Research article Topical Sections

Limits in $ \mathcal{D} $-module categories: Completeness and derived geometric extensions

  • Received: 23 June 2025 Revised: 14 August 2025 Accepted: 18 August 2025 Published: 29 August 2025
  • MSC : 14F10, 18A30, 32C38, 18G80, 14F40

  • This work establishes the categorical completeness of the category $ \mathsf{Mod}(\mathcal{D}_{X}) $ of left $ \mathcal{D} $-modules on smooth complex algebraic varieties, resolving a fundamental structural question in algebraic analysis. We explicitly construct all small limits, such as products, equalizers, pullbacks, and arbitrary limits, demonstrating they are realized as $ \mathcal{O}_{X} $-submodules of categorical products with compatible diagonal $ \mathcal{D}_{X} $-actions governed by transition morphisms.

    Key innovations include the following:

    ● Canonical extensions to the bounded derived category $ D^{b}(\mathsf{Mod}(\mathcal{D}_{X})) $, proving homotopy limits preserve cohomology: $ H^{n}\big(\varprojlim^{\mathrm{ho}}\mathcal{M}^{\bullet}_{i}\big) \cong \varprojlim H^{n}(\mathcal{M}^{\bullet}_{i}) $.

    ● Geometric compatibility: Limits commute with the forgetful functor to $ \mathcal{O}_{X} $-modules and preserve holonomicity, with characteristic varieties satisfying $ \mathrm{Ch}\big(\varprojlim \mathcal{M}_{i}\big) \subseteq \varprojlim \mathrm{Ch}(\mathcal{M}_{i}) $ in $ T^{*}X $.

    These results provide a unified framework for limit constructions across abelian and derived categories of $ \mathcal{D} $-modules, with immediate applications to microlocal analysis, arithmetic $ \mathcal{D} $-modules in positive characteristic, and the Riemann-Hilbert correspondence. The explicit formulations are adaptable to singular characteristic varieties and resolve foundational questions in geometric representation theory.

    Citation: Huang-Rui Lei, Jian-Gang Tang. Limits in $ \mathcal{D} $-module categories: Completeness and derived geometric extensions[J]. AIMS Mathematics, 2025, 10(8): 19958-19973. doi: 10.3934/math.2025891

    Related Papers:

  • This work establishes the categorical completeness of the category $ \mathsf{Mod}(\mathcal{D}_{X}) $ of left $ \mathcal{D} $-modules on smooth complex algebraic varieties, resolving a fundamental structural question in algebraic analysis. We explicitly construct all small limits, such as products, equalizers, pullbacks, and arbitrary limits, demonstrating they are realized as $ \mathcal{O}_{X} $-submodules of categorical products with compatible diagonal $ \mathcal{D}_{X} $-actions governed by transition morphisms.

    Key innovations include the following:

    ● Canonical extensions to the bounded derived category $ D^{b}(\mathsf{Mod}(\mathcal{D}_{X})) $, proving homotopy limits preserve cohomology: $ H^{n}\big(\varprojlim^{\mathrm{ho}}\mathcal{M}^{\bullet}_{i}\big) \cong \varprojlim H^{n}(\mathcal{M}^{\bullet}_{i}) $.

    ● Geometric compatibility: Limits commute with the forgetful functor to $ \mathcal{O}_{X} $-modules and preserve holonomicity, with characteristic varieties satisfying $ \mathrm{Ch}\big(\varprojlim \mathcal{M}_{i}\big) \subseteq \varprojlim \mathrm{Ch}(\mathcal{M}_{i}) $ in $ T^{*}X $.

    These results provide a unified framework for limit constructions across abelian and derived categories of $ \mathcal{D} $-modules, with immediate applications to microlocal analysis, arithmetic $ \mathcal{D} $-modules in positive characteristic, and the Riemann-Hilbert correspondence. The explicit formulations are adaptable to singular characteristic varieties and resolve foundational questions in geometric representation theory.



    加载中


    [1] A. Beilinson, J. Bernstein, A proof of Jantzen conjectures, Adv. Sov. Math., 16 (1993), 1–50. https://doi.org/10.1090/advsov/016.1/01 doi: 10.1090/advsov/016.1/01
    [2] I. N. Bernstein, Algebraic theory of D-modules, 1973.
    [3] P. Berthelot, D-modules arithmétiques. Ⅰ. Opérateurs différentiels de niveau fini, Ann. Sci. Ecole. Norm. S., 29 (1996), 185–272. https://doi.org/10.24033/asens.1739 doi: 10.24033/asens.1739
    [4] A. Borel, Algebraic D-modules, Boston: Academic Press, 1987.
    [5] D. Gaitsgory, Geometric representation theory, Lecture notes, Cambridge: Harvard University, 2015.
    [6] R. Hotta, T. Tanisaki, D-modules, perverse sheaves, and representation theory, Boston: Birkhäuser, 236 (2008). https://doi.org/10.1007/978-0-8176-4523-6
    [7] M. Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. Res. I. Math. Sci., 20 (1984), 319–365. https://doi.org/10.2977/prims/1195181610 doi: 10.2977/prims/1195181610
    [8] M. Kashiwara, D-modules and microlocal calculus, Translations of mathematical monographs, American Mathematical Society, 217 (2003). https://doi.org/10.1090/mmono/217
    [9] B. Malgrange, Differential equations with polynomial coefficients, Boston: Birkhäuser, 96 (1983).
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(397) PDF downloads(22) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog