The chaotic propagation of computer viruses presents a significant challenge in cybersecurity, necessitating advanced mathematical models for understanding and controlling their spread. In this study, we investigate the stabilization and synchronization of chaos in a fractional-order discrete computer virus model with incommensurate order. We begin by analyzing the chaotic behavior of the incommensurate fractional virus model, thereby employing tools such as bifurcation diagrams, phase portraits, and Lyapunov exponents to characterize its nonlinear dynamics. The results reveal that the system exhibits chaotic behavior under specific parameter conditions, which results in unpredictable virus spread. To mitigate these chaotic effects, we implement stabilization strategies aimed at stabilizing the system and suppressing chaotic outbreaks. Additionally, we explore synchronization techniques, which are of paramount importance in understanding virus interactions within networked systems. Numerical results are presented to corroborate the theoretical findings presented in this paper.
Citation: Omar Kahouli, Imane Zouak, Ma'mon Abu Hammad, Adel Ouannas, Mohamed Ayari. On incommensurate chaotic fractional discrete model of computer virus: stabilization and synchronization[J]. AIMS Mathematics, 2025, 10(8): 19940-19957. doi: 10.3934/math.2025890
The chaotic propagation of computer viruses presents a significant challenge in cybersecurity, necessitating advanced mathematical models for understanding and controlling their spread. In this study, we investigate the stabilization and synchronization of chaos in a fractional-order discrete computer virus model with incommensurate order. We begin by analyzing the chaotic behavior of the incommensurate fractional virus model, thereby employing tools such as bifurcation diagrams, phase portraits, and Lyapunov exponents to characterize its nonlinear dynamics. The results reveal that the system exhibits chaotic behavior under specific parameter conditions, which results in unpredictable virus spread. To mitigate these chaotic effects, we implement stabilization strategies aimed at stabilizing the system and suppressing chaotic outbreaks. Additionally, we explore synchronization techniques, which are of paramount importance in understanding virus interactions within networked systems. Numerical results are presented to corroborate the theoretical findings presented in this paper.
| [1] | P. Szor, The art of computer virus research and defense, 1 Eds., Massachusetts: Addison-Wesley Professional, 2005. |
| [2] |
X. F. Yang, L.-X. Yang, Towards the epidemiological modeling of computer viruses, Discrete Dyn. Nat. Soc., 2012 (2012), 259671. https://doi.org/10.1155/2012/259671 doi: 10.1155/2012/259671
|
| [3] |
J. G. Ren, X. F. Yang, Q. Y. Zhu, L.-X. Yang, C. M. Zhang, A novel computer virus model and its dynamics, Nonlinear Anal.-Real, 13 (2012), 376–384. https://doi.org/10.1016/j.nonrwa.2011.07.048 doi: 10.1016/j.nonrwa.2011.07.048
|
| [4] |
L.-X. Yang, X. F. Yang, Q. Y. Zhu, L. S. Wen, A computer virus model with graded cure rates, Nonlinear Anal.-Real, 14 (2013), 414–422. https://doi.org/10.1016/j.nonrwa.2012.07.005 doi: 10.1016/j.nonrwa.2012.07.005
|
| [5] |
L.-X. Yang, X. F. Yang, A new epidemic model of computer viruses, Commun. Nonlinear Sci., 19 (2014), 1935–1944. https://doi.org/10.1016/j.cnsns.2013.09.038 doi: 10.1016/j.cnsns.2013.09.038
|
| [6] |
G. C. Wu, D. Baleanu, Discrete fractional logistic map and its chaos, Nonlinear Dyn., 75 (2014), 283–287. https://doi.org/10.1007/s11071-013-1065-7 doi: 10.1007/s11071-013-1065-7
|
