The Volterra-Hammerstein integral equation plays a crucial role in the control of robotic manipulators, which are widely used in industrial automation, medical robotics, and space exploration. These systems present significant control challenges due to their nonlinear behaviors and memory-dependent effects. In this research, we establish novel common fixed point theorems for generalized rational contractions within the framework of complex-valued suprametric spaces. Leveraging these theoretical advancements, we apply the derived results to solve the Volterra-Hammerstein integral equation, demonstrating its significance in robotic manipulator control. To emphasize the originality and practical applicability of our findings, a comprehensive illustrative example is provided.
Citation: Amnah Essa Shammaky, Ali H. Hakami. Solving Volterra-Hammerstein nonlinear integral equations via fixed point theory in complex-valued suprametric spaces[J]. AIMS Mathematics, 2025, 10(8): 19974-19993. doi: 10.3934/math.2025892
The Volterra-Hammerstein integral equation plays a crucial role in the control of robotic manipulators, which are widely used in industrial automation, medical robotics, and space exploration. These systems present significant control challenges due to their nonlinear behaviors and memory-dependent effects. In this research, we establish novel common fixed point theorems for generalized rational contractions within the framework of complex-valued suprametric spaces. Leveraging these theoretical advancements, we apply the derived results to solve the Volterra-Hammerstein integral equation, demonstrating its significance in robotic manipulator control. To emphasize the originality and practical applicability of our findings, a comprehensive illustrative example is provided.
| [1] |
M. Frechet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palerm., 22 (1906), 1–72. https://doi.org/10.1007/BF03018603 doi: 10.1007/BF03018603
|
| [2] |
A. E. Ahmed, S. Omran, A. J. Asad, Fixed point theorems in quaternion-valued metric spaces, Abstr. Appl. Anal., 2014 (2014), 1–9. https://doi.org/10.1155/2014/258985 doi: 10.1155/2014/258985
|
| [3] |
M. Ozturk, I. A. H. Kosal, H. Kosal, Coincidence and common fixed point theorems via $\mathcal{C}$-class functions in elliptic valued metric spaces, An. Sti. U. Ovid. Co.-Mat., 29 (2021), 165–182. https://doi.org/10.2478/auom-2021-0011 doi: 10.2478/auom-2021-0011
|
| [4] | G. Siva, Complex valued bipolar metric spaces and fixed point theorems, Commun. Nonlinear Anal., 1 (2023), 1–10. |
| [5] |
S. G. Matthews, Partial metric topology, Ann. NY. Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x doi: 10.1111/j.1749-6632.1994.tb44144.x
|
| [6] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11. |
| [7] |
A. Branciari, A fixed point theorem of Banach–Caccioppoli type on a class of generalized metric spaces, Publ. Math.-Debrecen, 57 (2000), 31–37. https://doi.org/10.5486/PMD.2000.2133 doi: 10.5486/PMD.2000.2133
|
| [8] |
L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087
|
| [9] |
M. Berzig, First results in suprametric spaces with applications, Mediterr. J. Math., 19 (2022), 226. https://doi.org/10.1007/s00009-022-02148-6 doi: 10.1007/s00009-022-02148-6
|
| [10] |
M. Berzig, Fixed point results in generalized suprametric spaces, Topolog. Algebra Appl., 11 (2023), 20230105. https://doi.org/10.1515/taa-2023-0105 doi: 10.1515/taa-2023-0105
|
| [11] |
M. Berzig, Nonlinear contraction in $b$-suprametric spaces, J. Anal., 32 (2024), 2401–2414. https://doi.org/10.1007/s41478-024-00732-5 doi: 10.1007/s41478-024-00732-5
|
| [12] |
