξ
)
.

With the help of (2.10) and (2.12), we may write

C∗∗m (g; ξ) − g(ξ) = C∗∗m

(∫ t

ξ

(t − s)g′′(s)ds; ξ
)

= C∗m

(∫ t

ξ

(t − s)g′′(s)ds; ξ
)
−

∫ (m−2)ξ
m

ξ

(
(m − 2)ξ

m
− s

)
g′′(s)ds

+

∫ ξ

ξ

(ξ − s) g′′(s)ds. (2.13)

Additionally, we can write∣∣∣∣∣∣
∫ t

ξ

(t − s)g′′(s)ds

∣∣∣∣∣∣ ≤
∫ t

ξ

|t − s| |g′′(s)| ds ≤ ‖g′′‖C[−1,1]

∣∣∣∣∣∣
∫ t

ξ

|t − s| ds

∣∣∣∣∣∣
≤

1
2

(t − ξ)2‖g′′‖C[−1,1] (2.14)
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and ∣∣∣∣∣∣∣
∫ (m−2)ξ

m

ξ

(
(m − 2)ξ

m
− s

)
g′′(s)ds

∣∣∣∣∣∣∣ ≤ ‖g′′‖C[−1,1]

∫ (m−2)ξ
m

ξ

(
(m − 2)ξ

m
− s

)
ds

= ‖g′′‖C[−1,1]
2ξ2

m2 . (2.15)

By using (2.14) and (2.15) in (2.13), we obtain∣∣∣C∗∗m (g; ξ) − g(ξ)
∣∣∣ ≤ 1

2
‖g′′‖C[−1,1]C∗m

(
(t − ξ)2; ξ

)
+ ‖g′′‖C[−1,1]

2ξ2

m2

= ‖g′′‖C[−1,1]

(
1
2

C∗m
(
(t − ξ)2; ξ

)
+

2ξ2

m2

)
= ‖g′′‖C[−1,1]η

2
m(ξ),

where

ηm(ξ) =

√
1
2

C∗m
(
(t − ξ)2; ξ

)
+

2ξ2

m2 =

√
−3ξ2m + 3m + 10ξ2 − 2

2m2 .

Moreover, from Lemma 4, we have∣∣∣C∗∗m (g; ξ)
∣∣∣ =

∣∣∣∣∣∣C∗m(g; ξ) − g
(
(m − 2)ξ

m

)
+ g(ξ)

∣∣∣∣∣∣
≤

∣∣∣C∗m(g; ξ)
∣∣∣ +

∣∣∣∣∣∣g
(
(m − 2)ξ

m

)∣∣∣∣∣∣ + |g(ξ)|

≤ 3‖g‖C[−1,1].

Now, using the definitions of the operators C∗∗m and the modulus of continuity, as well as some basic
calculations, we have∣∣∣C∗m( f ; ξ) − f (ξ)

∣∣∣ =

∣∣∣∣∣∣C∗∗m ( f ; ξ) − f (ξ) + f
(
(m − 2)ξ

m

)
− f (ξ) + g(ξ) − g(ξ) + C∗∗m (g; ξ) −C∗∗m (g; ξ)

∣∣∣∣∣∣
≤

∣∣∣C∗∗m ( f − g; ξ) − ( f − g)(ξ)
∣∣∣ +

∣∣∣C∗∗m (g; ξ) − g(ξ)
∣∣∣ +

∣∣∣∣∣∣ f
(
(m − 2)ξ

m

)
− f (ξ)

∣∣∣∣∣∣
≤ 4

(
‖ f − g‖C[−1,1] + ‖g′′‖C[−1,1]η

2
m(ξ)

)
+ 2ω1 ( f ; ρm(ξ)) , (2.16)

where
ρm(ξ) =

∣∣∣∣∣ (m − 2)ξ
m

− ξ

∣∣∣∣∣ =

∣∣∣∣∣−2ξ
m

∣∣∣∣∣ .
Hence, by taking the infimum over all g ∈ C2[−1, 1] in (2.16), we have∣∣∣C∗m( f ; ξ) − f (ξ)

∣∣∣ ≤ 4κ( f ; η2
m(ξ)) + 2ω1( f ; ρm(ξ)).

Finally, by using the inequality (2.9), we obtain∣∣∣C∗m( f ; ξ) − f (ξ)
∣∣∣ ≤ Bω2( f ; ηm(ξ)) + 2ω1( f ; ρm(ξ)),

which completes the proof. �
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Now, we give the Voronovskaja-type theorem for the operators C∗m.

Theorem 5. Let f ∈ C2 [−1, 1]. Then the following equality holds:

lim
m→∞

m
(
C∗m ( f ; ξ) − f (ξ)

)
= −2ξ f ′ (ξ) +

−3ξ2 + 3
2

f ′′ (ξ) .

