This paper studied the group consensus problem in heterogeneous multi-agent systems (HMASs) subject to input delays, denial of service (DoS) attacks, and external disturbances. The agents interact within a cooperative-competitive network, where first- and second-order dynamics coexist. To address the challenges introduced by disruptions in communication and system heterogeneity, an intermittent control protocol was designed. This protocol operates based on a time-varying binary signal that reflects the availability of communication. Control actions are suspended during DoS intervals and resume when communication is restored. The proposed method incorporates virtual velocity estimation to handle mixed-order agents and employs frequency-domain analysis, specifically the Nyquist stability criterion, to derive algebraic conditions that ensure consensus. These conditions relate the maximum allowable delay to system topology, attack patterns, and disturbance levels. Numerical simulations demonstrate that consensus can be achieved under both directed and undirected network structures, even in the presence of constrained DoS disruptions and bounded disturbances.
Citation: Yubin Zhong, Romana Ashfaq, Asad Khan, Azmat Ullah Khan Niazi, Taoufik Saidani, Adnan Burhan Rajab, Mohammed M. A. Almazah. Control protocol design for group consensus in heterogeneous multi-agent systems with communication interruptions and external disturbances[J]. AIMS Mathematics, 2025, 10(8): 19750-19774. doi: 10.3934/math.2025881
This paper studied the group consensus problem in heterogeneous multi-agent systems (HMASs) subject to input delays, denial of service (DoS) attacks, and external disturbances. The agents interact within a cooperative-competitive network, where first- and second-order dynamics coexist. To address the challenges introduced by disruptions in communication and system heterogeneity, an intermittent control protocol was designed. This protocol operates based on a time-varying binary signal that reflects the availability of communication. Control actions are suspended during DoS intervals and resume when communication is restored. The proposed method incorporates virtual velocity estimation to handle mixed-order agents and employs frequency-domain analysis, specifically the Nyquist stability criterion, to derive algebraic conditions that ensure consensus. These conditions relate the maximum allowable delay to system topology, attack patterns, and disturbance levels. Numerical simulations demonstrate that consensus can be achieved under both directed and undirected network structures, even in the presence of constrained DoS disruptions and bounded disturbances.
| [1] |
F. Yu, L. Ji, S. Yang, Group consensus for a class of heterogeneous multi-agent networks in the competition systems, Neurocomputing, 416 (2020), 165–171. https://doi.org/10.1016/j.knosys.2023.111358 doi: 10.1016/j.knosys.2023.111358
|
| [2] |
D. Pang, H. Meng, J. Cao, S. Liu, Group consensus protocol with input delay for HMASs in cooperative-competitive networks, Neurocomputing, 596 (2024), 127931. https://doi.org/10.1016/j.neucom.2024.127931 doi: 10.1016/j.neucom.2024.127931
|
| [3] |
Y. Lan, J. Zhao, Improving track performance by combining Padé-approximation-based preview repetitive control and equivalent-input-disturbance, J. Electr. Eng. Technol., 19 (2024), 3781–3794. https://doi.org/10.1007/s42835-024-01830-x doi: 10.1007/s42835-024-01830-x
|
| [4] |