A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Func. Anal. Opt., 32 (2011), 243–253. https://doi.org/10.1080/01630563.2011.533046 doi: 10.1080/01630563.2011.533046
|
| [13] |
F. Rouzkard, M. Imdad, Some common fixed point theorems on complex valued metric spaces, Comput. Math. Appl., 64 (2012), 1866–1874. https://doi.org/10.1016/j.camwa.2012.02.063 doi: 10.1016/j.camwa.2012.02.063
|
| [14] |
W. Sintunavarat, P. Kumam, Generalized common fixed point theorems in complex valued metric spaces and applications, J. Inequal. Appl., 2012 (2012), 84. https://doi.org/10.1186/1029-242X-2012-84 doi: 10.1186/1029-242X-2012-84
|
| [15] |
K. Sitthikul, S. Saejung, Some fixed point theorems in complex valued metric spaces, Fixed Point Theory A., 2012 (2012), 189. https://doi.org/10.1186/1687-1812-2012-189 doi: 10.1186/1687-1812-2012-189
|
| [16] |
S. K. Panda, V. Vijayakumar, R. P. Agarwal, Complex-valued suprametric spaces, related fixed point results, and their applications to Barnsley Fern fractal generation and mixed Volterra–Fredholm integral equations, Fractal Fract., 8 (2024), 410. https://doi.org/10.3390/fractalfract8070410 doi: 10.3390/fractalfract8070410
|
| [17] |
J. Ahmad, C. K. Eam, A. Azam, Common fixed points for multivalued mappings in complex-valued metric spaces with applications, Abstr. Appl. Anal., 2013 (2013), 854965. https://doi.org/10.1155/2013/854965 doi: 10.1155/2013/854965
|
| [18] |
A. Azam, J. Ahmad, P. Kumam, Common fixed point theorems for multi-valued mappings in complex-valued metric spaces, J. Inequal. Appl., 2013 (2013), 578. https://doi.org/10.1186/1029-242X-2013-578 doi: 10.1186/1029-242X-2013-578
|
| [19] |
C. K. Eam, C. Suanoom, Some common fixed point theorems for generalized contractive type mappings on complex valued metric spaces, Abstr. Appl. Anal., 2013 (2013), 604215. https://doi.org/10.1155/2013/604215 doi: 10.1155/2013/604215
|
| [20] |
S. T. Zubair, M. Aphane, A. Mukheimer, T. Abdeljawad, A fixed point technique for solving boundary value problems in branciari suprametric spaces, Results Nonlinear Anal., 7 (2024), 80–93. https://doi.org/10.31838/rna/2024.07.03.008 doi: 10.31838/rna/2024.07.03.008
|
| [21] |
M. Hadizadeh, S. Yazdani, New enclosure algorithms for the verified solutions of nonlinear Volterra integral equations, Appl. Math. Model., 35 (2011), 2972–2980. https://doi.org/10.1016/j.apm.2010.11.071 doi: 10.1016/j.apm.2010.11.071
|
| [22] |
A. Green, Dynamics and trajectory tracking control of a two-link robot manipulator, J. Vib. Control, 10 (2024), 1415–1440. https://doi.org/10.1177/1077546304042058 doi: 10.1177/1077546304042058
|
| [23] |
H. Abouaïssa, S. Chouraqui, On the control of robot manipulator: A model-free approach, J. Comput. Sci., 31 (2019), 6–16. https://doi.org/10.1016/j.jocs.2018.12.011 doi: 10.1016/j.jocs.2018.12.011
|
| [24] |
A. H. Tedjani, S. E. Alhazmi, S. S. E. Eldien, An operational approach for one- and two-dimension high-order multi-pantograph Volterra integro-differential equation, AIMS Math., 10 (2025), 9274–9294. https://doi.org/10.3934/math.2025426 doi: 10.3934/math.2025426
|
| [25] | S. S. E. Eldien, A. Alalyani, Legendre spectral collocation method for one- and two-dimensional nonlinear pantograph Volterra-Fredholm integro-differential equations, Int. J. Mod. Phys. C, 2025, 2550061. https://doi.org/10.1142/S0129183125500615 |
| [26] |
Y. Wang, S. S. E. Eldien, A. A. Aldraiweesh, A new algorithm for the solution of nonlinear two-dimensional Volterra integro-differential equations of high-order, J. Comput. Appl. Math., 364 (2025), 112301. https://doi.org/10.1016/j.cam.2025.112301 doi: 10.1016/j.cam.2025.112301
|