| [7] |
M. Al-Qurashi, Q. U. Asif, Y.-M. Chu, S. Rashid, S. K. Elagan, Complexity analysis and discrete fractional difference implementation of the Hindmarsh–Rose Neuron System, Results Phys., 51 (2023), 106627. https://doi.org/10.1016/j.rinp.2023.106627 doi: 10.1016/j.rinp.2023.106627
|
| [8] | I. H. Jebril, K. Dibi, I. Zouak, A. Ouannas, A.-A. Khennaoui, I. M. Batiha, Incommensurate fractional computer virus system: control and simulation, 2025 12th International Conference on Information Technology (ICIT), Amman, Jordan, 2025,109–113. https://doi.org/10.1109/ICIT64950.2025.11049232 |
| [9] |
O. Kahouli, I. Zouak, M. A. Hammad, A. Ouannas, Chaos, control, and synchronization in discrete time computer virus system with fractional orders, AIMS Mathematics, 10 (2025), 13594–13621. http://doi.org/10.3934/math.2025612 doi: 10.3934/math.2025612
|
| [10] | J. Oudetallah, I. Zouak, W. Audeh, A. Ouannas, A.-A. Khennaoui, I. M. Batiha, S. Momani, Control of chaos in fractional computer virus model, 2025 1st International Conference on Computational Intelligence Approaches and Applications (ICCIAA), Amman, Jordan, 2025, 01–05. https://doi.org/10.1109/ICCIAA65327.2025.11013727 |
| [11] |
O. Kahouli, I. Zouak, A. Ouannas, I. Abidi, Y. Bahou, S. Elgharbi, et al., Control and synchronization of chaos in some fractional computer virus models, Asian J. Control, 2025 (2015), 1–9. https://doi.org/10.1002/asjc.3693 doi: 10.1002/asjc.3693
|
| [12] | J. Oudetallah, I. Zouak, W. Audeh, A. Ouannas, A.-A. Khennaoui, I. M. Batiha, et al., Synchronization of computer virus system using fractional calculus, 2025 1st International Conference on Computational Intelligence Approaches and Applications (ICCIAA), Amman, Jordan, 2025, 1–6. https://doi.org/10.1109/ICCIAA65327.2025.11013551 |
| [13] |
A.-A. Khennaoui, A. Ouannas, S. Bendoukha, X. Wang, V. T. Pham, On chaos in the fractional-order discrete-time unified system and its control synchronization, Entropy, 20 (2018), 530. https://doi.org/10.3390/e20070530 doi: 10.3390/e20070530
|
| [14] |
A. O. Almatroud, A.-A. Khennaoui, A. Ouannas, G. Grassi, M. M. Al-Sawalha, A. Gasri, Dynamical analysis of a new chaotic fractional discrete-time system and its control, Entropy, 22 (2020), 1344. https://doi.org/10.3390/e22121344 doi: 10.3390/e22121344
|
| [15] |
L. M. Pecora, T. L. Carrol, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821. https://doi.org/10.1103/PhysRevLett.64.821 doi: 10.1103/PhysRevLett.64.821
|
| [16] |
A. Ouannas, Z. Odibat, Generalized synchronization of different dimensional chaotic dynamical systems in discrete-time, Nonlinear Dyn., 81 (2015), 765–771. https://doi.org/10.1007/s11071-015-2026-0 doi: 10.1007/s11071-015-2026-0
|
| [17] |
A. Ouannas, A new generalized type of synchronization for discrete chaotic dynamical systems, J. Comput. Nonlinear Dynam., 10 (2015), 061019. https://doi.org/10.1115/1.4030295 doi: 10.1115/1.4030295
|
| [18] |
A. Gasri, A. Ouannas, A. A. Khennaoui, G. Grassi, T. Oussaeif, V. T. Pham, Chaotic fractional discrete neural networks based on the Caputo h-difference operator: stabilization and linear control laws for synchronization, Eur. Phys. J. Spec. Top., 231 (2022), 1815–1829. https://doi.org/10.1140/epjs/s11734-022-00552-3 doi: 10.1140/epjs/s11734-022-00552-3
|
| [19] |
R. Saadeh, A. Abbes, A. Al-Husban, A. Ouannas, G. Grassi, The fractional discrete predator–prey model: chaos, control and synchronization, Fractal Fract., 7 (2023), 120. https://doi.org/10.3390/fractalfract7020120 doi: 10.3390/fractalfract7020120
|
| [20] |