Q. Ma, S. Xu, Intentional delay can benefit consensus of second-order multi-agent systems, Automatica, 147 (2023), 110750. https://doi.org/10.1016/j.automatica.2022.110750 doi: 10.1016/j.automatica.2022.110750
|
| [5] |
F. Ding, K. Zhu, J. Liu, C. Peng, Y. Wang, J. Lu, Adaptive memory event triggered output feedback finite-time lane keeping control for autonomous heavy truck with roll prevention, IEEE T. Fuzzy Syst., 32 (2024), 6607–6621. https://doi.org/10.1109/TFUZZ.2024.3454344 doi: 10.1109/TFUZZ.2024.3454344
|
| [6] |
J. Chen, J. Wang, J. Wang, L. Bai, Joint fairness and efficiency optimization for CSMA/CA-based multi-user MIMO UAV Ad Hoc networks, IEEE J. STSP, 18 (2024), 1311–1323. https://doi.org/10.1109/JSTSP.2024.3435348 doi: 10.1109/JSTSP.2024.3435348
|
| [7] |
L. Ji, Z. Lin, C. Zhang, S. Yang, J. Li, H. Li, Data-based optimal consensus control for multiagent systems with time delays: Using prioritized experience replay, IEEE T. Syst. Man Cy.-S., 54 (2024), 3244–3256. https://doi.org/10.1109/TSMC.2024.3358293 doi: 10.1109/TSMC.2024.3358293
|
| [8] |
S. Jin, X. Wang, Q. Meng, Spatial memory-augmented visual navigation based on hierarchical deep reinforcement learning in unknown environments, Knowl.-Based Syst., 285 (2024), 111358. https://doi.org/10.1016/j.knosys.2023.111358 doi: 10.1016/j.knosys.2023.111358
|
| [9] |
Y. Yao, F. Shu, X. Cheng, H. Liu, P. Miao, L. Wu, Automotive radar optimization design in a spectrally crowded V2I communication environment, IEEE T. Intell. Transp. Sy., 24 (2023), 8253–8263. https://doi.org/10.1109/TITS.2023.3264507 doi: 10.1109/TITS.2023.3264507
|
| [10] |
J. Shi, C. Liu, J. Liu, Hypergraph-based model for modelling multi-agent $q$-learning dynamics in public goods games, IEEE T. Netw. Sci. Eng., 11 (2024), 6169–6179. https://doi.org/10.1109/TNSE.2024.3473941 doi: 10.1109/TNSE.2024.3473941
|
| [11] |
X. Wu, B. Zou, C. Lu, L. Wang, Y. Zhang, H. Wang, Dynamic security computing framework with zero trust based on privacy domain prevention and control theory, IEEE J. Sel. Area. Commun., 43 (2025), 2266–2278. https://doi.org/10.1109/JSAC.2025.3560036 doi: 10.1109/JSAC.2025.3560036
|
| [12] |
X. Peng, S. Song, X. Zhang, M. Dong, K. Ota, Task offloading for IoAV under extreme weather conditions using dynamic price driven double broad reinforcement learning, IEEE Internet Things, 11 (2024), 17021–17033. https://doi.org/10.1109/JIOT.2024.3360110 doi: 10.1109/JIOT.2024.3360110
|
| [13] |
Z. Zhou, Y. Wang, G. Zhou, K. Nam, Z. Ji, C. Yin, A twisted Gaussian risk model considering target vehicle longitudinal-lateral motion states for host vehicle trajectory planning, IEEE T. Intell. Transp., 24 (2023), 13685–13697. https://doi.org/10.1109/TITS.2023.3298110 doi: 10.1109/TITS.2023.3298110
|
| [14] |
Z. Li, J. Hu, B. Leng, L. Xiong, Z. Fu, An integrated of decision making and motion planning framework for enhanced oscillation-free capability, IEEE T. Intell. Transp., 25 (2024), 5718–5732. https://doi.org/10.1109/TITS.2023.3332655 doi: 10.1109/TITS.2023.3332655
|
| [15] |
F. Wang, K. Chen, S. Zhen, X. Chen, H. Zheng, Z. Wang, Prescribed performance adaptive robust control for robotic manipulators with fuzzy uncertainty, IEEE Trans. Fuzzy Syst., 32 (2024), 1318–1330. https://doi.org/10.1109/TFUZZ.2023.3323090 doi: 10.1109/TFUZZ.2023.3323090
|
| [16] |
H. Xu, H. Wei, H. Chen, Z. Chen, X. Zhou, H. Xu, et al., Effect of periodic phase modulation on the matched filtering with insufficient phase shift capability, IEEE T. Aero. Elec. Sys., 61 (2025), 5755–5770. https://doi.org/10.1109/TAES.2024.3520959 doi: 10.1109/TAES.2024.3520959
|
| [17] |