Proof. From the Taylor expansion of f , we may write

f (t) = f (ξ) + f ′ (ξ) (t − ξ) +
1
2

f ′′ (ξ) (t − ξ)2 + ε (t, ξ) (t − ξ)2 ,

where ε (t, ξ) =
f ′′(σ)− f ′′(ξ)

2 → 0 as t → ξ. Here, σ is between ξ and t. By applying the operators C∗m to
both sides on the above equation, we have

C∗m ( f ; ξ) − f (ξ) = f ′ (ξ) C∗m (t − ξ; ξ) +
1
2

f ′′ (ξ) C∗m
(
(t − ξ)2 ; ξ

)
+ C∗m

(
ε (t, ξ) (t − ξ)2 ; ξ

)
.

So, we have

lim
m→∞

m
[
C∗m ( f ; ξ) − f (ξ)

]
= f ′ (ξ) lim

m→∞
mC∗m (t − ξ; ξ) +

1
2

f ′′ (ξ) lim
m→∞

mC∗m
(
(t − ξ)2 ; ξ

)
+ lim

m→∞
mC∗m

(
ε (t, ξ) (t − ξ)2 ; ξ

)
.

On the other hand, via Cauchy–Schwarz inequality, we write

lim
m→∞

mC∗m
(
ε (t, ξ) (t − ξ)2 ; ξ

)
≤

√
lim

m→∞
C∗m

(
ε2 (t, ξ) ; ξ

)√
lim

m→∞
m2C∗m

(
(t − ξ)4 ; ξ

)
.

Since lim
m→∞

C∗m
(
ε2 (t, ξ) ; ξ

)
= 0 and by Lemma 3,

lim
m→∞

m2C∗m
(
(t − ξ)4 ; ξ

)
= 15ξ4 − 30ξ2 + 15,

so
lim

m→∞
mC∗m

(
ε (t, ξ) (t − ξ)2 ; ξ

)
= 0.

Finally, with the help of Lemma 3, we obtain

lim
m→∞

m
(
C∗m ( f ; ξ) − f (ξ)

)
= −2ξ f ′ (ξ) +

−3ξ2 + 3
2

f ′′ (ξ) .

�

3. Numerical examples

In the subsequent section, the convergence of the operators will be illustrated through the utilization
of numerical examples. The following graphical comparisons will be presented: those between the
operators and the functions.
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Example 1. For m = 50, m = 100, and m = 150, the convergence of C∗m( f ; ξ) to f (ξ) = 1
1+ξ2 is shown

in Figure 1 for ξ ∈ [−0.8, 0.8].

Example 2. For m = 20, m = 30, and m = 50, the convergence of C∗m( f ; ξ) to f (ξ) = cosξ + ξ3 is
shown in Figure 2 for ξ ∈ [−0.8, 0.8].

Example 3. Let us define the function f (ξ) = 1
1+ξ2 . For −1 < ξ < 1, the error estimate of the function

f found by the first modulus of continuity for the operators C∗m is given in Table 1. As can be seen from
the values in Table 1, the error bound of the function decreases as the m values increase.

Figure 1. The convergence of C∗m( f ; ξ) to f (ξ) = 1
1+ξ2 for m = 50, m = 100, and m = 150.

Figure 2. The convergence of C∗m( f ; ξ) to f (ξ) = cosξ + ξ3 for m = 20, m = 30, and m = 50.
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Table 1. Error estimation of the function f (ξ) = 1
1+ξ2 for the operators C∗m( f ; ξ).

m Error estimate by the operators C∗m( f ; ξ)
101 0.6098216645
102 0.1995498353
103 0.0611718537
104 0.0190373507
105 0.0059856275
106 0.0018892479
107 0.0005970714
108 0.0001887743
109 0.0000596920
1010 0.0000188759
1011 0.0000059690
1012 0.0000018875
1013 0.0000005969
1014 0.0000001887
1015 0.0000000596

4. Conclusions

This study introduced a moment-based modification of Bernstein operators on the symmetric
interval, establishing their fundamental approximation properties. The analysis is supported by
quantitative estimates and a Voronovskaja-type theorem, providing a theoretical foundation. Numerical
examples and graphical illustrations demonstrated the efficiency of the proposed operators. Potential
future research directions include exploring multivariate extensions, studying weighted function
spaces, and investigating applications in fields such as signal processing and numerical analysis. These
directions may further enhance the applicability and usefulness of the modified operators.
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2. D. D. Stancu, Asupra unei generalizări a polinoamelor lui Bernstein, Stud. Univ. Babes-Bolyai Ser.
Math.-Phys., 14 (1969), 31–45.
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