A. Abbes, A. Ouannas, N. Shawagfeh, G. Grassi, The effect of the Caputo fractional difference operator on a new discrete COVID-19 model, Results Phys., 39 (2022), 105797. https://doi.org/10.1016/j.rinp.2022.105797 doi: 10.1016/j.rinp.2022.105797
|
| [21] |
M. T. Shatnawi, A. Abbes, A. Ouannas, I. M. Batiha, A new two-dimensional fractional discrete rational map: chaos and complexity, Phys. Scr., 98 (2023), 015208. https://doi.org/10.1088/1402-4896/aca531 doi: 10.1088/1402-4896/aca531
|
| [22] |
A.-A. Khennaoui, A. Ouannas, S. Momani, O. A. Almatroud, M. M. Al-Sawalha, S. M. Boulaaras, et al., Special fractional-order map and its realization, Mathematics, 10 (2022), 4474. https://doi.org/10.3390/math10234474 doi: 10.3390/math10234474
|
| [23] |
A. Abbes, A. Ouannas, N. Shawagfeh, An incommensurate fractional discrete macroeconomic system: bifurcation, chaos, and complexity, Chin. Phys. B, 32 (2023), 030203. https://doi.org/10.1088/1674-1056/ac7296 doi: 10.1088/1674-1056/ac7296
|
| [24] | A. Ouannas, I. M. Batiha, V. T. Pham, Fractional discrete chaos: theories, methods and applications, Singapore: World Scientific, 2023. |
| [25] |
T. Hamadneh, A. Abbes, I. Abu Falahah, Y. A. Al-Khassawneh, A. S. Heilat, A. Al-Husban, et al., Complexity and chaos analysis for two-dimensional discrete-time predator–prey Leslie–Gower model with fractional orders, Axioms, 12 (2023), 561. https://doi.org/10.3390/axioms12060561 doi: 10.3390/axioms12060561
|
| [26] |
O. A. Almatroud, M. Abu Hammad, A. Dababneh, L. Diabi, A. Ouannas, A. A. Khennaoui, et al., Multistability, chaos, and synchronization in novel symmetric difference equation, Symmetry, 16 (2024), 1093. https://doi.org/10.3390/sym16081093 doi: 10.3390/sym16081093
|
| [27] |
M. Abu Hammad, L. Diabi, A. Dababneh, A. Zraiqat, S. Momani, A. Ouannas, et al., On new symmetric fractional discrete-time systems: chaos, complexity, and control, Symmetry, 16 (2024), 840. https://doi.org/10.3390/sym16070840 doi: 10.3390/sym16070840
|
| [28] | N. Djenina, A. Ouannas, Stability and stabilisation of nonlinear incommensurate fractional order difference systems, In: State estimation and stabilization of nonlinear systems, Cham: Springer, 2023,147–168. https://doi.org/10.1007/978-3-031-37970-3_9 |
| [29] |
H. Al-Taani, M. Abu Hammad, M. Abudayah, L. Diabi, A. Ouannas, Asymmetry and symmetry in a new three-dimensional chaotic map with commensurate and incommensurate fractional orders, Symmetry, 16 (2024), 1447. https://doi.org/10.3390/sym16111447 doi: 10.3390/sym16111447
|
| [30] |
M. Abu Hammad, R. Alkhateeb, G. Farraj, N. Djenina, A. Ouannas, Discrete fractional incommensurate order Ebola model: analyzing dynamics and numerical simulation, Fractals, 33 (2025), 2540127. https://doi.org/10.1142/S0218348X25401279 doi: 10.1142/S0218348X25401279
|
| [31] |
A. Ouannas, S. B. Ahmed, G. Grassi, M. Al Horani, A. A. Khennaoui, A. Hioual, The fractional variable-order Grassi–Miller map: chaos, complexity, and control, Comput. Math. Methods, 2025 (2025), 6674521. https://doi.org/10.1155/2025/6674521 doi: 10.1155/2025/6674521
|
| [32] |
L. Diabi, A. Ouannas, A. Hioual, G. Grassi, S. Momani, The discrete Ueda system and its fractional order version: chaos, stabilization and synchronization, Mathematics, 13 (2025), 239. https://doi.org/10.3390/math13020239 doi: 10.3390/math13020239
|
| [33] |
R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86 (2001), 3200. https://doi.org/10.1103/PhysRevLett.86.3200 doi: 10.1103/PhysRevLett.86.3200
|
| [34] |
D. J. Watts, S. H. Strogatz, Collective dynamics of 'small-world' networks, Nature, 393 (1998), 440–442. https://doi.org/10.1038/30918 doi: 10.1038/30918
|
