In this work, we asymptotically calculate the eigenvalue of a boundary value problem that involves an integrable and symmetric potential over a defined interval and includes eigenvalues in the boundary conditions. We apply the Riccati equation to derive the asymptotic solutions. To validate our findings, we compare them with numerical results obtained using the element–free Galerkin method. The comparison confirms the consistency and accuracy of the asymptotic approach.
Citation: Elif Başkaya, Süleyman Şengül. On symmetric potential in a boundary value problem dependent on an eigenparameter[J]. AIMS Mathematics, 2025, 10(9): 21835-21852. doi: 10.3934/math.2025971
In this work, we asymptotically calculate the eigenvalue of a boundary value problem that involves an integrable and symmetric potential over a defined interval and includes eigenvalues in the boundary conditions. We apply the Riccati equation to derive the asymptotic solutions. To validate our findings, we compare them with numerical results obtained using the element–free Galerkin method. The comparison confirms the consistency and accuracy of the asymptotic approach.
| [1] |
E. Başkaya, On the asymptotics of eigenvalues for a Sturm–Liouville problem with symmetric single-well potential, Demonstr. Math., 57 (2024), 20230129. https://doi.org/10.1515/dema-2023-0129 doi: 10.1515/dema-2023-0129
|
| [2] |
E. Başkaya, On a boundary value problem with symmetric double well potential and spectral parameter in the boundary condition, Sigma J. Eng. Nat. Sci., 42 (2024), 572–577. https://doi.org/10.14744/sigma.2024.00044 doi: 10.14744/sigma.2024.00044
|
| [3] |
T. Belytscho, Y. Y. Lu, L. Gu, Element-free Galerkin methods, Int. J. Numer. Methods Eng., 37 (1994), 229–256. https://doi.org/10.1002/nme.1620370205 doi: 10.1002/nme.1620370205
|
| [4] |
S. Chen, H. Zhang, Q. Li, X. Wei, An interpolating element-free Galerkin scaled boundary method applied to waveguide eigenvalue problem, Adv. Eng. Softw., 206 (2025), 103923. https://doi.org/10.1016/j.advengsoft.2025.103923 doi: 10.1016/j.advengsoft.2025.103923
|
| [5] |
W. C. Chen, Y. Cheng, Remarks on the one-dimensional sloshing problem involving the p-Laplacian operator, Turk. J. Math., 44 (2020), 1376–1387. https://doi.org/10.3906/mat-1908-90 doi: 10.3906/mat-1908-90
|
| [6] |
H. Cui, Z. Meng, H. Cheng, L. Ma, The efficient element-free Galerkin method for 3D Schrödinger equations, Int. J. Appl. Mech., 17 (2025), 2550022. https://doi.org/10.1142/S175882512550022X doi: 10.1142/S175882512550022X
|
| [7] |
Y. Dun, S. Zeng, , J. Chen, Element‐free Galerkin numerical mode‐matching method for static and time‐harmonic electromagnetic fields in orthogonal‐plano‐cylindrically layered media, Int. J. Numer. Model.: Electron. Netw. Devices Fields, 34 (2021), e2837. https://doi.org/10.1002/jnm.2837 doi: 10.1002/jnm.2837
|
| [8] |
C. T. Fulton, Two point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. R. Soc. Edinb. A: Math., 77 (1977), 293–308. https://doi.org/10.1017/S030821050002521X doi: 10.1017/S030821050002521X
|
| [9] |
C. T. Fulton, Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions, Proc. R. Soc. Edinb. A: Math., 87 (1980), 1–34. https://doi.org/10.1017/S0308210500012312 doi: 10.1017/S0308210500012312
|
| [10] |