G. Du, H. Zhang, H. Yu, P. Hou, J. He, S. Cao, et al., Study on automatic tracking system of microwave deicing device for railway contact wire, IEEE T. Instrum., 73 (2024), 1–11. https://doi.org/10.1109/TIM.2024.3446638 doi: 10.1109/TIM.2024.3446638
|
| [18] | Y. Cao, Z. Zhang, Enhanced contour tracking: A time-varying internal model principle-based approach, IEEE-ASME T. Mech., 2025, 1–9. https://doi.org/10.1109/TMECH.2025.3572743 |
| [19] |
H. Zhang, Y. Xu, R. Luo, Y. Mao, Fast GNSS acquisition algorithm based on SFFT with high noise immunity, China Commun., 20 (2023), 70–83. https://doi.org/10.23919/JCC.2023.00.006 doi: 10.23919/JCC.2023.00.006
|
| [20] | Z. Zhao, X. Chen, F. Meng, Z. Yang, B. Liu, N. Zhu, et al., Design and analysis of a 22.6-to-73.9 GHz low-noise amplifier for 5G NR FR2 and NR-U multiband/multistandard communications, IEEE J. Solid-St. Circ., 2025, 1–13. https://doi.org/10.1109/JSSC.2025.3545463 |
| [21] |
X. Yang, Y. Zhuang, M. Shi, X. Sun, X. Cao, B. Zhou, RatioVLP: Ambient light noise evaluation and suppression in the visible light positioning system, IEEE T. Mobile Comput., 23 (2024), 5755–5769. https://doi.org/10.1109/TMC.2023.3312550 doi: 10.1109/TMC.2023.3312550
|
| [22] |
J. Wu, Y. Wang, C. Yin, Curvilinear multilane merging and platooning with bounded control in curved road coordinates, IEEE T. Veh. Technol., 71 (2022), 1237–1252. https://doi.org/10.1109/TVT.2021.3131751 doi: 10.1109/TVT.2021.3131751
|
| [23] |
X. Zhang, Y. Liu, X. Chen, Z. Li, C. Su, Adaptive pseudoinverse control for constrained hysteretic nonlinear systems and its application on dielectric elastomer actuator, IEEE-ASME T. Mech., 28 (2023), 2142–2154. https://doi.org/10.1109/TMECH.2022.3231263 doi: 10.1109/TMECH.2022.3231263
|
| [24] |
J. Lv, X. Ju, C. Wang, Neural network prescribed-time observer-based output-feedback control for uncertain pure-feedback nonlinear systems, Expert Syst. Appl., 264 (2025), 125813. https://doi.org/10.1016/j.eswa.2024.125813 doi: 10.1016/j.eswa.2024.125813
|
| [25] |
X. Ju, Y. Jiang, L. Jing, P. Liu, Quantized predefined-time control for heavy-lift launch vehicles under actuator faults and rate gyro malfunctions, ISA T., 138 (2023), 133–150. https://doi.org/10.1016/j.isatra.2023.02.022 doi: 10.1016/j.isatra.2023.02.022
|
| [26] |
Y. Liu, Q. Hu, G. Feng, Navigation functions on 3-manifold with boundary as a disjoint union of Hopf tori, IEEE T. Automat. Contr., 70 (2025), 219–234. https://doi.org/10.1109/TAC.2024.3419817 doi: 10.1109/TAC.2024.3419817
|
| [27] |
H. Liu, S. Zhen, X. Liu, H. Zheng, L. Gao, Y. Chen, Robust approximate constraint following control design for collaborative robots system and experimental validation, Robotica, 42 (2024), 3957–3975. https://doi.org/10.1017/S0263574724001760 doi: 10.1017/S0263574724001760
|
| [28] |
Y. Liu, W. Li, X. Dong, Z. Ren, Resilient formation tracking for networked swarm systems under malicious data deception attacks, Int. J. Robust Nonlin., 35 (2025), 2043–2052. https://doi.org/10.1002/rnc.7777 doi: 10.1002/rnc.7777
|
| [29] |
Y. Lan, J. Zhao, Improving track performance by combining Padé-approximation-based preview repetitive control and equivalent-input-disturbance, J. Electr. Eng. Technol., 19 (2024), 3781–3794. https://doi.org/10.1007/s42835-024-01830-x doi: 10.1007/s42835-024-01830-x
|
| [30] |
R. Yang, S. Liu, X. Li, Observer-based bipartite containment control of fractional multi-agent systems with mixed delays, Inform. Sci., 626 (2023), 204–222. https://doi.org/10.1016/j.ins.2023.01.025 doi: 10.1016/j.ins.2023.01.025
|
| [31] |