| [35] | M. Sgandurra, L. Muñoz-González, R. Mohsen, E. C. Lupu, Automated dynamic analysis of ransomware: Benefits, limitations, and use for detection, (2016), arXiv: 1609.03020. https://doi.org/10.48550/arXiv.1609.03020 |
| [36] |
Y. Ye, T. Li, D. Adjeroh, S.S. Iyengar, A survey on malware detection using data mining techniques, ACM Comput. Surv., 50 (2017), 41. https://doi.org/10.1145/3073559 doi: 10.1145/3073559
|
| [37] |
Z. F. Wang, X. Q. Nie, M. X. Liao, Stability analysis of a fractional-order SEIR-KS computer virus-spreading model with two delays, J. Math., 2021 (2021), 6144953. https://doi.org/10.1155/2021/6144953 doi: 10.1155/2021/6144953
|
| [38] |
L. J. Yang, Q. K. Song, Y. R. Liu, Dynamics analysis of a new fractional-order SVEIR-KS model for computer virus propagation: Stability and Hopf bifurcation, Neurocomputing, 598 (2024), 128075. https://doi.org/10.1016/j.neucom.2024.128075 doi: 10.1016/j.neucom.2024.128075
|
| [39] |
M. Wang, Y. R. Wang, R. Chu, Dynamical analysis of the incommensurate fractional-order Hopfield neural network system and its digital circuit realization, Fractal Fract., 7 (2023), 474. https://doi.org/10.3390/fractalfract7060474 doi: 10.3390/fractalfract7060474
|
| [40] |
M. Abu Hammad, I. Zouak, A. Ouannas, G. Grassi, Fractional discrete computer virus system: chaos and complexity algorithms, Algorithms, 18 (2025), 444. https://doi.org/10.3390/a18070444 doi: 10.3390/a18070444
|
| [41] |
S. Gao, H. H. Iu, U. Erkan, C. Simsek, A. Toktas, Y. H. Cao, A 3D memristive cubic map With dual discrete memristors: design, implementation, and application in image encryption, IEEE T. Circ. Syst. Vid., 35 (2025), 7706–7718. https://doi.org/10.1109/TCSVT.2025.3545868 doi: 10.1109/TCSVT.2025.3545868
|
| [42] |
S. Gao, Z. Y. Zhang, H. H. Iu, S. Q. Ding, J. Mou, U. Erkan, A parallel color image encryption algorithm based on a 2-D Logistic-Rulkov nuron map, IEEE Internet Things, 12 (2025), 18115–18124. https://doi.org/10.1109/JIOT.2025.3540097 doi: 10.1109/JIOT.2025.3540097
|
| [43] |
F. M. Atici, P. W. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ., 2009 (2009), 1–12. https://doi.org/10.14232/ejqtde.2009.4.3 doi: 10.14232/ejqtde.2009.4.3
|
| [44] |
T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl., 62 (2011), 1602–1611. https://doi.org/10.1016/j.camwa.2011.03.036 doi: 10.1016/j.camwa.2011.03.036
|
| [45] |
G. A. Anastassiou, Principles of delta fractional calculus on time scales and inequalities, Math. Comput. Model., 52 (2010), 556–566. https://doi.org/10.1016/j.mcm.2010.03.055 doi: 10.1016/j.mcm.2010.03.055
|
| [46] |
M. T. Shatnawi, N. Djenina, A. Ouannas, I. M. Batiha, G. Grassi, Novel convenient conditions for the stability of nonlinear incommensurate fractional-order difference systems, Alex. Eng. J., 61 (2022), 1655–1663. https://doi.org/10.1016/j.aej.2021.06.073 doi: 10.1016/j.aej.2021.06.073
|
| [47] |
M. A. Ansari, D. Arora, S. P. Ansari, Chaos control and synchronization of fractional order delay-varying computer virus propagation model, Math. Method. Appl. Sci., 39 (2016), 1197–1205. https://doi.org/10.1002/mma.3565 doi: 10.1002/mma.3565
|
| [48] |
G.-C. Wu, D. Baleanu, Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional maps, Commun. Nonlinear Sci., 22 (2015), 95–100. https://doi.org/10.1016/j.cnsns.2014.06.042 doi: 10.1016/j.cnsns.2014.06.042
|
| [49] |
S. Gao, S. Q. Ding, H. H.-C. Iu, U. Erkan, A. Toktas, C. Şimşek, et al., A three-dimensional memristor-based hyperchaotic map for pseudorandom number generation and multi-image encryption, Chaos, 35 (2025), 073119. https://doi.org/10.1063/5.0270220 doi: 10.1063/5.0270220
|