This study presents a novel algorithm for computing the minimum eigenvalue of irreducible M-matrices. Firstly, we introduce a new diagonal transformation technique and establish sharper two-sided bounds for the spectral radius of irreducible nonnegative matrices with positive diagonal entries. Building upon these theoretical foundations, we develop an efficient iterative algorithm to compute the minimum eigenvalue of irreducible M-matrices. The convergence of the proposed algorithm is rigorously proved, ensuring both computational stability and asymptotic accuracy. Numerical experiments demonstrate the effectiveness of the method, showing that it achieves high precision with relatively low computational cost compared to existing approaches.
Citation: Qin Zhong. A diagonal transformation-based algorithm for computing the minimum eigenvalue of irreducible M-matrices[J]. AIMS Mathematics, 2025, 10(8): 19738-19749. doi: 10.3934/math.2025880
This study presents a novel algorithm for computing the minimum eigenvalue of irreducible M-matrices. Firstly, we introduce a new diagonal transformation technique and establish sharper two-sided bounds for the spectral radius of irreducible nonnegative matrices with positive diagonal entries. Building upon these theoretical foundations, we develop an efficient iterative algorithm to compute the minimum eigenvalue of irreducible M-matrices. The convergence of the proposed algorithm is rigorously proved, ensuring both computational stability and asymptotic accuracy. Numerical experiments demonstrate the effectiveness of the method, showing that it achieves high precision with relatively low computational cost compared to existing approaches.
| [1] | R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge: Cambridge University Press, 2012. https://doi.org/10.1017/CBO9780511810817 |
| [2] |
M. H. Ross, G. L. Shaw, Multichannel effective range theory, Ann. Phys., 13 (1961), 147–186. https://doi.org/10.1016/0003-4916(61)90078-1 doi: 10.1016/0003-4916(61)90078-1
|
| [3] |
X. S. Chen, L. H. Ou, Two-step Noda iteration for irreducible nonnegative matrices, Linear Multilinear A., 72 (2024), 367–378. https://doi.org/10.1080/03081087.2022.2158298 doi: 10.1080/03081087.2022.2158298
|
| [4] |
G. Wang, J. Liu, An improved diagonal transformation algorithm for the maximum eigenvalue of zero symmetric nonnegative matrices, Symmetry, 14 (2022), 1707. https://doi.org/10.3390/sym14081707 doi: 10.3390/sym14081707
|
| [5] |
L. Z. Lu, Perron complement and Perron root, Linear Algebra Appl., 341 (2002), 239–248. https://doi.org/10.1016/S0024-3795(01)00378-0 doi: 10.1016/S0024-3795(01)00378-0
|
| [6] |
L. B. Liu, H. W. Liu, L. X. Yin, A numerical algorithm for the minimal eigenvalue of an irreducible Z-matrices (Chinese), Chinese Journal of Engineering Mathematics, 27 (2010), 105–110. https://doi.org/10.3969/j.issn.1005-3085.2010.01.013 doi: 10.3969/j.issn.1005-3085.2010.01.013
|
| [7] |
F. J. Duan, K. C. Zhang, A new algorithm for the minimal eigenvalue of irreducible M-matrices (Chinese), Journal on Numerical Methods and Computer Applications, 2 (2006), 139–144. https://doi.org/10.3969/j.issn.1000-3266.2006.02.008 doi: 10.3969/j.issn.1000-3266.2006.02.008
|
| [8] |
L. You, Y. Shu, P. Yuan, Sharp upper and lower bounds for the spectral radius of a nonnegative irreducible matrix and its applications, Linear Multilinear A., 65 (2017), 113–128. https://doi.org/10.1080/03081087.2016.1168355 doi: 10.1080/03081087.2016.1168355
|
| [9] |
W. Bunse, A class of diagonal transformation methods for the computation of the spectral radius of a nonnegative irreducible matrix, SIAM J. Numer. Anal., 18 (1981), 693–704. https://doi.org/10.1137/0718046 doi: 10.1137/0718046
|
| [10] |
F. J. Duan, K. C. Zhang, An algorithm of diagonal transformation for Perron root of nonnegative irreducible matrices, Appl. Math. Comput., 175 (2006), 762–772. https://doi.org/10.1016/j.amc.2005.07.055 doi: 10.1016/j.amc.2005.07.055
|
| [11] |
C. M. Wen, T. Z. Huang, A modified algorithm for the Perron root of a nonnegative matrix, Appl. Math. Comput., 217 (2011), 4453–4458. https://doi.org/10.1016/j.amc.2010.10.048 doi: 10.1016/j.amc.2010.10.048
|