Y. Zhang, Y. Hong, M. Guizani, S. Wu, P. Zhang, R. Liu, A multi-layer information dissemination model and interference optimization strategy for communication networks in disaster areas, IEEE T. Veh. Technol., 73 (2024), 1239–1252. https://doi.org/10.1109/TVT.2023.3304707 doi: 10.1109/TVT.2023.3304707
|
| [32] |
X. Li, Z. Lu, M. Yuan, W. Liu, F. Wang, Y. Yu, et al., Tradeoff of code estimation error rate and terminal gain in SCER attack, IEEE T. Instrum. Meas., 73 (2024), 1–12. https://doi.org/10.1109/TIM.2024.3406807 doi: 10.1109/TIM.2024.3406807
|
| [33] |
W. Wang, J. Liang, H. Zeng, Sampled-data-based stability and stabilization of Lurie systems, Appl. Math. Comput., 501 (2025), 129455. https://doi.org/10.1016/j.amc.2025.129455 doi: 10.1016/j.amc.2025.129455
|
| [34] |
W. Wang, C. Li, A. Luo, H. Xiao, Stability analysis of linear systems with a periodical time-varying delay based on an improved non-continuous piecewise Lyapunov functional, AIMS Math., 10 (2025), 9073–9093. https://doi.org/10.3934/math.2025418 doi: 10.3934/math.2025418
|
| [35] |
Z. Liu, G. Jiang, Y. Wu, T. Wang, S. Liu, Z. Ouyang, K-coverage estimation for irregular targets in wireless visual sensor networks deployed in complex region of interest, IEEE Sens. J., 25 (2025), 18370–18383. https://doi.org/10.1109/JSEN.2025.3558041 doi: 10.1109/JSEN.2025.3558041
|
| [36] |
F. Xu, H. Yang, M. Alouini, Energy consumption minimization for data collection from wirelessly-powered IoT sensors: Session-specific optimal design with DRL, IEEE Sens. J., 22 (2022), 19886–19896. https://doi.org/10.1109/JSEN.2022.3205017 doi: 10.1109/JSEN.2022.3205017
|
| [37] |
X. Wang, N. Pang, Y. Xu, T. Huang, J. Kurths, On state-constrained containment control for nonlinear multiagent systems using event-triggered input, IEEE T. Syst. Man Cy.-S., 54 (2024), 2530–2538. https://doi.org/10.1109/TSMC.2023.3345365 doi: 10.1109/TSMC.2023.3345365
|
| [38] | Z. Wang, C. Mu, S. Hu, C. Chu, X. Li, Modelling the dynamics of regret minimization in large agent populations: A master equation approach, In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22), 2022,534–540. https://doi.org/10.24963/ijcai.2022/76 |
| [39] |
Y. Wang, Q. Song, Y. Liu, Synchronisation of quaternion-valued neural networks with neutral delay and discrete delay via aperiodic intermittent control, Int. J. Syst. Sci., 56 (2025), 1395–1412. https://doi.org/10.1080/00207721.2024.2427249 doi: 10.1080/00207721.2024.2427249
|
| [40] |
X. Zhang, Q. Gao, J. Cai, W. Xu, Design and comprehensive analysis of improved Proportional-Integral-Retarded protocol for second-order multi-agent systems, Inform. Sci., 666 (2024), 120396. https://doi.org/10.1016/j.ins.2024.120396 doi: 10.1016/j.ins.2024.120396
|
| [41] |
Q. Gao, J. Cai, R. Cepeda-Gomez, W. Xu, Improved frequency sweeping technique and stability analysis of the second-order consensus protocol with distributed delays, Int. J. Control, 96 (2023), 461–474. https://doi.org/10.1080/00207179.2021.2002415 doi: 10.1080/00207179.2021.2002415
|
| [42] |
L. Ma, F. Zhu, Human-in-the-loop formation control for multi-agent systems with asynchronous edge-based event-triggered communications, Automatica, 167 (2024), 111744. https://doi.org/10.1016/j.automatica.2024.111744 doi: 10.1016/j.automatica.2024.111744
|
| [43] |
F. Zhu, Y. Zhao, Y. Fu, T. N. Dinh, Observer-based output consensus control scheme for strict-feedback nonlinear multi-agent systems with disturbances, IEEE T. Netw. Sci. Eng., 11 (2023), 2621–2631. https://doi.org/10.1109/TNSE.2023.3346442 doi: 10.1109/TNSE.2023.3346442
|