This work establishes the categorical completeness of the category $ \mathsf{Mod}(\mathcal{D}_{X}) $ of left $ \mathcal{D} $-modules on smooth complex algebraic varieties, resolving a fundamental structural question in algebraic analysis. We explicitly construct all small limits, such as products, equalizers, pullbacks, and arbitrary limits, demonstrating they are realized as $ \mathcal{O}_{X} $-submodules of categorical products with compatible diagonal $ \mathcal{D}_{X} $-actions governed by transition morphisms.
Key innovations include the following:
● Canonical extensions to the bounded derived category $ D^{b}(\mathsf{Mod}(\mathcal{D}_{X})) $, proving homotopy limits preserve cohomology: $ H^{n}\big(\varprojlim^{\mathrm{ho}}\mathcal{M}^{\bullet}_{i}\big) \cong \varprojlim H^{n}(\mathcal{M}^{\bullet}_{i}) $.
● Geometric compatibility: Limits commute with the forgetful functor to $ \mathcal{O}_{X} $-modules and preserve holonomicity, with characteristic varieties satisfying $ \mathrm{Ch}\big(\varprojlim \mathcal{M}_{i}\big) \subseteq \varprojlim \mathrm{Ch}(\mathcal{M}_{i}) $ in $ T^{*}X $.
These results provide a unified framework for limit constructions across abelian and derived categories of $ \mathcal{D} $-modules, with immediate applications to microlocal analysis, arithmetic $ \mathcal{D} $-modules in positive characteristic, and the Riemann-Hilbert correspondence. The explicit formulations are adaptable to singular characteristic varieties and resolve foundational questions in geometric representation theory.
Citation: Huang-Rui Lei, Jian-Gang Tang. Limits in $ \mathcal{D} $-module categories: Completeness and derived geometric extensions[J]. AIMS Mathematics, 2025, 10(8): 19958-19973. doi: 10.3934/math.2025891
This work establishes the categorical completeness of the category $ \mathsf{Mod}(\mathcal{D}_{X}) $ of left $ \mathcal{D} $-modules on smooth complex algebraic varieties, resolving a fundamental structural question in algebraic analysis. We explicitly construct all small limits, such as products, equalizers, pullbacks, and arbitrary limits, demonstrating they are realized as $ \mathcal{O}_{X} $-submodules of categorical products with compatible diagonal $ \mathcal{D}_{X} $-actions governed by transition morphisms.
Key innovations include the following:
● Canonical extensions to the bounded derived category $ D^{b}(\mathsf{Mod}(\mathcal{D}_{X})) $, proving homotopy limits preserve cohomology: $ H^{n}\big(\varprojlim^{\mathrm{ho}}\mathcal{M}^{\bullet}_{i}\big) \cong \varprojlim H^{n}(\mathcal{M}^{\bullet}_{i}) $.
● Geometric compatibility: Limits commute with the forgetful functor to $ \mathcal{O}_{X} $-modules and preserve holonomicity, with characteristic varieties satisfying $ \mathrm{Ch}\big(\varprojlim \mathcal{M}_{i}\big) \subseteq \varprojlim \mathrm{Ch}(\mathcal{M}_{i}) $ in $ T^{*}X $.
These results provide a unified framework for limit constructions across abelian and derived categories of $ \mathcal{D} $-modules, with immediate applications to microlocal analysis, arithmetic $ \mathcal{D} $-modules in positive characteristic, and the Riemann-Hilbert correspondence. The explicit formulations are adaptable to singular characteristic varieties and resolve foundational questions in geometric representation theory.
| [1] |
A. Beilinson, J. Bernstein, A proof of Jantzen conjectures, Adv. Sov. Math., 16 (1993), 1–50. https://doi.org/10.1090/advsov/016.1/01 doi: 10.1090/advsov/016.1/01
|
| [2] | I. N. Bernstein, Algebraic theory of D-modules, 1973. |
| [3] |
P. Berthelot, D-modules arithmétiques. Ⅰ. Opérateurs différentiels de niveau fini, Ann. Sci. Ecole. Norm. S., 29 (1996), 185–272. https://doi.org/10.24033/asens.1739 doi: 10.24033/asens.1739
|
| [4] | A. Borel, Algebraic D-modules, Boston: Academic Press, 1987. |
| [5] | D. Gaitsgory, Geometric representation theory, Lecture notes, Cambridge: Harvard University, 2015. |
| [6] | R. Hotta, T. Tanisaki, D-modules, perverse sheaves, and representation theory, Boston: Birkhäuser, 236 (2008). https://doi.org/10.1007/978-0-8176-4523-6 |
| [7] |
M. Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. Res. I. Math. Sci., 20 (1984), 319–365. https://doi.org/10.2977/prims/1195181610 doi: 10.2977/prims/1195181610
|
| [8] | M. Kashiwara, D-modules and microlocal calculus, Translations of mathematical monographs, American Mathematical Society, 217 (2003). https://doi.org/10.1090/mmono/217 |
| [9] | B. Malgrange, Differential equations with polynomial coefficients, Boston: Birkhäuser, 96 (1983). |