B. J. Harris, A series solution for certain Ricatti equations with applications to Sturm–Liouville problems, J. Math. Anal. Appl., 137 (1989), 462–470. https://doi.org/10.1016/0022-247X(89)90256-4 doi: 10.1016/0022-247X(89)90256-4
|
| [11] |
B. J. Harris, The form of the spectral functions associated with Sturm–Liouville problems with continuous spectrum, Mathematika, 44 (1997), 149–161. https://doi.org/10.1112/S0025579300012043 doi: 10.1112/S0025579300012043
|
| [12] |
A. Kabataş, On eigenfunctions of Hill' s equation with symmetric double well potential, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 71 (2022), 634–649. https://doi.org/10.31801/cfsuasmas.974409 doi: 10.31801/cfsuasmas.974409
|
| [13] | A. Kabataş, Sturm–Liouville problems with nonlinear dependence on the spectral parameter in the boundary conditions, Bound. Value Probl., 118 (2025). https://doi.org/10.1186/s13661-025-02086-8 |
| [14] |
N. Y. Kapustin, On the spectral problem arising in the solution of a mixed problem for the heat equation with a mixed derivative in the boundary condition, Diff. Equat., 48 (2012), 701–706. https://doi.org/10.1134/S0012266112050084 doi: 10.1134/S0012266112050084
|
| [15] |
N. Karjanto, On modified second Paine–de Hoog–Anderssen boundary value problem, Symmetry, 14 (2022), 54. https://doi.org/10.3390/sym14010054 doi: 10.3390/sym14010054
|
| [16] |
N. Karjanto, P. Sadhani, Unraveling the complexity of inverting the Sturm–Liouville boundary value problem to its canonical form, Mathematics, 12 (2024), 1329. https://doi.org/10.3390/math12091329 doi: 10.3390/math12091329
|
| [17] |
N. B. Kerimov, K. R. Mamedov, On one boundary value problem with a spectral parameter in the boundary conditions, Sib. Math. J., 40 (1999), 281–290. https://doi.org/10.1007/s11202-999-0008-5 doi: 10.1007/s11202-999-0008-5
|
| [18] |
P. Lancaster, K. Salkauskas, Surfaces generated by moving least squares methods, Math. Comput., 37 (1981), 141–158. https://doi.org/10.1090/S0025-5718-1981-0616367-1 doi: 10.1090/S0025-5718-1981-0616367-1
|
| [19] |
X. Li, A stabilized element-free Galerkin method for the advection–diffusion–reaction problem, Appl. Math. Lett., 146 (2023), 108831. https://doi.org/10.1016/j.aml.2023.108831 doi: 10.1016/j.aml.2023.108831
|
| [20] |
M. Mandrysz, B. Dybiec, Energetics of single-well undamped stochastic oscillators, Phys. Rev. E, 99 (2019), 012125. https://doi.org/10.1103/PhysRevE.99.012125 doi: 10.1103/PhysRevE.99.012125
|
| [21] |
C. Messori, Deep into the water: Exploring the hydro-electromagnetic and quantum electrodynamic properties of interfacial water in living systems, OALib J., 6 (2019), e5435. https://doi.org/10.4236/oalib.1105435 doi: 10.4236/oalib.1105435
|
| [22] |
W. H. Miller, Periodic orbit description of tunneling in symmetric and asymmetric double-well potentials, J. Phys. Chem., 83 (1979), 960–963. https://doi.org/10.1021/j100471a015 doi: 10.1021/j100471a015
|
| [23] |
F. Zhou, Z. Cao, Q. Shen, Energy splitting in symmetric double-well potentials, Phys. Rev. A., 67 (2003), 062112. https://doi.org/10.1103/PhysRevA.67.062112 doi: 10.1103/PhysRevA.67.062112
|
| [24] |
L. Zhou, J. Wang, X. Li, C. Liu, P. Liu, S. Ren, et al., The magneto-electro-elastic multi-physics coupling element free Galerkin method for smart structures in statics and dynamic problems, Thin-Walled Struct., 169 (2021), 108431. https://doi.org/10.1016/j.tws.2021.108431 doi: 10.1016/j.tws.2021.108431
|